Association between asthma and lung function in adolescents born very preterm: results of the EPIPAGE cohort study

Alice Hadchouel, Jessica Rousseau, Jean-Christophe Roze, Catherine Arnaud, Adèle Bellino, Laure Couderc, Stéphane Marret, Marie Mittaine, Didier Pinquier, Marie Verstraete, et al.

To cite this version:
Alice Hadchouel, Jessica Rousseau, Jean-Christophe Roze, Catherine Arnaud, Adèle Bellino, et al.. Association between asthma and lung function in adolescents born very preterm: results of the EPIPAGE cohort study. Thorax, 2018, 73 (12), pp.1174-1176. 10.1136/thoraxjnl-2017-211115. hal-02451652

HAL Id: hal-02451652
https://normandie-univ.hal.science/hal-02451652
Submitted on 16 Nov 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Association between asthma and lung function in adolescents born very preterm: results of the EPIPAGE cohort study

Alice Hadchouel,1,2,3,4 Jessica Rousseau,5 Jean-Christophe Rozé,6,7 Catherine Arnaud,8,9,10 Adèle Bellino,11 Laure Couderc,12 Stéphane Marret,13,14 Marie Mittaine,15 Didier Pinquier,12 Marie Verstraete,16 Pierre-Yves Ancel,3,4,5 Christophe Delacourt,1,2,3,4 the EPIDPAGEADO study group

ABSTRACT
Prematurity and bronchopulmonary dysplasia (BPD) affect long-term lung function. We studied the respiratory outcome of adolescents born very preterm and controls from the Etude EPIdémioLOGique sur les Petits Ages Gestationnels cohort and analysed their current lung function in relation to asthma symptoms (categorised in three age groups) from birth. In models including BPD, asthma at each age and confounding factors in the preterm group, BPD and preschool wheeze were the only independent variables associated with FEV1. Preschool wheeze is an independent factor associated with FEV1, impairment in adolescents born very preterm. These results highlight the need for optimal management of early respiratory symptoms in preterm-born infants.

INTRODUCTION
Prematurity persistently affects respiratory outcome.1–3 Postnatal asthma symptoms could have an additive effect on functional alterations related to prematurity. We studied lung function in relation to asthma symptoms from birth in adolescents born very preterm and in controls from the Etude EPIdémioLOGique sur les Petits Ages Gestationnels (EPIPAGE) cohort.

METHODS
Study design
The EPIPAGEADO study was registered at clinicaltrials.gov (NCT01424553). The study population was part of the EPIPAGE cohort (see online Supplementary file 1 for details) and was restricted to children born very preterm and at term in four French regions. The inclusion criteria were complete participation in EPIPAGE from birth, available assessment at 5 and/or 8 years, national health insurance and written parental informed consent. Inclusions took place between November 2011 and June 2013.

Data collection
Numerous data were prospectively collected from birth to 8 years during EPIPAGE. Data analysed for EPIPAGEADO are detailed in the online supplementary data. Asthma and atopic symptoms were collected at age 2, 3, 4, 5 and 8 years (online Supplementary table S1).

At 15 years, the investigator completed a questionnaire with parents and participants (data detailed in the online Supplementary file 1). Teenage asthma and rhinitis were defined according to the French version of the standardised International Study of Asthma and Allergies in Childhood auto-questionnaire.4

Lung function tests (LFTs)
LFTs were performed according to the recommendations of the American Thoracic Society/European Respiratory Society task force (detailed in the online Supplementary file 1).5

Statistical analyses
BPD was defined as the need for supplemental oxygen and/or ventilatory support at 36 weeks of postmenstrual age. Asthma was categorised into preschool wheeze (from birth to 5 years), school age asthma (at 8 years) and teenage asthma. LFT parameters were expressed as Z-score. Asthma groups and LFT parameters were analysed according to gestational age and BPD. Associations between asthma and perinatal and postnatal characteristics were studied in the group of preterm subjects. A similar analysis was performed for FEV1. In the group of preterm subjects, multiple linear regression models were used to quantify relationships between FEV1, BPD and each asthma group before and after adjustment for potential confounders that were smoking during pregnancy, environmental tobacco smoke exposure during infancy,6 atopy (composite variable defined in the online Supplementary file 1), parents’ occupational level7 and gender. Active smoking was not considered as only 4.1% and 2.8% of preterm-born adolescents declared weekly and daily smoking, respectively. The beta coefficient for each variable was estimated for an increase of 0.1 in FEV1 Z-score. Results were statistically significant when p<0.05. Analyses were performed with SAS V9.4.

RESULTS
Study population’s characteristics
The study included 304 adolescents born very preterm and 47 controls (flow chart in online Supplementary figure S1); 273 and 44 performed complete prebronchodilator spirometry. There were more girls among included control subjects and parents’ occupational level in the preterm group was higher among the included subjects (online Supplementary table S2).
Table 1 Lung function measurements according to gestational age and the occurrence of BPD

<table>
<thead>
<tr>
<th></th>
<th>Preterm children (24–32 wPMA)</th>
<th>Term children (39–40 wPMA)</th>
<th>Preterm children with BPD</th>
<th>Preterm children without BPD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Mean (SD)</td>
<td>n</td>
<td>Mean (SD)</td>
</tr>
<tr>
<td>Pre-BD spirometry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z-score FEV1</td>
<td>274</td>
<td>−0.6 (1.3)</td>
<td>44</td>
<td>−0.1 (1.0)</td>
</tr>
<tr>
<td>Z-score FEF25–75</td>
<td>274</td>
<td>−0.6 (1.2)</td>
<td>44</td>
<td>0.0 (1.2)</td>
</tr>
<tr>
<td>Z-score FVC</td>
<td>273</td>
<td>−0.3 (1.2)</td>
<td>44</td>
<td>−0.2 (0.8)</td>
</tr>
<tr>
<td>Z-score FEV1/FVC</td>
<td>273</td>
<td>−0.3 (1.3)</td>
<td>44</td>
<td>0.2 (1.2)</td>
</tr>
<tr>
<td>DLCO % predicted</td>
<td>143</td>
<td>113.1 (23.3)</td>
<td>15</td>
<td>116.6 (27.4)</td>
</tr>
<tr>
<td>FeNO (ppb)</td>
<td>191</td>
<td>13.6 (14.9)</td>
<td>31</td>
<td>18.4 (38.9)</td>
</tr>
</tbody>
</table>

Table 2 Multivariate analysis between FEV1, BPD and asthma groups among preterm subjects

<table>
<thead>
<tr>
<th></th>
<th>Prebronchodilator FEV1</th>
<th></th>
<th>Postbronchodilator FEV1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Mean (SD)</td>
<td>βa coeff* (95% CI)</td>
<td>P values</td>
</tr>
<tr>
<td>BPD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>189</td>
<td>−0.3 (1.1)</td>
<td>0</td>
<td><0.001</td>
</tr>
<tr>
<td>Yes</td>
<td>42</td>
<td>−1.4 (1.3)</td>
<td>−1.0 (−1.4 to −0.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>Preschool wheeze</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>133</td>
<td>−0.3 (1.2)</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Yes</td>
<td>98</td>
<td>−0.9 (1.2)</td>
<td>−0.4 (−0.8 to −0.1)</td>
<td>0.01</td>
</tr>
<tr>
<td>School age asthma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>188</td>
<td>−0.4 (1.2)</td>
<td>0.22</td>
<td>0.62</td>
</tr>
<tr>
<td>Yes</td>
<td>43</td>
<td>−1.0 (1.2)</td>
<td>−0.3 (−0.7 to 0.2)</td>
<td>0.78</td>
</tr>
<tr>
<td>Teenage asthma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>192</td>
<td>−0.5 (1.2)</td>
<td>0.50</td>
<td>0.78</td>
</tr>
<tr>
<td>Yes</td>
<td>39</td>
<td>−0.6 (1.4)</td>
<td>0.1 (−0.3 to 0.6)</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Asthma outcome and its determinants in adolescents born preterm

Preschool wheeze was significantly more frequent in preterm-born subjects than in controls (RR 1.71 (1.01–2.90), p=0.03) and was more prevalent among preterm-born children with BPD than those without (RR 1.4 (0.98–1.90), p=0.04) (online Supplementary table S3). Among preterm subjects, preschool wheeze was more prevalent in boys. Participants with atopy were at higher risk of being asthmatic at school age and as teenagers (online Supplementary table S4).

Lung function and its determinants in adolescents born preterm

Main results are presented in table 1. Only 7% of preterm-born children showed improvement of FEV1 by 12% or more. There was no correlation between FEV1 and FeNO (p=0.34) among preterm-born subjects. FeNO was significantly higher in adolescents having had school age asthma and in current asthmatic adolescents but not in adolescents having had preschool wheeze (data not shown). Among preterm subjects, BPD was the only perinatal variable independently associated with FEV1 at adolescence (p<0.001) (online Supplementary table S5).

Associations between FEV1, BPD and asthma in adolescents born preterm

Table 2 shows associations between FEV1, BPD and asthma symptoms at different ages before and after adjustment. BPD and preschool wheeze were the only variables independently associated with a lower mean prebronchodilator and postbronchodilator FEV1 at adolescence (table 2).

DISCUSSION

We confirm that prematurity and especially BPD not only lead to lower lung function at adolescence but also show that wheezing episodes during the preschool period are independently...
associated with late lung function.

Analysis of lung function in 11-years-old children born extremely preterm revealed that having ever been diagnosed with asthma, current asthmatic symptoms and treatment with β-agonists were each independently associated with lung function Z scores. This study did not evaluate the impact of asthma symptoms at different ages on lung function, limiting the comparison of our results with theirs.

We showed that prematurity and BPD are associated with an increased risk of wheezing episodes and asthma symptoms in children. These results are consistent with previous reports. No association of asthma at adolescence with preterm birth or BPD was found as previously described in one other study.

A decrease in airway calibre was initially evoked as the mechanism of airflow limitation in ex-preterm individuals, with stabilised and non-progressive structural damage following disrupted development. This is consistent with the low number of children with significant reversibility observed in our population and others. Aside from anatomical origins, several studies argue for the additive role of dynamic processes in the Airways of preterm-born subjects, with on-going disease, that may be induced by preterm birth per se and postnatal environmental factors. Lifelong environmental factors may have a deleterious synergistic effect, like environmental tobacco smoke exposure in infancy and later active smoking. Here, we provide arguments for an independent impact of a postnatal clinical factor, preschool wheeze, on alterations of lung function in preterm-born subjects at adolescence. Preschool wheeze would therefore be both a consequence of reduced airway calibre, due to prematurity, and an aggravating factor of lung function deficit. The potential inflammation associated with these early symptoms, in the setting of prematurity and BPD, seems likely different from that observed in atopic asthma, as suggested by FeNO values in our preschool wheeze group.

The main limitation of this study is the items used to define asthma and is shared by many other studies. One other limitation is the risk of selection bias. Like many other similar cohorts, the number of evaluable patients decreased over time. However, the number of children with significant reversibility observed in our population and others. Aside from anatomical origins, several studies argue for the additive role of dynamic processes in the Airways of preterm-born subjects, with on-going disease, that may be induced by preterm birth per se and postnatal environmental factors. Lifelong environmental factors may have a deleterious synergistic effect, like environmental tobacco smoke exposure in infancy and later active smoking. Here, we provide arguments for an independent impact of a postnatal clinical factor, preschool wheeze, on alterations of lung function in preterm-born subjects at adolescence. Preschool wheeze would therefore be both a consequence of reduced airway calibre, due to prematurity, and an aggravating factor of lung function deficit. The potential inflammation associated with these early symptoms, in the setting of prematurity and BPD, seems likely different from that observed in atopic asthma, as suggested by FeNO values in our preschool wheeze group.

In conclusion, we showed that early childhood asthma symptoms are independent factors associated with alterations in lung function in adolescents born very preterm. Although our study does not allow us to conclude that better prevention of these early episodes of wheezing could limit the loss of respiratory function in these children, it strongly encourages the evaluation of such strategies.

Author affiliations
1Service de Pneumologie et d’Allergologie Pédiatriques, AP-HP, Hôpital Universitaire Necker-Enfants Malades, Paris, France
2U955, Equipe 4, INSERM, Créteil, France
3Obstétrical, Perinatal, and Pediatric Epidemiology Team, Epidemiology and Biostatistics Sorbonne Paris Cité Research Center (U1153), INSERM, Paris, France
4Paris Descartes University, Paris, France
5Clinical Research Unit, Center for Clinical Investigation, P1419Cochra Hôtel-Dieu, APHP, Paris, France
6Service de Médecine Néonatale, CHU de Nantes, Nantes, France
7CIC004, CHU de Nantes, Nantes, France
8UMR1027, INSERM, Toulouse, France
9Universté Paul Sabatier, Toulouse, France
10Unité d’épidémiologie clinique, CHU Purpan, Toulouse, France
11Unité de Recherche Clinique Cochin-Necker, AP-HP, Paris, France
12Unité de Pneumologie et Allergologie pédiatiques & CRCM mixte, Pediatrie Médiatrice, CHU Charles Nicolle, Rouen, France
13U1245, équipe Neovasc, handicap perinatal neurologique et neuro-protection, INSERM, Rouen, France
14IRIB, Faculté de médecine, Université de Rouen, Rouen, France
15Unité de Pneumologie et Allergologie pédiatrices, CHU Purpan, Toulouse, France
16CRCM Enfants, CHU de Nantes, Nantes, France

Collaborators The EPIPAGEADO study group includes: François Brémont; Maryline Delattre; Monique Kaminski; Géraldine Labouret; Muriel Lebourgeois; Christophe Marquet; Marie-Parole Pariut; Laetitia Peaucereuf; Catherine Tardif.

Contributors Study concept and design: AH, CD, CA, J-CR, SM and P-YA. Data acquisition: CD, MM, MV, LC, AB and the members of the EPIPAGEADO study group. Analysis and interpretation of data: AH, CD, P-YA and JR. Drafting the article: AH, CD, P-YA and JR. Critical revision of the manuscript for important intellectual content: AH, CD, P-YA, CA, J-CR, SM, MM, MV, LC, JR and the members of the EPIPAGEADO study group. Final approval of the version to be published: AH, CD, P-YA, JR, AB, CA, J-CR, SM, MM, MV, LC, and the members of the EPIPAGEADO study group. AH and P-YA had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Funding The EPIPAGEADO study was sponsored by the Assistance Publique-Hôpitaux de Paris (Département de la Recherche Clinique et de Développement). The study was funded by a grant from the Programme Hospitalier de Recherche Clinique (PHRC) 2010 (Ministère de la Santé, N°AOM P100117). AH was funded by l’Agence Nationale de la Recherche (ANR-12-BSV1-0004-01).

Competing interests None declared.

Patient consent Obtained.

Ethics approval Local ethics committee: CPP Ile-de-France VI.

Provenance and peer review Not commissioned; externally peer reviewed.

© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

REFERENCES