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Local Linear Convergence of Douglas-Rachford/ADMM for Low Complexity Regularization

The Douglas-Rachford (DR) and ADMM algorithms have become popular to solve sparse recovery problems and beyond. The goal of this work is to understand the local convergence behaviour of DR/ADMM which have been observed in practice to exhibit local linear convergence. We show that when the involved functions (resp. their Legendre-Fenchel conjugates) are partly smooth, the DR (resp. ADMM) method identifies their associated active manifolds in finite time. Moreover, when these functions are partly polyhedral, we prove that DR (resp. ADMM) is locally linearly convergent with a rate in terms of the cosine of the Friedrichs angle between the tangent spaces of the two active manifolds. This is illustrated by several concrete examples and supported by numerical experiments.

I. INTRODUCTION

In this work, we consider the problem of solving

min x∈R n J(x) + G(x), (1) 
where both J and G are in Γ0(R n ), the class of proper, lower semi-continuous and convex functions. We assume that ri(domJ) ∩ ri(domG) = ∅, where ri(C) is the relative interior of the nonempty convex set C, and domF is the domain of the function F . We also assume that the set of minimizers of (1) is non-empty, and the two functions are simple (prox γJ , prox γG , γ > 0, are easy to compute), where the proximity operator is defined, for γ > 0, as prox γJ (z) = argmin x∈R n 1 2 ||x -z|| 2 + γJ(x). An efficient and provably convergent algorithm for solving (1) is the DR method [START_REF] Lions | Splitting algorithms for the sum of two nonlinear operators[END_REF], which reads, in its relaxed form, (

z k+1 = (1 -λ k )z k + λ k BDRz k , x k+1 = prox γJ z k+1 , (2) 
where

BDR def. = 1 2 `(2prox γJ -Id) • (2prox γG -Id) + Id ´, for γ > 0, λ k ∈]0, 2] with P k∈N λ k (2 -λ k ) = +∞.
Since the set of minimizers of (1) is non-empty, so is the set of fixed points fix(BDR) since the former is nothing but prox γJ (fix(BDR)). See [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF] for a more detailed account on DR. Though we focus in the following on DR, all our results readily apply to ADMM since it is the DR applied to the Fenchel dual problem of (1).

II. PARTLY SMOOTH FUNCTIONS AND FINITE IDENTIFICATION

Beside J, G ∈ Γ0(R n ), our central assumption is that J, G are partly smooth functions. Partial smoothness was originally defined in [START_REF] Lewis | Active sets, nonsmoothness, and sensitivity[END_REF]. Here we specialize it to the case of functions in Γ0(R n ). Denote par(C) the subspace parallel to the non-empty convex set C ⊂ R n .

Definition II.1. Let J ∈ Γ0(R n ) and x ∈ R n such that ∂J(x) = ∅. J is partly smooth at x relative to a set M containing x if (Smoothness) M is a C 2 -manifold, J|M is C 2 around x;
(Sharpness) The tangent space Tx(M) = Tx def.

= par(∂J(x)); (Continuity) The ∂J is continuous at x relative to M. The class of partly smooth functions at x relative to M is denoted as PSFx(M).

The class of PSF is very large. Popular examples in signal processing and machine learning include 1, 1,2, ∞ norms, TV semi-norm and nuclear norm, see also [START_REF] Vaiter | Partly smooth regularization of inverse problems[END_REF]. Now define the variable

v k = prox γG (2prox γJ -Id)z k .
Theorem II.2 (Finite activity identification). Let the DR scheme (2) be used to create a sequence

(z k , x k , v k ). Then (z k , x k , v k ) → (z , x , x )
, where z ∈ fix(BDR) and x is a global minimizer of (1). Assume that

J ∈ PSFx (M J x ), G ∈ PSFx (M G x ), and 
z ∈ x + γ `ri(∂J(x )) ∩ ri(-∂G(x )) ´. (3) 
Then, the DR scheme has the finite activity identification property, i.e. for all k sufficiently large,

(x k , v k ) ∈ M J x × M G x . Condition (3) implies that 0 ∈ ri(∂J(x ) + ∂G(x ))
, which can be viewed as a geometric generalization of the strict complementarity of non-linear programming. In a compressed sensing scenario, it can be guaranteed for a sufficiently large number of measurements.

III. LOCAL LINEAR CONVERGENCE OF DR

We now turn to local linear convergence properties of DR for the case of locally polyhedral functions. This is a subclass of partly smooth functions, whose epigraphs look locally like a polyhedron. In the following, we will refer to the Friedrichs angle between two subspaces V and W , denoted θF (V, W ). In fact, θF (V, W ) is the (d + 1)-th principal angle between V and W , where d = dim(V ∩ W ), see also [START_REF] Bauschke | Optimal rates of convergence of matrices with applications[END_REF].

Theorem III.1. Assume that J and G are locally polyhedral, and the conditions of Theorem II.2 hold with λ k ≡ λ. Then there exists K > 0 such that for all k K,

||z k -z || ρ k ||z0 -z ||, (4) 
where

ρ = p (1 -λ) 2 + λ(2 -λ) cos 2 θF (T J x , T G x ) ∈ [0, 1
[. This rate is optimal. For the special case of basis pursuit, we recover the result of [START_REF] Demanet | Eventual linear convergence of the Douglas-Rachford iteration for basis pursuit[END_REF], but with less stringent assumptions.

IV. NUMERICAL EXPERIMENTS

As examples, we consider the 1, ∞ norms and the anisotropic TV semi-norm which are all polyhedral, hence partly smooth relative the following subspaces

1 : Tx = {u ∈ R n : supp(u) ⊆ supp(x)}, ∞ : Tx = ˘u : uI = rsI , r ∈ R ¯, s = sign(x), I = {i : |xi| = ||x||∞}, TV : Tx = ˘u ∈ R n : supp(∇u) ⊆ I ¯, I = supp(∇x),
where ∇ is the gradient operator.

Figure1 displays the observed and predicted convergence profiles of DR when solving several problem instances, including compressed sensing, denoising and inpainting. 

Fig. 1 .

 1 Fig. 1. Observed (solid) and predicted (dashed) convergence profiles of DR (2) in terms of ||z k -z ||. For the first 4 subfigures, we solve a problem of the form min x∈R n J(x) s.t. Ax = y, where A is either drawn randomly from the standard Gaussian ensemble (CS), or random binary (inpainting). (a) CS with J = || • || 1 , A ∈ R 48×128 . (b) CS with J = || • ||∞, A ∈ R 120×128 . (c) CS with J = || • || TV , A ∈ R 48×128 . (d) TV image inpainting, A ∈ R 512×1024 . (e) Uniform noise removal by solving min x∈R 128 ||x|| TV s.t. ||x -y||∞ δ. (f) Outliers removal by solving min x∈R 128 λ||x|| TV + ||x -y|| 1 . The starting points of the dashed lines are the iteration at which the active subspaces are identified.
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