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Abstract
Graphical models factorize a global probability distribution/energy function as the
product/sum of local functions. A major inference task, known as MAP in Markov
Random Fields and MPE in Bayesian Networks, is to find a global assignment
of all the variables with maximum a posteriori probability/minimum energy. A
usual distinction on MAP solving methods is complete/incomplete, i.e. the abil-
ity to prove optimality or not. Most complete methods rely on tree search, while
incomplete methods rely on local search. Among them, we study Variable Neigh-
borhood Search (VNS) for graphical models. In this paper, we propose an iterative
approach above VNS that uses (partial) tree search inside its local neighborhood
exploration. The proposed approach performs several neighborhood explorations
of increasing search complexity, by controlling two parameters, the discrepancy
limit and the neighborhood size. Thus, optimality of the obtained solutions can be
proven when the neighborhood size is maximal and with unbounded tree search.
We further propose a parallel version of our method improving its anytime behav-
ior on difficult instances coming from a large graphical model benchmark. Last
we experiment on the challenging minimum energy problem found in Compu-
tational Protein Design, showing the practical benefit of our parallel version. A
solver is available at https://github.com/toulbar2/toulbar2.

Keywords:

1. Introduction1

Probabilistic graphical models [1] are formed by variables linked to each other2

by stochastic relationships. They enable to model complex systems with hetero-3
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geneous data and to capture uncertainty. Graphical models have been applied in4

a wide range of areas such as image analysis, speech recognition, bioinformatics,5

and ecology.6

We focus on models with discrete variables like Markov Random Field and7

Bayesian Network. Our goal is to find a global assignment of all the variables with8

maximum a posteriori probability. This optimization task defines an NP-complete9

problem [2]. Solving methods can be categorized in two groups: exact and local10

search methods. Exact methods rely on tree search, variable elimination, linear11

programming, or a combination of them [3, 4, 5]. Graph-cut and message-passing12

algorithms like loopy belief propagation and variational approaches [6, 7, 8, 9, 10]13

are exact only in some particular cases (e.g., binary image denoising or tree struc-14

tured problems). Local search methods are stochastic algorithms like Gibbs sam-15

pling, Guided Local Search [11, 12], and Stochastic Greedy Search [13]. Some16

of them have theoretical asymptotic proof of convergence, i.e., the optimal solu-17

tion is guaranteed to be found if infinite time is available. In practice, they may18

exhibit a better anytime behavior than exact methods on large and difficult prob-19

lems [14, 12, 13], i.e., they produce better solutions in less time.20

A few attempts have been done to combine exact and local search methods.21

A simple way is to run sequentially a local search algorithm then tree search,22

where solutions found by local search will be used as initial upper bounds for23

branch and bound exact methods. Another approach is to design a local search24

framework where the neighborhood exploration is performed by tree search in25

a systematic or non-systematic way as it is done in Large Neighborhood Search26

(LNS) [15, 16, 17, 18, 19] and Variable Neighborhood Search (VNS) [20, 21].27

VNS/LDS+CP [21] combines a metaheuristic, VNS, with Limited Discrepancy28

Search (LDS) [22], a partial tree search method (Section 2). We propose in this29

paper an iterative variant of VNS/LDS+CP, called Unified Decomposition Guided30

VNS (UDGVNS), adapted to graphical models and able to prove optimality when31

the neighborhood size is maximal and with unbounded tree search.32

Contributions and plan.33

1. We introduce UDGVNS, a new iterative approach above DGVNS1 (Decom-34

position Guided VNS) unifying complete and incomplete search methods.35

UDGVNS restores the completeness of DGVNS by applying successive calls36

with an increasing discrepancy limit.37

1DGVNS [23] exploits, within VNS/LDS+CP, structural knowledge coming from tree decom-
position in order to efficiently guide the exploration of large neighborhoods (Section 2).
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2. We describe a coarse-grained parallel version called UPDGVNS (for Unified38

Parallel DGVNS) allowing asynchronous cooperative execution of UDGVNS39

processes with centralized information exchange as in [24, 25]. As for40

UDGVNS, the parallel release enables one to control the compromise be-41

tween optimality proof and anytime behavior. Compared to UDGVNS, the42

parallel version enables to improve the anytime behavior on difficult in-43

stances.44

3. We propose a new operator denoted add1/jump for managing the neigh-45

borhood size k that exploits the graph of clusters provided by a tree decom-46

position of the problem.47

4. We present an extensive empirical study that includes a wide range of in-48

stances coming from various benchmarks (Cost Function Network (CFN),49

Computer Vision and Pattern Recognition (CVPR), Uncertainty in Artifi-50

cial Intelligence (UAI) 2008 and Probabilistic Inference Challenge (PIC)51

2011) which compares our techniques to state-of-the-art ones. Experimen-52

tal results show that our approaches offer a good compromise between the53

number of problems completely solved compared to the quality of the best54

solution found.55

5. We report experiments on the challenging minimum energy problem in56

Computational Protein Design (CPD). For this aim, we designed new larger57

instances that are well structured and supposed to be more difficult to solve58

than those generated in [26]. We show the practical benefit of our ap-59

proaches compared to TOULBAR2 and FIXBB2 the simulated annealing al-60

gorithm provided by the Rosetta package for CPD.61

The paper is organized as follows. Section 2 recalls preliminaries. Section 362

presents UDGVNS. Section 4 describes our parallel version UPDGVNS. Sections 5-63

6 report experiments we performed. Finally, we conclude and draw some perspec-64

tives.65

2. Preliminaries66

2.1. Graphical Model67

Definition 1. A probabilistic graphical model (or Gibbs distribution) [1] is a68

triplet (X ,D,F) with X = {X1, . . . , Xn}, a set of n random variables, D =69

{D1, . . . , Dn}, a set of finite domains of values of maximum size d = maxn
i=1 |Di|,70

2fixed backbone design application
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and F , a set of potential functions. Each variable Xi takes values in Di. An as-71

signment of X is a set x = (x1, . . . , xn), with xi ∈ Di. The set of all possible72

assignments of X is denoted ∆ =
∏n

i=1 Di. Let A = {D′1, . . . , D′n} with D′i ⊆ Di73

represent a restricted set of ∆ called a partial assignment. If S is a subset of74

V = {1, . . . , n}, XS , xS and ∆S are respectively the subset of random variables75

{Xi, i ∈ S}, the assignment (xi, i ∈ S) obtained from x, and the set of all possi-76

ble assignments of XS . Given a set S of partitions of V , the set F = {fS}S∈S of77

maps from ∆S to R+ is said to factorize a joint probability distribution P iff:78

P(x) =
1

Z

∏
fS∈F

fS(xS) (1)

where Z =
∑

x∈∆

∏
fS∈F fS(xS) is the normalizing constant, also called parti-79

tion function.80

Among the various tasks, the Most Probable Explanation (MPE) problem is
to find the most likely assignment x ∈ ∆ to all the variables in X maximizing
P(x). By taking the opposite of the logarithm of P(x), i.e.,

− logP(x) =
∑
fS∈F

− log fS(xS) + logZ =
∑
fS∈F

ϕ(xS) + logZ

we obtain an additive model with ϕ(xS) called an energy function. Finding a81

solution of minimum energy is equivalent to MPE. In the rest of the paper, we82

consider energy minimization. When ϕ(xS) maps to N+ ∪ {∞}, the correspond-83

ing deterministic graphical model is called a Cost Function Network (CFN) [27].84

Finding a solution of minimum cost is the same as doing energy minimization on85

the equivalent probabilistic model [28].86

Specific solving methods have been proposed to solve these problems but two87

general approaches can be considered. The first one applies traditional search88

techniques based on backtracking or branch and bound. In the worst case, their89

time complexity is in O(dn) while being generally linear in space. The second one90

relies on methods that exploit the notion of decomposition of graphs and which are91

based on Dynamic Programming (DP) (see Section 2.4.1). These methods make it92

possible to guarantee a time complexity in O(dw) (where w is the minimal width93

over all the tree decompositions) but with an exponential space complexity.94

2.2. DFBB and Limited Discrepancy Search95

Depth-First Branch and Bound (DFBB) methods explore a search tree in a sys-96

tematic way by recursively choosing the next unassigned variable to assign and by97
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choosing a value in its domain for the assignment (the branch part) until a better98

solution is found or it can be proved that the subtree rooted at the current search99

node has no better solutions and it can be pruned (the bound part). DFBB depends100

on its variable and value ordering heuristics for branching in order to find good101

solutions rapidly and to reduce the size of the search tree to be explored. It also102

depends on its lower bound computation in order to prune the search for mini-103

mization problems. Typically, lower bounds are built by dynamic programming104

with bounded memory, such as mini-buckets heuristic [29], or by solving a lin-105

ear relaxation of the problem or its dual in an exact or approximate way. In the106

experiments, we exploit during search an approximate dual lower bound called107

Existential Directional Arc consistency (EDAC) [30] that performs fast incremen-108

tal problem reformulations with extra domain value pruning. More information109

can be found in [31].110

Limited Discrepancy Search (LDS) [22] is a heuristic method that explores111

the search tree in a non-systematic way by making a limited number of wrong112

decisions w.r.t. its value ordering heuristic. We assume a binary search tree where113

at each search node either the selected variable is assigned to its chosen preferred114

value (left branch) or the value is removed from the domain (right branch). Each115

value removal corresponds to a wrong decision made by the search, it is called116

a discrepancy. The number of discrepancies is limited by a parameter denoted117

`. See Algorithm 1, where lb(A) gives a lower bound on the minimum energy118

minx∈
∏

Di∈A Di
− logP(x) of the partial assignment A.119

In order to detect if a complete search has been done, LDS returns true if and120

only if the discrepancy limit is never reached. Otherwise it returns false as soon121

as ` = 0 (line 1). If it returns true then LDS is equivalent to a complete DFBB.122

In order to produce better quality solutions as time passes, a simple strategy123

is to iterate LDS with an increasing number of discrepancies ` going from `min124

to `max. See Algorithm 2 for this Iterative LDS (ILDS) method, where +` is a125

special sum operator that will be discussed in Section 3. The minimum energy126

and its corresponding solution are provided in global variables ub and x. In the127

sequel, we give no initial upper bound (ub =∞).128

Proposition 1. ILDS(0, n(d− 1),+,∞, {}) is a complete method with a worst-129

case time complexity exponential in the number of variables and a linear space130

complexity.131

Proof. First, we prove that ILDS returns true if and only if optimality was proven.132

Each iteration does at most ` discrepancies along the path from the root search133

node to a terminal node. With a sufficiently large discrepancy limit, LDS never134
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Algorithm 1: Limited Discrepancy Search algorithm
Function LDS(`, A, ub : In/Out, x : Out) : Boolean

left← true ; right← true ;
if (∃Di ∈ A, |Di| > 1) then

Choose an unassigned variable Xi ∈ X such that |Di| > 1 ;
Choose a value xi ∈ Di ;
A′ ← (A \ {Di}) ∪ {{xi}} ;
if (lb(A′) < ub) then

left← LDS(`, A′, ub, x) ; // left branch
if (` > 0) then

A′′ ← (A \ {Di}) ∪ {Di \ {xi}} ;
if (lb(A′′) < ub) then

right← LDS(`− 1, A′′, ub, x) ; // right branch
else

1 return false ; // search is incomplete
else

2 ub← lb(A), x← A ; // new solution found
return left ∧ right ; // true if both branches are complete

reaches its discrepancy limit (` = 0) and explores a complete search tree, so both135

LDS and ILDS (line 3) return true. Because we have in the worst case n(d − 1)136

value removals (right branches) to reach a terminal node before assigning all the137

variables, we can set `max = n(d− 1) and at least, the last iteration is complete3,138

i.e., LDS(n(d − 1),D, ub, x) is equivalent to a complete DFBB. Here, d is the139

maximum domain size of all the variables.140

Another condition for completeness is reached when LDS finds a solution with141

a cost equal to a known lower bound of the problem. In this case, LDS will stop142

branching and ILDS will return true before reaching its last iteration (line 3).143

For simplicity reasons, let assume variables with Boolean domains (d = 2).144

The maximum height h of the explored search tree is therefore equal to the number145

of variables h = n. The number of terminal nodes with exactly ` discrepancies is146

bounded by (h` ). In the worst case, ILDS runs for ` = 0..h. The number of termi-147

nal nodes of LDS for ` = h is equal to (h0)+(h1)+(h2)+. . .+(hh) =
∑

0≤k≤h(hk) = 2h.148

Thus in the worst case, one iteration of LDS has a time complexity in Θ(2h). By149

doing at most h + 1 iterations (from ` = 0 to `max = h), ILDS will explore at150

least Ω(2h) terminal nodes. The asymptotic time complexity of ILDS is therefore151

3In practice, ` was less than or equal to 128 for all instances completely solved within 1 hour
CPU time limit by LDS and VNS methods in Section 5.
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Algorithm 2: Iterative LDS algorithm
Function ILDS(`min, `max,+`, ub : In/Out, x : Out) : Boolean

r ← 0 ; // number of discrepancy iterations
`← `min ; // initial discrepancy limit
while (` ≤ `max) do

opt← LDS(`,D, ub, x);
3 if (opt ∨ ub = lb(D)) then return true;

r ← r + 1 ;
4 if (` < `max) then `← min(`max, `min+`r);

else `←∞;
return false ;

exponential in the number of variables.152

Because LDS has a linear space complexity, thanks to its depth-first search153

principle as in DFBB, ILDS has also a linear space complexity.154

In [32], a similar stopping condition for optimality proof was presented. Be-155

cause heuristics are often less informed near the root of the search tree, it is usually156

better to make wrong decisions at the beginning of the search [22, 33]. It favors157

exploring new parts of the search tree, possibly finding better solutions that will158

prune the remaining part of the search tree already explored at previous iterations.159

Our actual implementation of LDS exploits this fact (right branch done before left160

branch when the discrepancy limit is not reached).161

2.3. Variable Neighborhood Search162

VNS [20] is a metaheuristic that uses a finite set of pre-selected neighborhood163

structures Nk, k = 1, 2, ..., kmax to escape from local minima by systematically164

changing the neighborhood structure if the current one does not improve the cur-165

rent incumbent solution. VNS repeatedly performs three major steps. In the first166

one, called shaking, a solution x′ is randomly generated in the neighborhoods of167

x denoted Nk(x). In the second one, a local search method is applied from x′ to168

obtain a local optimum x′′. In the third one, called neighborhood change, if x′′ is169

better, than x is replaced with x′′ and k is set to 1; otherwise, k is increased by170

one.171

The use of VNS scheme for solving deterministic graphical models started172

with VNS/LDS+CP [21] and improved in DGVNS [23] (see section 2.4). This173

approach is related to LNS [15], but it adjusts dynamically the neighborhood size174

and exploits a tree decomposition of the constraint graph of the problem when the175

search seems to stagnate as in VNS.176
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2.4. Decomposition Guided Variable Neighborhood Search177

Recently, Fontaine et al. [23] investigated the incorporation of tree decompo-178

sition in order to efficiently guide the exploration of large neighborhoods. They179

proposed Decomposition Guided VNS (DGVNS), a first local search approach that180

exploits the graph of clusters provided by a tree decomposition of the constraint181

graph of the problem to build relevant neighborhood structures. The next section182

2.4.1 defines formally the constraints tree decomposition. Then we present in sec-183

tion 2.4.2 the construction of the initial solution exploited by DGVNS. In section184

2.4.3, we detail the main DGVNS algorithm, and show in section 2.4.4 how to185

instantiate VNS/LDS+CP algorithm from DGVNS. Finally, we briefly discuss the186

impact of a tree decomposition on the performance of DGVNS.187

2.4.1. Tree decomposition188

Definition 2. A tree decomposition of a connected graphical model G is a pair189

(CT , T ) where T = (I, A) is a tree with nodes set I and edges set A and CT =190

{Ci | i ∈ I} is a family of subsets ofX , called clusters, such that: (i)∪i∈I Ci = X ,191

(ii) ∀ fS ∈ F , ∃ Ci ∈ CT s.t. S ⊆ Ci, (iii) ∀ i, j, k ∈ I , if j is on the path from i192

to k in T , then Ci ∩ Ck ⊆ Cj .193

Definition 3. The intersection of two clusters Ci and Cj is called a separator, and194

noted sep(Ci, Cj).195

Definition 4. A graph of clusters for a tree decomposition (CT , T ) is an undi-196

rected graph G = (CT , E) that has a vertex for each cluster Ci ∈ CT , and there197

is an edge (Ci, Cj) ∈ E when sep(Ci, Cj) 6= ∅.198

The width w of a tree decomposition (CT , T ) is equal to maxCi∈CT
|Ci| − 1.199

The treewidth w∗ of G is the minimal width over all the tree decompositions of G.200

Several studies have focused on the computation of tree decompositions [34,201

35]. The proposed algorithms can be classified into two approaches: the exact202

algorithms that compute decompositions of optimal width (equal to the treewidth)203

and the heuristic methods, which do not offer a guarantee on optimality. The mo-204

tivation of heuristic approaches is due to the fact that the optimal computation is a205

NP-hard problem [36]. Heuristic approaches dedicated to handle graphical mod-206

els often use triangulation (such as Minimum Fill-in (min-fill) [37] and Maximum207

Cardinality Search (MCS) [38]). These heuristic approaches allow to process208

graphs of several thousand of vertices in reasonable time, but without guaran-209

teeing the quality of the obtained decompositions in terms of deviation from the210

optimum w∗. Other heuristics and pre- or post-processing rules may be applied to211
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Algorithm 3: Decomposition Guided VNS algorithm
Procedure DGVNS(`, kmin, kmax, ub : In/Out, x : Out)

let (CT , T ) be a tree decomposition of (X ,D,F) ;
LDSr(n(d− 1),D, ub, x) ; // find an initial solution
c← 1 ; // current cluster index
i← 0 ; // nb. of successive failed neighborhood sizes
k ← kmin ; // initial neighborhood size
while (k ≤ kmax ∧ ¬TimeOut) do

5 A← getNeighborhood(x,Cc, k) ;
ub′ ← ub ;

6 LDSr(`, A, ub′, x′) ; // neighborhood search
if (ub′ < ub) then

7 x← x′, ub← ub′ ; // new best solution
8 i← 0, k ← kmin ;

else
i← i + 1 ;

9 k ← min(kmax, kmin + i) ;
10 c← 1 + cmod |CT | ; // visit next cluster

Function getNeighborhood(x,C, k)
if k ≥ |X | then

11 Xun ← X
else

12 Cand← CompleteCluster(C, k) ;
13 Xun ← Random(Cand, k) ; // Random selection of k conflict

variables
14 A← {Di |Xi ∈ Xun} ∪ {{xi} |Xi ∈ X\Xun} ; // Unassign selected

variables
return A ;

reduce the width of the decomposition [35, 34]. In this paper, we use a heuristic212

approach based on min-fill.213

2.4.2. Initial solution and restricted LDS214

VNS relies on an initial solution x. Without any infinite terms in the problem215

(corresponding to forbidden assignments or hard constraints), x can be produced216

by a greedy search algorithm such as LDS(0,D,∞, x). Otherwise, we can ei-217

ther relax the problem (by replacing every infinite energy term by the sum of the218

greatest finite term of each original energy function in the problem) or rely on a219

complete search method. For that, we made a modified version of LDS, called220
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Restricted LDS (LDSr), that stops immediately after a first solution is found4.221

In particular, LDSr(n(d−1),D,∞, x) will either find a solution of finite cost222

(i.e., satisfying all the constraints) or prove the problem has no feasible solution.223

2.4.3. DGVNS algorithm224

Algorithm 3 shows the pseudo-code of DGVNS. It exploits the graph of clusters225

provided by a tree decomposition of the constraint graph of the problem to build226

relevant neighborhood structures. Let X be the set of variables, and let Nk,c be227

the neighborhood structure, where k is the neighborhood size and Cc is the cluster228

where the variables will be selected from.229

First, an initial solution x is generated by LDSr, as detailed in section 2.4.2.230

Second, to favor moves on regions that are closely linked, x is partially destroyed231

by unassigning a subset of k variables and an exploration of its (large) neighbor-232

hood is performed until the solution is repaired with a new one. To select the233

variables to be unassigned, DGVNS uses a neighborhood heuristic based on clus-234

ters (see function getNeighborhood, line 5): the set of candidate variables235

Cand to be unassigned are selected in the same cluster Cc. Indeed, the concept of236

cluster embodies this criterion, because of its size (smaller than the original prob-237

lem), and by the strong connection of the variables it contains. If (k > |Cc|), we238

complete the set of candidate variables to be unassigned by adding clusters adja-239

cent to Cc in order to take into account the topology of the graph of clusters. This240

treatment is achieved by function CompleteCluster (Cc, k) (line 12). Third, a241

subset of k variables Xun is randomly selected in Cand (line 13), and then rebuilt242

using LDSr. In the particular case where k is greater than the variables cardinality243

(line 11), the whole variables are selected. The neighborhood change in DGVNS244

is performed in the same way as in VNS. However, DGVNS considers successively245

all the clusters Cc. This ensures a better diversification by covering a large number246

of different regions, and to locate the region containing the global optimum.247

The core of DGVNS is its reconstruction phase. It relies on a non local solver248

combining constraint propagation and Restricted LDS with a fixed discrepancy249

to explore the neighborhood of the solution. One advantage of this choice is its250

exploration speed that improves the quality profile and allows a more balanced251

exploration of the search tree. First, a subset of k variables are selected in X .252

Then, a partial assignment A is generated from the current solution x by unfixing253

the k selected variables, and then re-built in the best way (line 6).254

4At the end of line 2 of Alg. 1, it stops the recursive LDS procedure and returns false.
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Let succ a successor function5 and Nk,c the current neighborhood structure: if255

LDSr finds a (first) solution of better quality x′ in the neighborhood of x (line 6),256

then x′ becomes the current solution (line 7), k is reset to kmin (line 8), and the257

next cluster is considered (line 10). Otherwise, DGVNS looks for improvements in258

N(k+1),succ(c), a neighborhood structure where (k+1) variables will be unassigned259

(line 9). In fact, when a local minimum is found in the current neighborhood,260

moving from k to (k + 1) will also provide some diversification by enlarging the261

neighborhood size. The search stops when it reaches the maximal neighborhood262

size allowed or a timeout.263

2.4.4. From DGVNS to VNS/LDS+CP264

When a tree decomposition of the constraint graph of the problem is not avail-265

able, the constraints can be handled as a single cluster (i.e. |CT | = 1), and DGVNS266

behaves as VNS/LDS+CP algorithm [23]. In this case, the search process com-267

pletes the variables with LDSr without taking into account the constraints connec-268

tivity, which is intuitively less efficient than the solving process when |CT | > 1.269

More precisely, when the variables Xun are strongly connected through the con-270

straint graph, LDSr will efficiently instantiate these variables thanks to constraint271

propagation, called at every LDS search node, where it is well known that its ef-272

fectiveness depends on the connectivity of the variables to be instantiated. This273

idea is cleverly exploited by DGVNS thanks to the concept of cluster provided274

by the tree decomposition of the constraint graph. In VNS/LDS+CP, the neigh-275

borhood heuristic (function getNeighborhood) randomly selects k variables276

to unassign among conflicted ones. Such a heuristic which is mainly based on277

random choices has a major drawback since it does not take advantage of the278

topology of the constraint graph. For instance, it may select unrelated variables279

(i.e., no constraint may be fully unassigned), and all selected variables may also280

have a high degree (i.e., they occur in many constraints). In such a case, it is281

unlikely to rebuild them without violating several constraints, and thus to find a282

solution of better quality than the current one. Nevertheless, as reported by [23],283

VNS/LDS+CP remains efficient on some problems, but DGVNS is much more284

efficient.285

2.4.5. Synthesis286

The motivation of exploiting the graph of clusters of a tree decomposition287

within VNS/LDS+CP algorithm is to build pertinent neighborhood structures en-288

5succ(c) = 1 + c mod |CT |.
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Figure 1: A general overview of UDGVNS algorithm, exploring successively different search trees,
starting from an initial greedy search (•), and ending to a complete search (�).

abling a better diversification. Clearly, the quality of the tree decomposition im-289

pacts greatly the performance of DGVNS.290

In our prior works [23], we have studied the impact of some parameters related291

to topological properties of the tree decomposition: the width of a tree decompo-292

sition w, separators size, and the decomposability of a problem (w
n

), estimated by293

the ratio between the width of a tree decomposition and the number of variables.294

The width of a tree decomposition gives a good indication on the size of subprob-295

lems, while separators size provides information about the connectivity between296

clusters and the degree of their overlap.297

From this study, we showed that DGVNS is very effective on problems that298

decompose into weakly connected clusters of reasonable size, i.e. tree decompo-299

sitions characterized by low values of (w
n

), and by separators of small size (clusters300

that do not overlap heavily), leading to more pertinent neighborhoods.301

3. Unified Decomposition Guided VNS302

We present UDGVNS in Algorithm 4, an iterative DGVNSmethod, unifying two303

complete and incomplete search methods. As done by Iterative LDS, UDGVNS re-304

stores the completeness of DGVNS by applying successive calls with an increasing305

discrepancy limit.306

3.1. UDGVNS algorithm307

As in the previous VNS algorithms, the initial solution of UDGVNS is obtained308

by LDSr (line 15), corresponding to a greedy search with no discrepancy if the309
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Algorithm 4: Unified Decomposition Guided VNS algorithm
Procedure UDGVNS(`min, `max,+`, kmin, kmax,+k, ub : In/Out, x : Out,
opt : Out)

let (CT , T ) be a tree decomposition of (X ,D,F) ;
15 opt← LDSr(n(d− 1),D, ub, x) ; // find an initial solution
16 if (ub = lb(D)) then opt← true;

c← 1 ; // current cluster index
r ← 0 ; // number of discrepancy iterations
`← `min ; // initial discrepancy limit
while (¬opt ∧ ` ≤ `max) do

i← 0 ; // nb. of successive failed neighborhood sizes
17 k ← kmin ; // initial neighborhood size

while (¬opt ∧ k ≤ kmax) do
A← getNeighborhood(x,Cc, k) ;
ub′ ← ub ;

18 opt← LDSr(`, A, ub′, x′) ; // neighborhood search
19 if (ub′ = lb(D)) then opt← true;
20 else if (A 6= D) then opt← false;
21 if (ub′ < ub) then

x← x′, ub← ub′ ; // new best solution
22 i← 0, k ← kmin ;
23 r ← 0, `← `min ;

else
i← i + 1 ;
if (k < kmax) then

k ← min(kmax, kmin +k i) ;
else k ←∞;

24 c← 1 + cmod |CT | ; // visit next cluster
r ← r + 1 ;
if (` < `max) then

`← min(`max, `min +` r) ;
else

`←∞
// End

problem to be solved has only finite energy terms. Then UDGVNS tries to improve310

the current solution by doing several neighborhood explorations of increasing311

search complexity, by controlling two parameters, the discrepancy limit (`) and312

the neighborhood size (k), as shown in Fig. 1. It starts from a small neighborhood313

with a few variables unassigned (k = kmin = 4). It explores the neighborhood314

using LDS with a small discrepancy limit initially set to one (` = `min = 1). The315

unassigned variables are selected from a current cluster of a tree decomposition316
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(and its neighbor clusters if needed) as done in DGVNS. If no solution is found317

then UDGVNS increases its neighborhood size until all the variables of the prob-318

lem are included in the neighborhood (k = kmax = n). If still no solution is found319

then UDGVNS increases its discrepancy limit and resets its neighborhood size to320

kmin. The last iteration corresponds to a complete search on the whole problem321

for proving optimality (k = kmax = n, ` = `max = n(d − 1)). As soon as a322

better solution is found by the current neighborhood search (line 18), UDGVNS323

stops the search in order to reinitialize the two parameters to their minimum value324

(lines 22–23). By doing so, it favors finding next solutions more rapidly, as it325

is faster to explore many small neighborhoods than a larger one, improving the326

anytime behavior of the search.327

Proposition 2. UDGVNS(1, n(d−1),+, 1, n,+,∞, {}, opt) is a complete method328

with a worst-case time complexity exponential in the number of variables and a329

linear space complexity.330

Proof. For UDGVNS, optimality can be proven in two cases: (i) when the current331

neighborhood corresponds to the whole problem (condition falsified at line 20,332

since (A 6= D) is false) and the discrepancy value is greater than or equal to the333

maximum number of right branches (checked as before during LDS searches at334

lines 15,18), and thus DGVNS behaves as an exhaustive search, or (ii) by exam-335

ining the bounds at the root node (line 16) and after each neighborhood search336

(line 19). In this case, the search space is implicitly explored by the algorithm,337

therefore optimality is proven. Case (i) is always reached when k = kmax = n338

and ` = `max = n(d−1), corresponding here to the last iteration of the two While339

loops of UDGVNS. Notice that in this case (k = kmax) and (` = `max), all the vari-340

ables are selected candidates (see line 11) to be explored exhaustively by an LDS341

stopping at the first solution better than the current bound. If the current bound is342

not optimal, the search restarts until reaching optimality. In practice, optimality343

proofs are often produced at smaller `, but still for k = n (or before if condition344

at line 19 becomes true).345

Assuming a complete search tree over Boolean variables (d = 2), the worst-346

case time complexity of the initial LDSr at line 15 is in Θ(2n). The inner LDSr
347

at line 18 with k variables and ` discrepancies has a search tree with maximum348

height h = k, assuming variables with Boolean domains. In the worst case, its349

asymptotic time complexity is in Θ(2h) for ` = h = k (see Proposition 1). The350

number of LDSr calls depends on the problem upper bound. Each time a strictly351

better upper bound is found (line 21), LDSr is stopped and we reset k and ` to352

their minimum value (lines 22–23). When the energy functions map to N+∪{∞}353
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as in Cost Function Network (CFN), there will be a finite number of upper bound354

improvements. Moreover if +` and +k are strictly increasing functions, then there355

is a finite number of LDSr calls until ` = `max and k = kmax, and no better356

solution exists (otherwise, ` = `min and k = kmin, and the search will continue).357

Thus, UDGVNS terminates and returns opt = true if and only if it exists a feasible358

optimal solution. It has the same exponential time and linear space complexities359

as ILDS.360

3.2. Strategies for managing parameters of UDGVNS361

UDGVNS has to control the evolution of two parameters. For each parameter,362

` and k, we have tested three updating rules: increase by one at each iteration363

(+`/k = +), multiply by two at each iteration (a+`/k b = mult2(a, b) = a× 2b),364

and apply a Luby strategy [39] (a +`/k b = Luby(a, b) = a× luby(1 + b))6.365

Operator +k controls the compromise between intensification and diversifica-366

tion. The goal of the Luby strategy is to exponentially increase the number of367

small neighborhoods explored compared to the number of larger ones. Whereas368

classical VNS algorithms will get stuck on large problems7, trying to diversify369

the search by exploring larger neighborhoods, VNS using Luby will spend more370

time on small neighborhoods in order to locally improve the current solution, fa-371

voring intensification. By adding randomness on variable and/or value ordering372

heuristics8 used by LDSr, it is possible to find a better solution even when the dis-373

crepancy limit decreases when applying the Luby strategy. The mult2 strategy374

reduces the number of neighborhood explorations at a given discrepancy limit, in375

order to try larger discrepancy limits more rapidly. If the problem is solvable by a376

complete search within the time limit, it will also speed-up the optimality proof.377

Operator +` controls the compromise between incomplete and complete search.378

Using a fast growing strategy emphasis completeness whereas a slow growth379

should favor anytime behavior. The mult2 strategy tends to favor a non-decreasing380

worst-case complexity of the successive neighborhood searches, especially when381

going from ` with k = kmax to 2` with k = kmin (for sufficiently large kmin).382

We noticed that it is worthwhile to cover all the variables by the union of the383

explored neighborhoods in order to not miss some important variables. We tested384

6Recall luby(i) = {1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, . . .}.
7Although it is possible to add a limit on the number of backtracks per neighborhood search as

it is done in Large Neighborhood Search methods [15].
8Adaptive heuristics such as weighted degree heuristic [40] will also modify the variable or-

dering from one search to another.
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a fourth strategy for k which consists in a slow increment (by +1) at the beginning385

until k = maxi∈I(|Ci|)+ |CT |−1 then it jumps directly to k = kmax. This ensures386

that k grows slowly until the largest cluster has been totally explored by at least387

one neighborhood search. Then, when k = kmax = |X |, UDGVNS does a restart,388

looking for an improved starting solution, using LDSr applied on the whole prob-389

lem. If it fails to find a better solution, or prove optimality, a larger discrepancy390

can be selected and UDGVNS continues its intensification process starting with a391

small neighborhood size (line 17).392

4. A Parallel Version of UDGVNS393

This section describes how UDGVNS has been parallelized. We called the394

resulting algorithm Unified Parallel DGVNS (UPDGVNS). Section 4.1 provides a395

general overview of the parallel version. The UPDGVNS algorithm is detailed in396

section 4.2. A more detailed discussion about UPDGVNS properties is given in397

section 4.3.398

4.1. UPDGVNS in nutshell399

The parallel version relies on a master/worker model and exploits the UDGVNS400

framework to control the compromise between optimality proof and anytime be-401

havior. UPDGVNS enhances the optimization process of UDGVNS by enabling402

a better diversification. More precisely, UPDGVNS uses the master process as a403

diversification component to explore the search space on the global scale, while404

using the worker process as an intensification component to exploit the search405

space on the neighborhood provided by the master. Figure 2 provides an overview406

of UPDGVNS method based on the following three main components:407

• a master process, on the left side, which determines the neighborhoods to408

be explored and updates the global solution S at each iteration.409

• a set of asynchronous worker processes, on the right side, which explore410

independently the parts of the search space assigned by the master process.411

• an interaction model based on an asynchronous communication between the412

master and the workers, where the master process controls the communica-413

tion over the entire processes.414
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Figure 2: A general overview of UPDGVNS algorithm. The set {C1, C2, . . . , Cn} corresponds to
the n clusters provided by the tree decomposition. The total number of the available workers is
denoted by i. The master’s global solution is denoted by S. Local solutions found by workers are
denoted by S′.

4.2. UPDGVNS algorithm415

Algorithms 5 and 6 depict the pseudo-code of UPDGVNS in more details. Let416

P be a data structure allowing to manage a list of parameters used by each worker417

process for the exploration of the neighborhood of a solution x (i.e., i, k, r, `, cl,418

x, ub, opt). Initially, the master (see Algorithm 5) initiates the search by launch-419

ing (at line 26) npr9 worker processes in parallel with the same initial solution420

(line 25). This is done by initializing the different parameters for the neighbor-421

hood exploration and sending them to each worker p. Each worker process obtains422

from the master a copy of the current best solution x, the index c of the cluster423

to be processed and performs destroy and repair operations on its local copy (see424

Algorithm 6). As soon as a new solution x′ is found by a worker p, it is sent to425

the master as well as its status (i.e. flag opt) by checking whether x′ is proven op-426

timal, by setting flag opt to true. In the second while loop (at line 27), the master427

waits for new solutions found by each worker process. Like UDGVNS, the master428

9Worker processes are ranked from 1 to npr, while the masker is ranked zero.
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Algorithm 5: Master algorithm for Unified Parallel DGVNS algorithm
Procedure master(npr, `min, `max,+`, kmin, kmax,+k, ub : In/Out, x : Out,
opt : Out)

let (CT , T ) be a tree decomposition of (X ,D,F) ;
25 opt← LDSr(n(d− 1),D, ub, x) ; // find an initial solution

if (ub = lb(D)) then opt← true;
if (¬opt) then

c← 1 ; // current cluster index
26 for each worker p = 1, . . . , npr do

// initial parameters of neighborhood exploration
P[p].ub← ub, P[p].x← x, P[p].cl← c, P[p].`← `min, P[p].k ← kmin

;
P[p].r ← 0 ; // number of discrepancy iterations
P[p].i← 0 ; // nb. of succ. failed neighb. sizes
Send(p,P[p]);
c← 1 + cmod |CT | ; // visit next cluster

27 while (¬opt ∧ ¬TimeOut) do
Receive(p,P[p]) ; // wait a new solution from worker p

28 if (P[p].opt) then opt← true // optimality proof check;
if (P[p].k ≥ kmax ∧ P[p].` ≥ `max) then TimeOut← true;
// update parameters of neighborhood exploration
P[p].cl← c;
if (P[p].ub < ub) then

ub←P[p].ub, x←P[p].x ; // new best solution
P[p].i← 0, P[p].k ← kmin ;
P[p].r ← 0, P[p].`← `min ;

else
P[p].ub← ub, P[p].x← x ;
P[p].i← P[p].i + 1 ;
if (P[p].k < kmax) then
P[p].k ← min(kmax, kmin +k P[p].i) ;

else
P[p].i← 0, P[p].k ← kmin ;
P[p].r ← P[p].r + 1 ;
if (P[p].` < `max) then
P[p].`← min(`max, `min +` P[p].r) ;

c← 1 + cmod |CT |;
29 if (¬opt ∧ ¬TimeOut) then Send(p,P[p]) ;

controls how the discrepancy limit ` and the neighborhood size k evolve during429

successive explorations and updates the shared global best solution x according to430

solutions sent by the workers. However, contrary to UDGVNS, whenever k reaches431

kmax and the discrepancy value is greater than or equal to `max or the internal flag432
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Algorithm 6: Worker algorithm for UPDGVNS algorithm
Procedure worker()

while (¬TimeOut) do
Receive(0, P );
A← getNeighborhood(P.x,CP.cl, P.k) ;
P.opt← LDSr(P.`,A, P.ub, P.x) ;
if (P.ub = lb(D)) then P.opt← true;
else if (A 6= D) then P.opt← false;
Send(0, P );

opt of the worker is true (line 28), the whole process stops and the master returns433

the (optimal) solution. Otherwise, if the time limit is not reached, the workers434

that are ready to restart a new exploration are re-launched starting from the best435

available overall solution on the next clusters (line 29).436

4.3. UPDGVNS properties437

This section discusses in depth the key properties of UPDGVNS that contribute438

to its success, namely diversification and workload distribution between workers.439

4.3.1. Diversification in UPDGVNS440

Regarding the paralellization scheme, diversification is ensured in three ways:441

1. the parallel exploration of different clusters provides a form of diversifica-442

tion to UPDGVNS method by exploring independently different parts of the443

search space. Moreover, the unassigned variables are selected from a cur-444

rent cluster of a tree decomposition (and its neighbor clusters if needed) in445

a random way as done in DGVNS algorithm.446

2. the control of the size of the neighborhood (k) and the discrepancy limit (`)447

is done per worker in an asynchronous and independent manner. This allows448

to relaunch each worker asking for a next cluster with diverse parameters449

and different initial partial assignments, thus enhancing the diversification450

scheme of UPDGVNS.451

3. to prevent redundant searches among different workers, i.e., case where two452

or more identical10 neighborhoods are explored, we add randomness in the453

10This may arise when all the variables of the problem are included in the neighborhood (k =
kmax = n).
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variable ordering heuristic used in LDSr algorithm. More precisely, our454

heuristic for variable ordering first selects the variable having the lowest455

ratio domain cardinality divided by weighted degree (dom/wdeg), break-456

ing ties by selecting one variable randomly. This leads to variations in the457

exploration of the search tree performed by each worker.458

All these features provide a high level of diversification by exploring different459

regions in parallel and allow to decrease the probability that different workers460

perform the same exploration of the search space even for k = kmax = n.461

4.3.2. Workload distribution in UPDGVNS462

In our parallel algorithm, we do not decompose the whole search space into a463

partition of subproblems but rather explore different randomly-selected subprob-464

lems which may overlap. First, each subproblem is related to a particular cluster465

in the tree decomposition and each time a worker asks for a job it gets the next466

(current) cluster c in a global round-robin fashion (Algorithm 6) and explores the467

assigned cluster independently starting from the best overall available solution.468

So, in terms of workload distribution between workers, this remains more or less469

balanced. Moreover, since the proof of optimality is performed sequentially, i.e.,470

by a single worker who explores the entire search tree, this does not induce unbal-471

anced workloads among workers.472

Second, the way the size of the neighborhood (k) and the discrepancy limit473

(`) evolve is done per worker in an asynchronous and independent manner. This474

can lead to situation where one worker may search on a small subproblem, while475

another worker on a larger subproblem. If the larger subproblem is not defined476

over the whole problem, the balance on subproblems is quickly established with477

the rest of the workers once the current worker finishes its exploration. This is478

achieved by the master which updates parameters of the neighborhood exploration479

accordingly (i.e., neighborhood size and discrepancy limit) in order to relaunch480

the worker on the next cluster. At the end, the first worker finishing its search481

on the whole problem with no discrepancy limit will report optimality and stop482

UPDGVNS.483
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5. UAI Evaluation Results484

5.1. Benchmarks description485

We performed experiments on probabilistic and deterministic graphical mod-486

els coming from a large multi-paradigm benchmark repository [28]11. Among the487

3016 available instances, we selected all the instances that were used in previous488

Uncertainty in Artificial Intelligence (UAI) competitions, in image analysis, or489

in CFN optimization. It includes 319 instances from UAI 2008 Evaluation and490

Probabilistic Inference Challenge (PIC) 201112, 1461 instances from the Com-491

puter Vision and Pattern Recognition (CVPR) OpenGM2 benchmark13 [41], and492

281 instances from the Cost Function Library14. In order to have a fair compari-493

son between solvers, we preprocessed all the instances by polynomial-time prob-494

lem reformulations and simplifications that remove variables (using bounded and495

functional variable elimination [42]), values (using dead-end elimination [43]),496

and fixed-value potentials, after an initial lower bound computation by Equiva-497

lence Preserving Transformations [31] (enforcing Virtual Arc Consistency (VAC)498

as a message-passing algorithm). The resulting instances are smaller while pre-499

serving the same optimum. We used TOULBAR2 with options -A -z=2 for this500

preprocessing step. We kept 1669 non-trivial instances (with more than one vari-501

able) for the experiments. The number of variables n ranges from 4 (CVPR-502

GeomSurf-3-gm13) to 48,566 (CVPR-ColorSeg-8-crops-small) with mean value503

n ≈ 403.4 (instead of 1, 316.5 before preprocessing). For DGVNS methods, we504

built tree decompositions using min-fill heuristic. Because the number of clus-505

ters m = |CT | can be very large (m ≈ 256.7), we merged any pair of connected506

clusters (Ci, Cj) when the separator size is too large compared to the individual507

cluster sizes (|sep(Ci, Cj)| > 0.7 min(|Ci|, |Cj|)), resulting in m ≈ 19.9 and508

mean treewidth maxi∈I(|Ci|) ≈ 76.9 (instead of 49.6 without merging). In or-509

der to experiment sequential and parallel methods on the most difficult instances,510

we selected a subset of instances unsolved in 1 hour by all our DFBB, LDS, and511

VNS algorithms. We took at most twenty instances per problem category (avoid-512

ing over-representation issues by some categories), resulting in a selection of 114513

11genoweb.toulouse.inra.fr/˜degivry/evalgm
12graphmod.ics.uci.edu/uai08/Evaluation/Report/Benchmarks, www.

cs.huji.ac.il/project/PASCAL
13hci.iwr.uni-heidelberg.de/opengm2
14costfunction.org/benchmark
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Figure 3: Number of instances solved by our approach as times passes on a restricted benchmark
set (Methods are sorted as timeout limit (3600s).

difficult instances15.514

5.2. Experimental protocol515

LDSr employs a randomized (for breaking ties) dynamic variable ordering516

heuristic16. Its value ordering heuristic chooses the EAC value as the preferred517

value and lower bounds are deduced by enforcing EDAC, as explained in [30]. In518

the following, we set kmin = 4, kmax = n = |X |, `min = 1, and `max = n(d− 1).519

DFBB corresponds to UDGVNS(∞,∞,+,∞,∞,+), LDS corresponds to520

UDGVNS(1,∞,mult2, |X |, |X |,+), DGVNS to UDGVNS(3, 3,+, kmin, kmax,+).521

These methods and their parallelization based on MPI (UPDGVNS) have been im-522

plemented into the new version 1.0.0 of TOULBAR217.523

15UAI DBN, Grid, Linkage, ObjectDetection, CVPR ChineseChars, ColorSeg-8, InPainting-
4, InPainting-8, ProteinInteraction, and CFN CELAR, ProteinDesign, SPOT5, Warehouse cate-
gories.

16Weighted degree heuristic as defined in [40].
17https://github.com/toulbar2/toulbar2
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We compared with state-of-the-art exact solvers. DAOOPT18 won PIC 2011. It524

has a time-bounded initial phase of lower bound computation based on Message525

Passing Linear Programming algorithm [8, 9] and mini-bucket elimination [29]526

with iterative min-fill heuristic, further improved by Join Graph Linear Program-527

ming [44]. It also finds good initial upper bounds using LDS (with discrepancy528

limit set to 1) and stochastic local search GLS+ [12]. We used the standalone code529

of DAOOPT version 0.99.7g-UAI12 (with option settings –mplp=2000 –mplps=60530

–slsX=20 –slsT=10 -t 30000 –orderTime=180 –jglp=1000 –jglps=60 -i 35 -m531

4096 –match -y –lds=1 for 3600-second time limit). We tested three parameter set-532

tings as suggested in [45], controlling the time spent to compute initial lower and533

upper bounds. In the 3600sec setting, SLS is run 20 times with 10 seconds per run.534

The best solution found is used as an initial upper bound for an AND/OR exhaus-535

tive tree search. We compared also with an older version of TOULBAR2, namely536

18https://github.com/lotten/daoopt
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INCOP+TOULBAR219 [28] won the UAI 2010 Evaluation at 20-minute time limit.537

INCOP+TOULBAR2 takes a starting solution from the best result of three runs of538

the IDWalk [46] local search algorithm (100,000 local moves per run). It is fol-539

lowed by an exhaustive hybrid best-first search [5]. IBM ILOG CPLEX 12.7.0.0540

(using parameters EPAGAP, EPGAP, and EPINT set to zero to avoid premature541

stop) was reported as being very competitive on some image analysis [41] and542

Markov Random Field problems [28]. CPLEX explores its search tree using best-543

first search. It applies several heuristics methods to find good solutions before544

and during the search. We also compared with message-passing algorithms: LIB-545

DAI20 [47], winner of the UAI 2010 Evaluation at 20sec. and 1hour time limits,546

MPLP221 [8, 9], and TRW-S22 [6]. Note that LIBDAI and TRW-S are applied on547

19www.inra.fr/mia/T/toulbar2 version 0.9.8 with parameters -i -dee -hbfs.
20bitbucket.org/jorism/libdai.git version 0.3.2 using UAI 2010 settings.
21cs.nyu.edu/˜dsontag/code/README_v2.html using 2.10−7 int gap thres.
22github.com/opengm/opengm v2.3.5 with TRW-S v1.3 stopping after 100, 000 itera-

tions or 10−5 gap thres.
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Figure 6: Any time upper bound zoom for UDGVNS versus LDS.

the original instances rather than the preprocessed ones as we found they produced548

better results without applying VAC first. All solvers read problems in uai tabular549

format, except CPLEX which uses the local polytope formulation (called support550

encoding in [28]). All computations were performed on a cluster of 48-core AMD551

Opteron 6176 at 2.3 GHz and 384 GB of RAM with a 1-hour CPU time limit23.552

5.3. Experimental results553

5.3.1. Optimality results554

The efficiency of DFBB, LDS, and VNS methods to prove optimality is shown555

in the cactus plot of Figure 3. DFBB was slightly more efficient than LDS and556

solved 1442 (resp. 1433) instances among 1669 in 1-hour time limit. They are557

followed by three UDGVNS strategies with (k mult2, ` mult2) (1430 solved),558

(k Luby, ` mult2) (1425 solved) and (k add1/jump, ` mult2) (1421 solved),559

remaining very close in terms of performance. Next, a set of three less-and-less ef-560

23Using parameter -pe parallel smp min(2x, 30) on a SUN Grid Engine for a method exploiting
x core(s) to ensure half-load of the nodes on the cluster.
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ficient UDGVNS strategies rise: (k add1, ` mult2) (1384 solved), (k add1, ` Luby)561

(1361 solved) and (k add1, ` add1) (1333 solved), showing the importance of562

faster discrepancy increase to speed up optimality proofs. The worst strategy563

here was using a fixed discrepancy level (` = 3 as originally proposed in [23])564

which solved 1128 instances. Figure 4 compares the cactus plot of UDGVNS ver-565

sus CPLEX, DAOOPT, and INCOP+TOULBAR2. DAOOPT (3600sec setting) solved566

1409 instances, CPLEX solved 1423, and INCOP+TOULBAR2 1440 instances.567

5.3.2. Anytime upper bound profiles568

In order to summarize the evolution of upper bounds as time passes, we took a569

subset of 114 difficult instances, unsolved in 1 hour by our DFBB, LDS, and VNS570

methods (whereas CPLEX could solve 17 of these instances). Specifically, for each571

instance I we normalize all energies as follows: the best, potentially suboptimal572

solution found by any algorithm is 1, the worst solution is 2. This normalization573

is invariant to translation and scaling. Figure 5 shows the upper bound behavior574

for different VNS strategies compared to DFBB and LDS. Figure 6 reports an575

anytime upper bound zoom. The ranking of best methods is the opposite of the576

cactus plot order, except for (k add1/jump, ` mult2) which comes in second577

position. According to details in Figure 6, the ` = 3 strategy got the best upper578

bounds in average, but still very close to the other VNS strategies, except may-579

be (k Luby, ` mult2) and (k mult2, ` mult2). We conclude that our new580

iterative UDGVNS method (especially (k add1/jump, ` mult2)) offers a good581

compromise between anytime behavior and optimality proof. These results also582

show that variable neighborhood search is by far superior to classical systematic583

DFBB or non-systematic LDS tree search methods, improving by more than 20%584

(resp. 10%) the quality of the solutions.585

5.3.3. Comparing UDGVNS with state-of-the-art methods586

In the following figures, we assume UDGVNSwith (k add1/jump, ` mult2)587

strategy. Figure 7 compares UDGVNS with state-of-the-art methods. Message-588

passing algorithms like TRW-S and LIBDAI gave the worst results. They could589

not find any solution for 20 (resp. 19) instances (mostly in UAI/Linkage and590

CFN/SPOT5 categories, both containing hard constraints). The same problem oc-591

curred for MPLP2 on 5 instances (SPOT5), but it obtained much better results on592

the remaining instances. CPLEX ran out of memory on two instances without pro-593

ducing any solution due to the heavy local polytope encoding (CFN/Warehouse/capb,594

capmq5). All other methods got better results in average and produced at least one595

solution per instance. According to its initial phase setting, DAOOPT provides dif-596
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Figure 7: Comparing the anytime behavior of UDGVNS against state-of-the-art methods.

ferent anytime behaviors, very close to the best solutions in 1 hour. UDGVNS597

performed the best, slightly better than INCOP+TOULBAR2, improving by 1.7%598

(resp. 2.3%) on average after 1 hour (20 min).599

5.3.4. Parallelization600

Finally, in order to evaluate the impact of core numbers, we consider the anytime601

upper bound behavior of the parallel release: UPDGVNS using (k add1/jump,602

` mult2) with `min = 3, taken from the best strategies enlightened by UDGVNS.603

We made a comparison with CPLEX using 10 and 30 cores. Figure 8 shows that604

CPLEX with 10 or 30 cores exhibits better anytime behavior than CPLEX using 1605

core, but still being far from the other competitors (30 cores gave solutions 10%606

higher than UPDGVNS after 1 hour). We could not compare with the parallel607

version of DAOOPT as it is based on a different cluster engine (condor) and it does608

not parallelize its initial phase.609

Figure 9 shows that UPDGVNS (with 10 or 30 cores) provides slightly better610

upper bounds than UDGVNS (using 1 core) in less than 20 min. The results seems611

to be, in average, poorly sensitive to the cores number, due to the fact that the612
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10-core curve is extremely close from the 30-core one. Figure 9 also compares613

the anytime upper bound quality with those provided by single-core INCOP lo-614

cal solver followed by a hybrid best-first search in TOULBAR2 and by DAOOPT615

with options tuned for the 1200-second UAI 2014 challenge. The 10 and 30-core616

UPDGVNS curves converge quickly in less than 2min. INCOP+TOULBAR2 quickly617

drops out around 1 min and never reaches the same quality level. UDGVNS con-618

verges slower but still going down after 20 min. DAOOPT (1200sec setting) gave619

results 10% in average worse than UPDGVNS with either 10 and 30 processors.620

The trends observed over all instances are quite similar to those obtained on621

selected instances for each family. The only exception are the Pedigree instances.622

Table 1 gives the solving time to find and prove optimality on UAI-Linkage cate-623

gory for U(P)DGVNS, CPLEX and DAOOPT (in parenthesis, unnormalized upper624

bound found after 1 hour). We report DAOOPT time from [48], obtained on a clus-625

ter of dual 2.67 GHz Intel Xeon X5650 6-core CPUs and 24 GB of RAM. We626

can see that UDGVNS and UPDGVNS (with 10 or 30 cores) are clearly dominated627

by CPLEX which exhibits better results. DAOOPT remains competitive on these628
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instances but still being far from CPLEX in terms of CPU times.629

6. Computational Protein Design630

In Computational Protein Design (CPD), the challenge of identifying a protein631

that performs a given task is defined as the combinatorial optimization of a com-632

plex pairwise energy function over amino acid sequences and 3D geometry [49].633

This holds great interest for medicine, synthetic biology, nanotechnologies and634

biotechnologies [50][51][52]. We used the CPD problem as a difficult benchmark635

to test our tree-decomposition based methods. For that, we generated 21 large in-636

stances with small treewidth selected from the Protein Data Bank24 (PDB). These637

instances have been selected on the basis of 3D criteria described in a supplemen-638

tary material25. The instances contain from n = 107 up to 292 variables with a639

24www.pdb.org
25genoweb.toulouse.inra.fr/˜degivry/evalgm/CFN/

ProteinDesignUAI2017
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Linkage pedigree19 pedigree31 pedigree44 pedigree51
(optimum / worst solution) (4625/21439) (5258/166553) (6651/104904) (6406/629929)
CPLEX (1 core) 790 59.3 6.35 36.23
CPLEX (10 cores) 191 9.00 2.48 9.43
CPLEX (30 cores) 75 7.17 2.69 5.34
DAOOPT (1 core) 375,110 16,238 95,830 101,788
DAOOPT (20 cores) 27,281 1,055 6,739 6,406
DAOOPT (100 cores) 7,492 201 1,799 1,578
UDGVNS (1 core) - (4949) - (5258) - (6722) - (6406)
UPDGVNS (10 cores) - (4762) 3,341 - (6651) - (6406)
UPDGVNS (30 cores) - (4626) 1,775 - (6651) - (6406)

Table 1: Best CPU time (in seconds) for sequential versions and best wall-clock time for multiple-
core ones to find and prove optimality on Pedigree instances. A “-” means no proof of optimality
in 1 hour (except DAOOPT with no time limit) (in parenthesis, unnormalized upper bound found
after 1 hour).

maximum domain size from d = 383 to 450, and between 1, 623 and 6, 208 bi-640

nary cost functions. The min-fill treewidth ranges from w = 21 to 68, resulting in641

small ratios of treewidth per number of variables, from w
n

= 0.16 to 0.34.642

6.1. Experimental Protocol643

We compared UDGVNS and UPDGVNS with VNS/LDS+CP and Fixed Back-644

Bone (a CPD dedicated algorithm provided by the Rosetta package). We also645

compared with TOULBAR2. We tested TOULBAR2 using Virtual Arc Consis-646

tency [31] in pre-processing and hybrid best-first search with tree decomposition647

(BTD-HBFS) using min-fill heuristic. Dead end elimination is turned off, accord-648

ing to [26] (the resulting command line is: TOULBAR2 -B=1 -A -DEE: -O=-3).649

The TOULBAR2 experiments use a 24-hour CPU time limit.650

Concerning the VNS methods, in order to evaluate variability due to the ran-651

dom selection of neighborhoods, a set of 10 runs per instance with different652

seeds has been performed with a time limit of 1-hour per run. For the par-653

allel strategy, the number of processes npr is set to 96 (i.e. maximum num-654

ber of available processors). For UDGVNS and UPDGVNS, following the results655

observed in Section 5, we considered the following two settings for operators656

+k and +`: (k add1, ` = 3) which yields the best anytime performances and657

(k add1/jump, ` mult2) which offers the best compromise between both any-658

time performances and optimality proof. kmin, kmax and `min have been respec-659

tively set to 4, n (the total number of variables) and 3 (they correspond to the same660
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Instance
Time(s)

UDGVNS UPDGVNS TOULBAR2
5dbl 1,828.27 791.16 783.18
3r8q - - 41,700.10
4bxp - - 4,261.67
1f00 - - 9,749.00
1xaw - - 2,917.04
5e10 839.52 196.43 1,171.98
2gee - - 9,795.59
5e0z 416.12 172.96 999.66
3lf9 - - 2,960.64
5eqz - - 41,813.00

Table 2: Comparing UDGVNS(k add1/jump, ` mult2), UPDGVNS(npr, k add1/jump, ` mult2)
and TOULBAR2 in terms of optimality results within the 24-hours time limit. A ’–’ indicates that
the corresponding solver failed to prove optimality.

parameter settings as those described in [23]). All computations were performed661

on a cluster of 96-core AMD Opteron 6174 at 2.2 GHz and 256 GB of RAM.662

6.2. Experimental Results663

As for UAI instances, we evaluated the effectiveness of UDGVNS and UPDGVNS664

on CPD instances in terms of optimality proof (cf. Section 6.2.1) and solution665

quality vs. CPU time (cf. Section 6.2.2). We also study in Section 6.2.3 the666

impact of varying the number of processes for the parallel release UPDGVNS.667

6.2.1. Optimality results668

Our first set of experiments aims at evaluating the efficiency of UDGVNS and669

UPDGVNS in terms of optimality proof comparing with TOULBAR2. We used the670

setting (k add1/jump, ` mult2) with `min = 3, taken from the best strategies671

enlightened by UDGVNS. Table 2 reports the CPU-times required by UDGVNS,672

UPDGVNS and TOULBAR2 to find and prove the optimum within the 3600-second673

time limit (24 hours for TOULBAR2). As we can see, TOULBAR2 clearly outper-674

forms both VNS methods: UDGVNS and UPDGVNS were able to prove optimal-675

ity only on 3 instances among the 9 ones closed by TOULBAR2. However, on676

two instances (5e10 and 5e0z), UDGVNS is up to 2.40 times faster than TOUL-677

BAR2 while UPDGVNS increases speeds by up to 5.96 times, despite the fact that678

BTD-HBFS benefits from the lower bounds reported by HBFS in individual clus-679

ters to improve its anytime behavior and from the global pruning lower bounds of680
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BTD. This greatly improves the overall performance of TOULBAR2 compared to681

VNS/LDS+CP.682

6.2.2. CPU time and solution quality results683

Our second set of experiments aims at evaluating VNS capability with respect684

to finding the optimal solution or a solution of better quality on instances for which685

optimal solutions are unavailable. For this aim, we selected (k add1, ` = 3) as686

setting for operators +k and +`.687

Table 3 shows a comparative evaluation of VNS methods with FIXBB and688

TOULBAR2. For each instance and each VNS method, we report the number of689

successful runs to reach the optimum (or the best known solution for unsolved690

instances) within a 3600-second time limit, the average CPU times (in seconds)691

over the 10 runs (for unsuccessful runs, the CPU time is set to the time limit) ±692

the standard deviation. The energy gap ∆E between the best VNS solution and the693

two external references FIXBB and TOULBAR2 are also given. For TOULBAR2,694

reported CPU times correspond to times to find an optimal solution (for solved695

instances) or a best one (for unsolved ones) within the 24-hour time limit.696

A) VNS methods vs. FIXBB. Rosetta Modeling suite is one of the most popular697

software package used in the CPD field. It provides a Monte Carlo based Simu-698

lated Annealing algorithm called FIXBB. In this work, the best solutions exhibited699

by 1000 FIXBB cycles performed on each CPD instance have been used as base-700

line to compare solution quality of the solutions provided by VNS methods when701

TOULBAR2 BTD-HBFS fails to solve the instance.702

The FIXBB CPU times are two orders of magnitude higher than the 1h time703

limit imposed for VNS evaluation. They are not reported as they exceed 100 hours704

in sequential mode, even if FIXBB cycles are independent and thus are easy to705

parallelize. As we can see in Table 3 (see column (4) ∆E), the solution quality706

of FIXBB is in all cases inferior to the best solution found by the VNS methods.707

The energetic gap ∆E between FIXBB solution and the best VNS overall solution708

ranges between +0.16 and +5.20 Rosetta Energy Unit (R.E.U). As shown in [26]709

such a level of energy difference can strongly impact the designed protein solu-710

tion (i.e. the corresponding sequences of the two methods can be far in terms of711

hamming distance).712

B) VNS methods vs. TOULBAR2. The comparison between best solutions found713

by VNS methods and TOULBAR2 shows that, excepted VNS/LDS+CP method,714

both UDGVNS (except on 1f00) and UPDGVNS provide in all case the same or even715
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Instance
Speed-up

(TOULBAR2/VNS/LDS+CP) (TOULBAR2/UDGVNS) (TOULBAR2/UPDGVNS)
5dbl 0.28 3.14 12.55
3r8q - 33.46 202.07
4bxp 3.51 4.69 35.56
1f00 - 17.02 35.93
1xaw - 2.92 17.49
5e10 0.70 6.07 39.22
2gee 5.94 10.19 65.82
5e0z 1.60 3.22 22.36
3lf9 - 17.75 52.58
5eqz 22.61 79.18 439.48

Table 4: Comparing speed-ups of VNS methods with (k add1, ` = 3) strategy to obtain the best
solution computed by TOULBAR2 within the 3600-seconds time limit on solved CPD instances.
A ’–’ indicates that the corresponding solver was not able to compute a solution of equal/better
quality than TOULBAR2.

better solution than TOULBAR2 (see column (5) ∆E in Table 3). On 11 instances716

unsolved by TOULBAR2, UDGVNS and UPDGVNS always obtain solutions of bet-717

ter quality. The energetic gap ∆E in the worst case reaches 17.86 R.U.E. Con-718

cerning the number of successful runs reported over the 10 runs, VNS/LDS+CP719

seems less robust respectively than UDGVNS and the parallel release UPDGVNS.720

This last one provides in all cases the best solution over all. Table 3 also com-721

pares the VNS methods in terms of speedups. We observe that speedup values are722

fluctuating from one instance to another, very likely due to the tree decomposition723

resulting from the 3D shape of each instance. For VNS/LDS+CP and UDGVNS,724

it range between 0.68 and 11.09 over the 14 instances solved by both methods.725

As expected, when tree decomposition and parallelization are used, not only the726

speed of resolution increases but the reliability too (speedup values between 9.27727

and 55.78). Moreover, the comparison between UDGVNS and UPDGVNS shows728

significant accelerations (between 2.08 and 21.50), thus confirming the practical729

interest of parallelization in addition to the exploitation of problem decomposi-730

tion.731

C) Comparing anytime performances of VNS methods. We have also investigated732

the anytime performances of three VNS methods by reporting the CPU-times re-733

quired within the time limit of 1 hour to reach a solution of equal quality computed734

by TOULBAR2 within the 3600-seconds time limit. For solved instances, accord-735

ing to details in Table 4, both UDGVNS and UPDGVNS find optimal solutions more736
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quickly than TOULBAR2. For UDGVNS, speedup values range from 2.92 to 79.18737

with a mean of 17.76 over all the solved instances. For UPDGVNS, the ratio in738

terms of speedup is greatly amplified (between 12.55 and 439.48 with a mean of739

92.30 over all the solved instances). On the 11 opened instances, results (sum-740

marized in Table 5) show a clear ordering in terms of CPU times across different741

solvers, from TOULBAR2, VNS/LDS+CP, UDGVNS, and UPDGVNS. The speedup742

values are significantly improved, in particular with UPDGVNS (between 87.73743

and 873.01 with a mean of 447, 53 over all the unsolved instances). These re-744

sults confirm the superiority of VNS methods in terms of anytime performance as745

compared to TOULBAR2.746

One putative explanation of the observed performance ordering between VNS747

methods may be the problem exploration coverage with the picked neighborhoods748

during search. Indeed, respectively with 1, 034 and 597 the average total number749

of neighborhoods explored during search for the 21 CPD instances is in aver-750

age 1.73 higher in VNS/LDS+CP than UDGVNS. Accordingly, tree decomposition751

picks more pertinent neighborhoods than VNS/LDS+CP and seems to increase the752

probability for a full problem coverage, which can be explained by the decreasing753

of possible combination as consequence of the partition in clusters of variables.754

Besides, parallelization is one way to increase the coverage probability, because755

it is a simple way to increase the number of processed neighborhoods. Conse-756

quently, in practice, with 3, 320 neighborhoods in average, UPDGVNS explores in757

5.56 times more subproblems than the corresponding sequential version. This fact758

can be an explanation of the good quality of the observed results.759

6.2.3. Parallelization760

For the last experiment, we analyzed the performance of our parallel algorithm761

by measuring the speed-up on varying the number of processes. We consider the762

number of successful runs as well as the average CPU times± the standard devia-763

tion (over the 10 runs) of the parallel release UPDGVNS (using k add1with ` = 3)764

to reach the optimum (or the best found solution for unsolved instances) within a765

time limit of 1-hour per run. We compare with UDGVNS with (k add1, ` = 3).766

We set npr to 10, 30 and 96 respectively (including the master process).767

As can be seen from Table 6, UPDGVNS with 10, 30 or 96 processors, are768

able to obtain better results faster than UDGVNS (using one core). Table 6 also769

reports the speed-up values for different number of processes. Comparing to 10-770

processes, the improvements to UDGVNS yield a speed-up of 1.6 to 15.58 (3.85771

on average). Moreover, with the increase of the number of processes the gains772

in terms of CPU times are remarkably amplified. In the case of 30 processes the773
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speed-up is 5.75 on average and for 96 processes it is 7.68 compared to the results774

of UDGVNS. These results show that our parallel release on CPD instances is less775

sensitive to the communication overhead when increasing the number of processes776

and do not impact the overall efficiency of our approach.777

7. Conclusion and Perspectives778

In this paper we proposed a unified view of VNS methods including various779

LDS and neighborhood evolution strategies. Experiments performed on difficult780

instances, coming from a large graphical model benchmark, showed that our hy-781

brid method has a much better anytime behavior than existing tree search methods782

and still being competitive for proving optimality. UDGVNS takes advantage of the783

good convergence properties of DGVNS and proves optimality in many cases. On784

structured or unstructured problems of large sizes, like CPD, UDGVNS obtains785

solutions of (very) good quality, thus outperforming the state-of-the-art FIXBB786

Rosetta Modeling software package used in the CPD field. We further proposed a787

parallel version of our method improving its anytime behavior. It remains as future788

work to manage dynamically the tree-decomposition associated to the instance to789

solve. Another promising research direction is to use machine learning techniques790

to identify the best decompositions to be used for the practical solving [53].791
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