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Abstract—In this abstract, we consider the inertial Forward-Backward
(iFB) splitting method and its special cases (Forward–Backward/ISTA
and FISTA). Under the assumption that the non-smooth part of the
objective is partly smooth relative to an active smooth manifold, we show
that iFB-type methods (i) identify the active manifold in finite time, then
(ii) enter a local linear convergence regime that we characterize precisely.
This gives a grounded and unified explanation to the typical behaviour
that has been observed numerically for many low-complexity regularizers,
including `1, `1,2-norms, total variation (TV) and nuclear norm to name
a few. The obtained results are illustrated by concrete examples.

I. INTRODUCTION

Consider the following structured optimization problem

min
x∈Rn

{
Φ(x)

def
= F (x) + J(x)

}
, (P)

where J ∈ Γ0(Rn), the set of proper, lower semi-continuous and
convex functions, F is convex, C1,1(Rn) with ∇F being β-Lipschitz
continuous. We assume that Argmin Φ 6= ∅.

In this paper, we consider a generic form of inertial Forward–
Backward for solving (P) which reads,

yka = xk + ak(xk − xk−1), ykb = xk + bk(xk − xk−1),

xk+1 = ProxγkJ
(
yka − γk∇F (ykb )

)
,

(I.1)

where ak ∈ [0, ā] and bk ∈ [0, b̄], (ā, b̄) ∈ [0, 1]2, and the step-size
0 < γ ≤ γk ≤ γ < 2/β. For γ > 0, the proximity operator is
defined as ProxγJ(x) = argminz∈Rn

1
2γ
||z − x||2 + J(z).

iFB (I.1) covers various special cases in the literature, including
the (unrelaxed) Forward–Backward (FB) [1] and FISTA [2]. In
the original FISTA, only convergence of the objective function is
guaranteed. Recently in [5], the iterates are proved to be convergent
under ak = bk = (tk−1 − 1)/tk where tk = (k + p− 1)/p, p ≥ 2.

II. PARTLY SMOOTH FUNCTIONS AND FINITE IDENTIFICATION

The class of partly smooth functions [3], is specialized here to
functions in Γ0(Rn). Denote par(C) the linear subspace parallel to
the non-empty convex set C ⊂ Rn, and ri(C) its relative interior.

Definition II.1. Let J ∈ Γ0(Rn) and x ∈ Rn such that ∂J(x) 6= ∅.
J is partly smooth at x relative to a set M containing x if

(Smoothness) M is a C2-manifold, J |M is C2 around x;
(Sharpness) The tangent space TM(x) = Tx

def
= par(∂J(x))⊥;

(Continuity) The ∂J is continuous at x relative to M.

Examples of such functions are given in Section IV, see also [4].

Theorem II.2 (Finite activity identification). Suppose xk converges
to a minimizer x? of (P) such that J is partly smooth at x? relative
to Mx? , and

−∇F (x?) ∈ ri
(
∂J(x?)

)
, (II.1)

then there exists a K > 0 such that for all k ≥ K, xk ∈ Mx? . If
moreover Mx? is affine/linear, then yka , y

k
b ∈Mx? for k > K.

Condition (II.1) can be viewed as a geometric generalization of
the strict complementarity of non-linear programming, and is almost
necessary for the finite identification of Mx? [3].

III. LOCAL LINEAR CONVERGENCE

We now turn to the local linear convergence of the iFB-type meth-
ods with partly smooth functions. For space limitations, we mainly

focus on the case where ak = bk, and denote dk+1 =

(
xk+1 − x?
xk − x?

)
.

Theorem III.1. We assume the conditions of Theorem II.2 hold.
If moreover F is C2 near x? and there exists α ≥ 0 such that
PTx?∇2F (x?)PTx? � αId. Then for all k large enough, we have

1) Q-linear rate: if 0 < γ ≤ γk ≤ γ̄ < min(2αβ−2, 2β−1), then
given any ρ such that 1 > ρ ≥ ρ̃k, the iterates satisfy

||xk+1 − x?||2 ≤ ||dk+1||2 ≤ ρ||dk||2,

where η = max
{
q(γ), q(γ̄)

}
∈ [0, 1[, q(γ) = 1−2αγ+β2γ2,

ρ̃k =

 (1+ak)η+
√

(1+ak)
2η2−4akη

2
, η ∈ [ 4ak

(1+ak)
2 , 1[,

√
akη, η ∈ [0, 4ak

(1+ak)
2 ].

2) R-linear rate: if Mx? is affine/linear, then

||xk+1 − x?||2 ≤ ||dk+1||2 ≤ ρk||dk||2,

where ρk ∈ [0, 1[

ρk =

 |(1+ak)ηk|+
√

(1+ak)
2η2

k
−4akηk

2
, ηk ∈]− 1, 0] ∪ [ 4ak

(1+ak)
2 , 1[,

√
akηk, ηk ∈ [0, 4ak

(1+ak)
2 ],

and ηk ∈]− 1, 1[ is an eigenvalue of Id− γkPT
∫ 1
0
∇2F (x? +

t(yka − x?))dtPT .

IV. NUMERICAL EXPERIMENTS

Example IV.1 (`1-norm). The `1-norm is partly smooth relative to
M = Tx = {u ∈ Rn : supp(u) ⊆ supp(x)}.

Example IV.2 (`1,2-norm). `1,2-norm is partly smooth relative
to M = Tx = {u ∈ Rn : suppB(u) ⊆ suppB(x)}, where
suppB(x) =

⋃
{b : xb 6= 0}, and

⋃
b∈B b = {1, . . . , n}.

Example IV.3 (TV semi-norm). The TV semi-norm ||x||TV =
||∇x||1 is partly smooth relative the subspace M = Tx =

{
u ∈

Rn : supp(∇u) ⊆ I
}
, I = supp(∇x).

Example IV.4 (Nuclear norm). The nuclear norm is partly smooth
relative to the manifold of fixed rank matrices,M =

{
z ∈ Rn1×n2 :

rank(z) = r
}

.

We now consider the problem minx∈Rn
1
2
||y − Ax||2 + λJ(x),

where y ∈ Rm is the observation, A : Rn → Rm is drawn from
the standard Gaussian ensemble, and λ > 0 is the regularization
parameter. The convergence profiles are depicted in Figure 1.
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(c) TV semi-norm
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(d) Nuclear norm

Fig. 1: Local linear convergence of iFB-type methods in terms of ||xk − x?||. The forward model of the problem of interests reads y =
Ax0 + ε, ε ∼ N (0, δ2). (a) `1-norm, (m,n) = (48, 128), x0 is 8-sparse; (b) `1,2-norm, (m,n) = (60, 128), x0 has 3 non-zero blocks
with block-size 4; (c) 1D TV semi-norm, (m,n) = (48, 128), ∇x0 is 8-sparse; (d) Nuclear norm, (m,n) = (1425, 2500), x0 ∈ R50×50

and rank(x0) = 5. The red, black and blue lines are respectively the results of FB, FISTA [5] and iFB (with ak = bk ≡
√

5 − 2.01).
All algorithms were tested with γk ≡ 1/||A||2. The solid lines are the practical observed profiles and the dashed ones the theoretical
predictions. The beginning of the dashed lines are the points when xk identifies the manifold Mx? . As one can observe, FISTA has the
fastest manifold identification, however, locally it is the slowest for all tested examples. Indeed, when the manifold is affine, it can be shown
from Theorem III.1 that ρk ∈]ηk,

√
ηk] for ak > ηk, i.e. FISTA is locally slower than FB.
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