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Abstract—The Douglas–Rachford (DR) and ADMM algorithms have
become popular to solve sparse recovery problems and beyond. The
goal of this work is to understand the local convergence behaviour
of DR/ADMM which have been observed in practice to exhibit local
linear convergence. We show that when the involved functions (resp.
their Legendre-Fenchel conjugates) are partly smooth, the DR (resp.
ADMM) method identifies their associated active manifolds in finite time.
Moreover, when these functions are partly polyhedral, we prove that DR
(resp. ADMM) is locally linearly convergent with a rate in terms of the
cosine of the Friedrichs angle between the tangent spaces of the two
active manifolds. This is illustrated by several concrete examples and
supported by numerical experiments.

I. INTRODUCTION

In this work, we consider the problem of solving

min
x∈Rn

J(x) +G(x), (1)

where both J and G are in Γ0(Rn), the class of proper, lower
semi-continuous and convex functions. We assume that ri(domJ) ∩
ri(domG) 6= ∅, where ri(C) is the relative interior of the nonempty
convex set C, and domF is the domain of the function F . We
also assume that the set of minimizers of (1) is non-empty, and
the two functions are simple (proxγJ , proxγG, γ > 0, are easy to
compute), where the proximity operator is defined, for γ > 0, as
proxγJ(z) = argminx∈Rn

1
2
||x− z||2 + γJ(x).

An efficient and provably convergent algorithm for solving (1) is
the DR method [1], which reads, in its relaxed form,(

zk+1 = (1− λk)zk + λkBDRz
k,

xk+1 = proxγJz
k+1,

(2)

where BDR
def.
= 1

2

`
(2proxγJ − Id) ◦ (2proxγG − Id) + Id

´
, for γ >

0, λk ∈]0, 2] with
P
k∈N λk(2− λk) = +∞.

Since the set of minimizers of (1) is non-empty, so is the set of fixed
points fix(BDR) since the former is nothing but proxγJ(fix(BDR)).
See [2] for a more detailed account on DR. Though we focus in the
following on DR, all our results readily apply to ADMM since it is
the DR applied to the Fenchel dual problem of (1).

II. PARTLY SMOOTH FUNCTIONS AND FINITE IDENTIFICATION

Beside J, G ∈ Γ0(Rn), our central assumption is that J, G are
partly smooth functions. Partial smoothness was originally defined in
[3]. Here we specialize it to the case of functions in Γ0(Rn). Denote
par(C) the subspace parallel to the non-empty convex set C ⊂ Rn.

Definition II.1. Let J ∈ Γ0(Rn) and x ∈ Rn such that ∂J(x) 6= ∅.
J is partly smooth at x relative to a set M containing x if

(Smoothness) M is a C2-manifold, J |M is C2 around x;
(Sharpness) The tangent space Tx(M) = Tx

def.
= par(∂J(x));

(Continuity) The ∂J is continuous at x relative to M.
The class of partly smooth functions at x relative to M is denoted
as PSFx(M).

The class of PSF is very large. Popular examples in signal
processing and machine learning include `1, `1,2, `∞ norms, TV
semi-norm and nuclear norm, see also [4].

Now define the variable vk = proxγG(2proxγJ − Id)zk.

Theorem II.2 (Finite activity identification). Let the DR scheme
(2) be used to create a sequence (zk, xk, vk). Then (zk, xk, vk) →
(z?, x?, x?), where z? ∈ fix(BDR) and x? is a global minimizer of
(1). Assume that J ∈ PSFx?(MJ

x?), G ∈ PSFx?(MG
x?), and

z? ∈ x? + γ
`
ri(∂J(x?)) ∩ ri(−∂G(x?))

´
. (3)

Then, the DR scheme has the finite activity identification property,
i.e. for all k sufficiently large, (xk, vk) ∈MJ

x? ×MG
x? .

Condition (3) implies that 0 ∈ ri(∂J(x?) + ∂G(x?)), which can be
viewed as a geometric generalization of the strict complementarity
of non-linear programming. In a compressed sensing scenario, it can
be guaranteed for a sufficiently large number of measurements.

III. LOCAL LINEAR CONVERGENCE OF DR

We now turn to local linear convergence properties of DR for
the case of locally polyhedral functions. This is a subclass of partly
smooth functions, whose epigraphs look locally like a polyhedron.
In the following, we will refer to the Friedrichs angle between
two subspaces V and W , denoted θF (V,W ). In fact, θF (V,W )
is the (d + 1)-th principal angle between V and W , where d =
dim(V ∩W ), see also [5].

Theorem III.1. Assume that J and G are locally polyhedral, and
the conditions of Theorem II.2 hold with λk ≡ λ. Then there exists
K > 0 such that for all k > K,

||zk − z?|| 6 ρk||z0 − z?||, (4)

where ρ =
p

(1− λ)2 + λ(2− λ) cos2 θF (T Jx? , TGx?) ∈ [0, 1[.

This rate is optimal. For the special case of basis pursuit, we
recover the result of [6], but with less stringent assumptions.

IV. NUMERICAL EXPERIMENTS

As examples, we consider the `1, `∞ norms and the anisotropic
TV semi-norm which are all polyhedral, hence partly smooth relative
the following subspaces

`1 : Tx = {u ∈ Rn : supp(u) ⊆ supp(x)},
`∞ : Tx =

˘
u : uI = rsI , r ∈ R

¯
, s = sign(x), I = {i : |xi| = ||x||∞},

TV : Tx =
˘
u ∈ Rn : supp(∇u) ⊆ I

¯
, I = supp(∇x),

where ∇ is the gradient operator.
Figure1 displays the observed and predicted convergence profiles

of DR when solving several problem instances, including compressed
sensing, denoising and inpainting.
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(a) CS `1-norm
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(b) CS `∞-norm
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(c) CS TV semi-norm
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(d) TV image inpainting
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(e) Uniform noise removal
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(f) Outliers removal

Fig. 1. Observed (solid) and predicted (dashed) convergence profiles of DR (2) in terms of ||zk − z?||. For the first 4 subfigures, we solve a problem of the
form minx∈Rn J(x) s.t. Ax = y, where A is either drawn randomly from the standard Gaussian ensemble (CS), or random binary (inpainting). (a) CS with
J = || · ||1, A ∈ R48×128. (b) CS with J = || · ||∞, A ∈ R120×128. (c) CS with J = || · ||TV, A ∈ R48×128. (d) TV image inpainting, A ∈ R512×1024.
(e) Uniform noise removal by solving minx∈R128 ||x||TV s.t. ||x− y||∞ 6 δ. (f) Outliers removal by solving minx∈R128 λ||x||TV + ||x− y||1. The starting
points of the dashed lines are the iteration at which the active subspaces are identified.
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