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Abstract The numerical simulation of the soot particle size distribution in
flames is addressed by solving the balance equations for total number den-
sity and the probability density function (PDF) of particle sizes, leading to
a hybrid stochastic/fixed-sectional method for solving soot population bal-
ance equation. Well established models are introduced in these equations for
the chemistry of PAH in ethylene combustion, for particle nucleation, growth,
agglomeration and oxidation. These closures are combined with a stochastic
approach, which drives the evolution of a fixed number of computational par-
ticles used to solve for the particle size distribution with a control of agglom-
eration and numerical roundoff error through a fixed sectional discretisation.
A laminar sooting flame is simulated to compare the results against measure-
ments and previous numerical simulations, confirming the validity of the novel
approach in terms of accuracy and CPU efficiency. The relation between the
mobility diameter, measured in the experiments, and the equivalent sphere
diameter, introduced in the modeling, is discussed under this novel numerical
framework. The influence of the fractal particle shape on the simulated particle
size distribution is explored. Finally, Particle Size Distributions obtained from
the hybrid method are compared to the ones obtained with a representative
fixed-sectional method.

Keywords Soot; Stochastic method; Sectional method; Probability density
function; Particle size distribution; Shape modeling

1 Introduction

The prediction of soot particles emission motivates intense research, with di-
rect application for human health and environment [8,22]. The development of
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novel techniques of synthesis of nano-structured materials also benefits from
these works [24]. In terms of numerical modeling, this is a very challenging
field, in which complex hydrocarbon chemistry is combined with the descrip-
tion of a reacting solid phase. Usual flow transport phenomena need to be
coupled with mechanisms of nucleation, growth, agglomeration and oxidation
of solid particles, which are driven by the intricate coupling existing between
particle dynamics, gaseous and surface chemistry.

Models based on mono-disperse assumption have been widely used for their
relative simplicity. They are usually cast in two-equation approaches, solving
for total number density of particles and soot volume or mass fraction [37].
More recently, advanced methods based on moments of the particle size distri-
bution have been discussed in the literature with success [14,34,39,50,56,60].
In some applications, the knowledge of the particle size distribution (PSD)
is mandatory and this information cannot always be reconstructed accurately
from only a few moments. Along these lines, sectional methods provide a di-
rect access to detailed information on the PSD, through a discretisation of the
range of particle sizes. These methods have been widely used in the field of
soot modeling [2, 11]. Fixed-sectional methods featuring a fixed discretisation
of particle size were introduced [15, 20]. Subsequently, significant effort was
dedicated to reducing the impact of numerical diffusion linked to growth in
the space of particle size. Different strategies were proposed like the use of
higher order schemes [17,36,41] or moving/adaptive grids [30,52].

Other approaches have been based on direct simulation Monte Carlo (DSMC)
techniques, in which the physical population of gas particles is represented by
a collection of computational particles. The particle dynamics (nucleation,
growth, coagulation, flow transport) are represented at the level of these com-
putational particles in a systematic way, allowing for the number of computa-
tional particles to increase or decrease according to soot evolution. DSMC was
successfully applied to particle nucleation, agglomeration, and surface growth
in [28,32,38] and applied to soot modeling in laboratory flames in [3]. Several
techniques have been proposed to enhance Monte Carlo methods for predicting
the Particle Size Distribution and lower associated computational cost. Con-
stant number Monte Carlo [25,33,53], Event-Driven Constant-Volume Monte
Carlo [59], majorants and binary trees [43] and stochastic weighted meth-
ods [7, 13,18,44].

Direct Monte Carlo methods are accurate, but still require quite large
computing resources. Even though computational cost was reduced, it might
not be in line with unsteady three-dimensional simulations of real combustion
chambers.

An attempt is made in this work to tackle the problem through the soot
size probability density function (PDF). This approach features a fixed num-
ber of numerical particles to build the PDF at the location (x, t) and it is
organised to facilitate its coupling with large eddy simulation (LES). This
novel approach, combining stochastic Monte Carlo (numerical particles) and
fixed-sectional methods, has been found to minimise the discretisation errors
when solving the surface growth/loss term of the population balance equation
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for reference canonical problems [6]. The solution method relies on a fixed
number of stochastic particles and sections, with a numerical algorithm or-
ganised to minimise errors even for a moderate number of stochastic particles
and sections. Setting a fixed number of stochastic particles per grid cell brings
many advantages on the computing side, but also poses specific challenges to
simulate nucleation and agglomeration. These points are discussed and the
algorithm proposed is applied to the prediction of the soot size distribution
in a one-dimensional freely propagating premixed flame, previously investi-
gated both experimentally and numerically by Zhao et al. [58]. It is important
to note that the focus of the present paper is not to discuss new physical
models for soot particle nucleation, agglomeration or surface growth or loss.
The main objective is to propose an efficient and accurate numerical scheme
for solving the Population Balance Equation in the context of sooting flames.
The performance of this method has been previously assessed against a series
of analytical test cases in [6]. In the present work, the applicability of the
hybrid method to sooting flames is demonstrated. It is first validated using
the physical models for soot source terms as in the Monte Carlo simulation
of [58]. Then, the presented hybrid method is shown to be more efficient than
a reference fixed-sectional method. Finally, the influence of aggregate shape
modelling on the Particle Size Distribution is studied.

2 The hybrid stochastic/fixed-sectional method for soot population
balance equations

2.1 Statistical description

Let us define the particle size distribution (PSD) n(v;x, t), number of particles
of characteristic size v (in terms of volume or mass), per unit of flow volume
and per unit of characteristic size; Ni(x, t), the number of soot particles of
characteristic size vi per unit of flow volume and NT (x, t), the total number of
soot particles per unit of flow volume. These quantities are related according
to

Ni(x, t) =

∫
Ivi

n(v;x, t)dv , (1)

NT (x, t) =

∫ ∞
vo

n(v;x, t)dv =

M−1∑
i=0

Ni(x, t) , (2)

where the interval Ivi ≡ [vinfi , vsupi ] defines the i-th fixed-section of size, for

i = 0, · · · ,M − 1, with M the number of fixed sections and vinf0 is denoted vo
for brevity.

Let us consider NT (x, t), the total number of particles per unit volume,
and P (v∗;x, t), the probability density function (PDF) of the particles charac-
teristic size, where v∗ ∈ [vo,∞] denotes the sample space variable associated
to v, which is seen as a random variable. The motivation for using this PDF
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is to be able to describe the surface growth or loss term as a linear term in-
stead of directly solving for the Population Balance Equation, in which the
growth/loss term appears in a strongly non-linear form.

The relation between n(v;x, t), the particle number density per unit size,
Ni(x, t), the number density of particles whose size is in the section Ivi (v ∈ Ivi)
at the flow position ‘x’ at time ‘t’ (Eq. (1)), and P (v∗;x, t), the PDF of the
particles sizes reads:∫

Ivi

n(v∗;x, t)dv∗ = Ni(x, t) = NT (x, t)

∫
Ivi

P (v∗;x, t)dv∗ , (3)

where ∫
Ivi

P (v∗;x, t)dv∗ (4)

is the probability to find particles of sizes v ∈ Ivi . Because (3) should be valid

whatever Ivi , in particular in the limit where dvi = vsupi − vinfi goes to zero:

n(v∗;x, t) = NT (x, t)P (v∗;x, t) . (5)

The function

δ(v − v∗) = lim
dv→0

1/dv if v ∈ [v∗ − dv/2, v∗ + dv/2] (6)

= 0 otherwise , (7)

is introduced and P (v∗;x, t) = δ(v(x, t)− v∗), where · denotes a statistical
average [9, 10,26,35].

The PDF P (v∗;x, t) of soot sizes is discretised over a set of NP stochastic
particles, each carrying information on the particle size, i.e., v = vk for k =
1, · · · , NP and P (v∗;x, t) = (1/NP )

∑NP

k=1 δ(v
k(x, t)− v∗). The representative

size vk of a stochastic particle can take any value between the considered size
bounds [vo, vM ], whatever the fixed sectional mesh, and NP the total number
of stochastic particles is fixed. The mesh is divided into M sections, each
section being defined by the interval Ivi of length ∆vi = vsupi − vinfi .

Within the set of NP particles, an integer number nPi
(x, t) of stochastic

particles have sizes so that vk ∈ Ivi ≡ [vinfi , vsupi ]. This number of stochastic
particles relates to the PDF,

∫
Ivi

P (v∗;x, t)dv∗ =
nPi(x, t)

NP︸ ︷︷ ︸
Stochastics

=

Physical particles︷ ︸︸ ︷
Ni(x, t)

NT (x, t)
. (8)

Therefore, simulating the evolution of nPi(x, t) and NT (x, t) allows for fully
characterising the Particle Size Distribution.
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2.2 Balance equations

The population balance equation followed by n(v∗;x, t) may be written in the
limit of dv∗ → 0 [6, 46,47,54],

∂n(v∗;x, t)

∂t
+ u · ∇n(v∗;x, t) +

∂

∂v
[G(v∗)n(v∗;x, t)] (9)

= Ḣo(x, t)δ(vo − v∗) + Ȧi(x, t)δ(vi − v∗) ,

where G is the soot growth/oxidation rate. The nucleation source per unit
of flow volume Ḣo(x, t) and the Smoluchowski agglomeration source/sink for
the i-th section Ȧi(x, t) are defined as follows from the nucleation ḣ(v;x, t)
and agglomeration ȧ(v;x, t) sources per unit of flow volume and per unit of
characteristic size:

Ḣo(x, t) =

∫
Ivo

ḣ(v;x, t)dv . (10)

Ȧi(x, t) =

∫
Ivi

ȧ(v;x, t)dv , (11)

with

ȧ(v;x, t) (12)

=
1

2

v∫
0

β(v − v̄, v̄)n(v − v̄;x, t)n(v̄;x, t)dv̄ − n(v;x, t)

∞∫
0

β(v, v̄)n(v̄;x, t)dv̄ ,

and AT is the total sink due to agglomeration over all particles, thus the sum
of Ai(x, t) over all sections

ȦT (x, t) =

∞∫
vo

ȧ(v;x, t)dv =

M−1∑
i=0

Ȧi(x, t) . (13)

The transport equation for the total number particle density NT reads

∂NT (x, t)

∂t
+ u(x, t) · ∇NT (x, t) = Ḣo(x, t) + ȦT (x, t) , (14)
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Combining the relation (8) with (9) and (14) provides the balance equation
for the PDF [6],

∂P (v∗;x, t)

∂t
+ u(x, t) · ∇P (v∗;x, t) =

(i)︷ ︸︸ ︷
− ∂

∂v∗
[
G(v∗)P (v∗;x, t)

]
+
Ḣo(x, t)

NT (x, t)

(
δ(vo − v∗)− P (v∗;x, t)

)
︸ ︷︷ ︸

(ii)

+
1

NT (x, t)

(
Ȧi(x, t)δ(vi − v∗)− ȦT (x, t)P (v∗;x, t)

)
︸ ︷︷ ︸

(iii)

, (15)

with (i) the surface growth/loss term transporting the probability in size space.
(ii) the nucleation rate which increases the probability to find particles at the
smallest size considered and thereby decreases the probability density of other
sizes and (iii) the agglomeration also redistributing the probability according
to the agglomeration rates.

2.3 Stochastic/fixed-sectional algorithm

The stochastic particles are advanced in time following the PDF equation (15).

Surface growth or loss is applied to get vk(tn+
1
2 ),

dvk(t)

dt
= G(vk(t)) , k = 1, · · · , NP . (16)

The number density evolves to NT (x, tn+1) with

dNT (t)

dt
= Ḣo(t) + ȦT(t) . (17)

The PDF equation (15) is also advanced in time with nucleation and agglom-
eration:

P (v∗; tn+1) = αHoδ(vo − v∗) + αAiδ(v − v∗)
+ (1− αHo

− αAT
)P (v∗; tn+

1
2 ) . (18)

From Eq. (15):

αHo
=
Ḣo(tn+

1
2 )

NT(tn+1)
· δt , (19)

αAi =
Ȧi(t

n+ 1
2 )

NT (tn+1)
· δt , (20)

αAT
=
ȦT (tn+

1
2 )

NT (tn+1)
· δt . (21)
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Multiplying the PDF evolution by NP ×∆vi returns the variation of the
number of stochastic particles per section (see Eq. (8)),

nPi(t
n+1) = nPi(t

n+ 1
2 ) +∆nPi(t

n+ 1
2 ) , (22)

nP is an integer and ∆nP a real number with

∆nPo
(tn+

1
2 ) = (αHo

+ αAo
)NP − (αHo

+ αAT
)nPo

(tn+
1
2 )

+ αRo
NP , (23)

∆nPi(t
n+ 1

2 ) = αAiNP − (αHo + αAT
)nPi(t

n+ 1
2 )

+ αRiNP for i 6= o . (24)

αRi represents the accumulation of the round-off error, vanishing for NP →
∞. The fractional part {∆nPi

(tn+
1
2 )} is defined from the nearest integer

b∆nPi
(tn+

1
2 )e,

{∆nPi
(tn+

1
2 )} = ∆nPi

(tn+
1
2 )− b∆nPi

(tn+
1
2 )e . (25)

The following Monte Carlo algorithm is applied:

– For b∆nPi
(tn+

1
2 )e < 0, a number −b∆nPi

(tn+
1
2 )e of stochastic particles is

randomly chosen among the nPi(t
n+ 1

2 ) ∈ Ivi .
– The selected particles from all Ivi intervals (i = 0, · · · ,M − 1) form an

ensemble P(tn+
1
2 ) of particles whose characteristic size must change.

– For b∆nPi(t
n+ 1

2 )e > 0, a number b∆nPi
(tn+

1
2 )e of particles are randomly

taken from P(tn+
1
2 ) and allocated to Ivi around the representative size

v?i (tn+
1
2 ), defined to conserve mass, as discussed thereafter.

The residual decimal part {∆nPi
(tn+

1
2 )} defines NR

i (tn), a residual number
density of physical particles in the section Ivi , which is computed at time tn

according to (8),

NR
i (tn) =

{∆nPi
(tn−

1
2 )}

NP
NT (tn) , (26)

∆nPi(t
n− 1

2 ) denotes ∆nP of the previous iteration in time. The growth/loss
of the physical particles represented by this number density residual NR

i (tn) is

solved separately between tn and tn+
1
2 . This is done with a sectional method

based on the 3-point discretisation for particle growth/loss [41]. αRi
is then

obtained from

αRi
=
NR

i (tn+
1
2 )

NT (tn+1)
, (27)

to compute ∆nPi
(tn+

1
2 ) from Eqs. (23) and (24).

The agglomeration source Ȧi(t) of Eq. (20) is computed from the method
proposed in [29]. For any colliding particles of volume v in section i and v̄
in section j, the collision kernel β(v, v̄) is assumed fixed to β(vi, vj) = βi,j .
Particles formed by agglomeration are distributed in the sections so that the
zeroth and first moments (number and mass) of the PSD are conserved. This
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method is computationally efficient by evaluating the double integrals of the
collision kernel at the aggregated level of M sections. This results in a M ×M
calculation for the agglomeration source terms in equation (28). It is to be
noted that if every stochastic particles pairs were considered this would result
in a more expensive NP ×NP calculation. Methods as majorants and binary
trees [43] have been developed for Monte Carlo methods to avoid the cost of a
full NP ×NP calculation. Our strategy in the proposed method is different as
we calculate the agglomeration source terms just as in a sectional method [29].
The agglomeration source used in (20) reads

Ȧi(t) =

k≤j≤i∑
j,k

vi−1≤vj+vk≤vi+1

(
1− δj,k

2

)
ηβj,kNj(t)Nk(t)

− Ni(t)

M−1∑
k=0

βi,kNk(t) , (28)

with

η =


v?i+1 − (v?j + v?k)

v?i+1 − v?i
if v?i ≤ v?j + v?k ≤ v?i+1 ,

v?i−1 − (v?j + v?k)

v?i−1 − v?i
if v?i−1 ≤ v?j + v?k ≤ v?i ,

(29)

The characteristic volume v?i must be representative of the average mass
contained in the i-th section. v?i is computed from the volumes of the stochastic
particles contained in both the section and the residual terms resulting from
the roundoff,

v?i (tn+
1
2 ) =

(NT (tn)/NP )
∑nPi

(t)

k=1 vki (tn+
1
2 ) +NR

i (tn+
1
2 )v?i (tn)

(NT (tn)/NP )nPi
(tn+

1
2 ) +NR

i (tn+
1
2 )

, (30)

where vki = vk if vk ∈ Ivi and vki = 0 otherwise, nPi(t
n+ 1

2 ) is the num-

ber of stochastic particles in the i-th section (Eq. (8)) and NR
i (tn+

1
2 ) is the

residual number density of the particles in the section after applying surface
gross or loss. v?i needs to be updated again after reallocation of the particles
due to agglomeration, to provide v?i (tn+1) from (30) with NT (tn+1), vki (tn+1),

NR
i (tn+1), v?i (tn+

1
2 ), nPi(t

n+1).
Once the agglomeration source is known from Eq. (28), in the sections for

which b∆nPi(t
n+ 1

2 )e > 0, the stochastic particles to be reassigned are chosen
according to the Monte Carlo procedure discussed above. In practice, this is
done in two steps. First, the b∆nPi

(tn+
1
2 )e particles are allocated randomly

within the section at sizes vk(tn+
3
4 ), which are samples of a random variable v

following a target piecewise linear distribution [21] defined by the probability
density function,

p(v | vinfi , vsupi , wi, wi+1) = 2
wi(v

sup
i − v) + wi+1(v − vinfi )

(wi + wi+1)∆v2i
. (31)



Hybrid stochastic/fixed-sectional method for soot PBE 9

In this distribution, the weights, wi, are calculated from the variations of the
number densities at v?i ,

wi = ∆n(v?i−1; tn+
1
2 ) +

∆n(v?i ; tn+
1
2 )−∆n(v?i−1; tn+

1
2 )

v?i − v?i−1
(vinfi − v?i−1) ,

wi+1 = ∆n(v?i ; tn+
1
2 ) +

∆n(v?i+1; tn+
1
2 )−∆n(v?i ; tn+

1
2 )

v?i+1 − v?i
(vsupi − v?i ) ,

with ∆ni(t) = ∆nPi
(t)NT (t)/(NP∆vi) (Eq. (8)). In the process of applying

the sources to the PDF evolution, such random piecewise linear distribution
secures a continuous distribution of the stochastic particles. However, it does
not guarantee strict volume/mass conservation by itself. This is achieved in a
second step by calculating a corrective factor Ki

Ki =
v?i (tn+

1
2 )

(1/nPi
(tn+

3
4 ))
∑nPi

(tn+1)

k=1 vki (tn+
3
4 )
, (32)

then,
vki (tn+1) = Kiv

k
i (tn+

3
4 ) , (33)

and mass is conserved through the reallocation process.
Nucleation size is set as the lower boundary of the smallest size section

vo. As the numerical steps corresponding to nucleation/agglomeration and
growth are sequential in the present model, it is necessary to account for a
dispersion of effective nucleation sizes due to particle growth during the nu-
cleation/agglomeration time step. For b∆nPo(tn+

1
2 )e > 0, the b∆nPo(tn+

1
2 )e

particles are therefore allocated randomly following a target uniform distribu-
tion between vo and vo +G(vo)δt.

A systematic analysis of this hybrid stochastic/fixed-sectional method for
solving the population balance equation, along with comparisons against an-
alytical solutions of canonical PSD evolutions may be found in [6].

3 Modeling of nucleation, growth and agglomeration source terms

Each stochastic particle is associated with a volume vk. Soot particles are
considered spherical (usual assumption in the range of sizes studied [2, 58]),
except for the results presented in section 5.

Well established nucleation modeling by the collision of two pyrene (C16H10)
is used [1],

Ḣ(x, t) = 0.5βpyN
2
py , (34)

with
Npy = [C16H10]NA , (35)

the volume number of pyrene molecules, NA is the Avogadro constant.
The surface growth rate G is controlled by (i) condensation of pyrene

molecules on soot particles (GCond), (ii) C2H2 (acetylene) addition by the
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HACA mechanism and surface oxidation by O2 and OH (GHACA,Oxi) [1].
G(vk;x, t) = GCond(vk;x, t) + GHACA,Oxi(v

k;x, t) is applied to each particle
vk through equation (16). The condensation source term is:

GCond(vk;x, t) = mpyḢCond(vk;x, t)/Ni(x, t) , (36)

(for vk ∈ Ivi), with mpy the mass of one pyrene molecule and

ḢCond(vk;x, t) = βvk,pyNi(x, t)Npy . (37)

The surface reaction source term is

GHACA,Oxi(v
k;x, t) = (ω̇C2H2

+ ω̇O2
+ ω̇OH)/Ni(x, t) , (38)

with the chemical sources,

ω̇C2H2
= 2WCkC2H2

[Rvk ][C2H2] , (39)

ω̇O2
= −2WCkO2

[Rvk ][O2] , (40)

ω̇OH = −WCkOH[Svk ][OH] , (41)

where WC is the molar mass of Carbon, and kC2H2
, kO2

, kOH are calculated
using the kinetic parameters given in [1]. [Svk ] and [Rvk ], are obtained as in
[1, 2] through

[Svk ] + [Rvk ] = skχαHACANi(x, t)/NA , (42)

sk is the particle surface and χ is the number of sites per unit surface of soot.
[Svk ] is representative of stable sites at soot particles surface and [Rvk ] of
radical sites. [Rvk ] is calculated assuming that radical sites are in quasi-steady
state. αHACA(vk) is adapted from [1], calculating its value for each stochastic
particle instead of using the first size moment to calculate a unique value of
αHACA. In practice

αHACA(vk) = tanh

(
a

log(ρsoot × vk/(WC/NA)
+ b

)
, (43)

where a = 12.65 − 0.00563T and b = −1.38 + 0.00068T . This dependence of
αHACA(vk) on particle size expresses the fact that mature particles feature a
lower proportion of active sites per unit of surface.

Agglomeration is described by the standard Smoluchowski equation. The
collision rates entering the Smoluchowski equation expressing Ȧi(x, t), are cal-
culated depending on the Knudsen number as in [5,23], with βf,m

vi,vj in the free

molecular regime and βcont
vi,vj

in the continuum regime. The harmonic mean of

the asymptotic values is taken in the transition regime βf,m
vi,vj

βcont
vi,vj/(β

f,m
vi,vj +

βcont
vi,vj ). Collision frequencies are calculated in the same manner for collisions

between pyrene molecules (nucleation) or between pyrene molecules and soot
particles (condensation). The Smoluchowki equation is discretised as in [2,11]
to account for the source term Ȧi(x, t) in each Ivi

interval (or section).
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Fig. 1 Species mass fractions. Lines: present simulation. Symbols: reference [58].

4 Simulation of a one-dimensional freely propagating laminar
premixed flame

4.1 Flow configuration and model parameters

A one-dimensional fuel-rich (φ = 2.07) laminar premixed ethylene-argon-
oxygen flame [58] is simulated at ambient pressure. The velocity, temperature
and mole fractions in the fresh gases are 8.26 cm/s, 300 K, XC2H4

= 0.133,
XO2

= 0.193 and XAr = 0.674, respectively. Soot particles whose mobility
diameter is superior to 3 nm were detected through SMPS, to provide PSD
at several heights above burner. Both measurements and simulations reported
in [58] will serve as reference to evaluate the proposed soot modeling.

The gaseous one-dimensional flame is first computed with complex molec-
ular transport and the detailed chemical scheme by Appel et al. [1] (101
species and 544 elementary reactions) using CANTERA [16]. To limit poten-
tial compensation of errors between heat transfer and chemistry, as in previous
works [58], the measured temperature profile is imposed.

The gas phase species mass fractions (Figures 1(a) and 1(b)) agree with
previous calculations, in which soot chemistry was fully coupled. In our case,
only pyrene consumption is considered when solving Eqs. (14)-(15) for soot,
without much impact on most influential species. As in [3, 58], soot dynamics
are simulated in a moving reference frame, following the fluid particles from
fresh to burnt gases. For the sake of comparison, as in [58], a shift by +0.25
cm of the computational distance above the burner is added, to account for
the probe cooling effect.

To compare against experiments, soot number density is expressed as
n(d) = dN(log(d))/d log(d) and total number density readsN =

∫∞
do
n(d)d log(d)

with d being the particle diameter in nm and do the lowest soot particle diam-
eter considered. The particle characteristic size is defined from its volume or
mass as one can be directly deduced from the other through mk = ρsoot × vk.
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Fig. 2 Soot number density and volume fraction vs height above burner. Symbols: experi-
ments. (a) and (b) (diameters larger than 3 nm) Solid line: present simulation. Dashed line:
reference simulation [58]. (a) (for all diameters) Dash-dot line: present simulation. Dotted
line: reference [58].

Particle volume freely evolves according to Eq. (16) during growth and oxida-
tion. According to the algorithm discussed above, for nucleation and agglomer-
ation, intervals of sizes Ivi must be defined. The nucleation mass mo = 2mpy,
corresponds to the mass of nascent soot particles from the collision of two
pyrene molecules. The left boundary of Ivo is vo = mo × ρsoot. This corre-
sponds to a diameter of 0.88 nm. A geometric grid is used, following:

vinfi = voF
i
s , (44)

Here the value of Fs = 1.5 is used. The upper diameter of the grid is 51 nm. An-
other size range and other values of Fs are also tested in section 6. The stochas-
tic particles are initialised at the lowest section and NT (t = 0) = 1.0 cm−3.
This initial distribution is only necessary to start the calculation but it is
largely negligible as compared to NT levels reached during the calculation (see
Figure 2(a)). This approach has been validated elsewhere against analytical
test cases featuring simultaneous nucleation and growth [6].

4.2 Results

Figure 2(a) shows that the simulation approximates well NT , the total number
density. The satisfactory prediction of pyrene mass fraction, aside from a small
over-prediction for H > 1 cm (Fig. 1(b)), brings confidence on the calculation
of the nucleation term. Therefore, observing good results on total number
density suggests that agglomeration is well resolved. The over-prediction of
NT against the reference calculation [58] postprocessing all diameters seen
for higher values of H, the distance to the burner, may be explained by the
stronger nucleation induced by the small over-prediction of pyrene.
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Fig. 3 Particle Size Distribution for several heights above the burner. Solid line: present
simulation with 10000 stochastic particles. Cross: 1000 stochastic particles. Dashed line:
reference simulation [58].

Soot volume fraction also agrees with the previously published simulations
(Fig. 2(b)). This was expected as the same physical models for the nucleation,
agglomeration and surface growth source terms were used. However, compared
to measurements, soot volume fraction is significantly underestimated in both
simulations above H = 0.75 cm, which may indicate an underestimation of
surface growth. A possible cause of surface growth underestimation could be
the soot formation and growth models. Another possible cause could be the
models used for aggregate geometry through the calculated collision diameters
and reactive surface. In the present paper, new source terms models are out
of scope. Only the α parameter is varied and the influence of aggregate shape
modelling on the Particle Size Distribution is looked at (section 5). Indeed,
it is not obvious that soot particles can be modelled as perfect spheres in
premixed ethylene flames as reported in [51]. Figure 3 shows PSD and confirms
the capability of the model to capture the soot size distribution. A unique
nucleation mode is seen in both reference and present simulation for the lower
streamwise position H. The transition to the bimodal distribution, with an
additional accumulation mode, takes place approximately at the same height
above burner. Finally, at H = 1.2 cm both PSD feature similar shapes. The
present calculation shows higher number densities for small particles, which is
in line with the previous observation that nucleation and total number density
are slightly enhanced in the current simulation for higher values of H.
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Fig. 4 Normalized Particle Size Distribution for several heights above the burner. Solid
line: present simulation. Dashed line: reference simulation [58]. Symbols: experiments.

In this first attempt, the numerical noise was minimized by performing
the simulation with a set of NP = 10000 stochastic particles. The crosses in
Fig. 3 show results obtained with NP = 1000, without much differences. As
further assessed in section 6, the moderate CPU cost of the proposed method
allows to envision the use of the hybrid strategy in LES within either Eulerian
or Langrangian context for transporting the stochastic particles, defining NP ,
the total number of stochastic particles, from those present within a mesh
cell [19].

Figure 4 presents PSD with number densities normalized by total number
density. The computations (current and reference one) predict the right trend
of the evolution, from a pure nucleation mode toward a bimodal distribution.
The localization of the number density dip between both modes at about 4 nm
compares well to experiment. Nevertheless, both computations fail to repro-
duce the number densities in the accumulation mode. Measured diameters are
significantly larger than simulated ones, which goes with the underestimation
of soot volume fraction in both simulations.

As discussed in [58], this underestimation could result from the disturbance
by the probe, responsible of flow stagnation in front of the sampling orifice,
increasing particles residence time and therefore their sizes. A second candidate
for this difference is the mobility diameters measured by SMPS, which might
not be directly comparable to diameters simulated assuming perfect spheres
and constant density of the solid. A point which is now further examined.



Hybrid stochastic/fixed-sectional method for soot PBE 15

5 Parametric analysis of aggregate shape modeling

The influence of particle shape modeling on computed PSD and on integral
values, as soot volume fraction, is now explored. The measured mobility di-
ameters, which were directly used for comparison in Fig. 4, are converted into
equivalent sphere diameters assuming specific fractal shapes, thus enabling
more meaningful comparisons between experiment and simulations. Then, the
agglomeration modeling is improved with a particle shape based on the frac-
tal law, to better estimate, in additional simulations, the collision diameters
in the calculation of the βvi,vj , the frequency of collision of the particles and
the aggregate surfaces.

101

dev[nm]
10−2

10−1

100

n(
d e

v)/
N

Fig. 5 Normalized Number Density at H = 1.2 cm vs the sphere equivalent diameter dev.
Circles: dm measured mobility diameters. Crosses: dev with dp = 30 nm. Triangles: dev with
dp = 15 nm. Plus symbols: dev with dp = 5 nm.

Using the semi-empirical closure for the effective density measurements of
the fractal aggregates proposed by Yon et al. [57], an equivalent sphere di-
ameters dev can be inferred from dm, the measured mobility diameters. The
calculation is made under the pressure and temperature conditions of the ex-
periment, with a primary particle density ρsoot = 1800 kg.m−3 and a fractal
dimension Df = 1.73, i.e. corresponding to the soot properties determined in
the conversion model used in the present paper (Table 1 of [57] for ’CAST’ ag-
gregates). Consequently, the corresponding parameters have been determined
in a propane diffusion flame. Nevertheless, the proposed range is in agreement
with most of the values reported in the literature. Furthermore, by keeping in
mind the large experimental uncertainties related to the determination of these
parameters, there is, up to now, no evidences of a possible variability of these
parameters to the fuel and the nature of the flame. For example, the authors
of [51] measured Df ranging from 1.2 to 1.8 in a series of premixed ethylene
flames. Similar values have been used for simulating ethylene premixed flames,
for example in [49] the authors used a constant value of Df = 1.8. Concern-
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ing the density of the primary particles, ρsoot = 1800 kg.m−3 is the most
encountered value related to black carbon and mature soot. The existence of
a strong dependence of this parameter to the content of organic carbon has
been recently shown [40]. This reference reports a density up to 1834 kg.m−3

for low OC content (below 5 percent) and smaller values for organic particles.
Nevertheless, up to now, it is difficult to assess the amount of organic car-
bon of soot in flames. In consequence, the hypothesis of mature and inorganic
soot is done. This hypothesis is done by experimentalists, for example, the
value of 1860 kg.m−3 was used for the particle size determination based on
LII models [4]. It is also a common value for numerical studies on ethylene
premixed flames in the literature. Similarly, the values of 1800 kg.m−3 and
1860 kg.m−3 were used in [12] and [2] respectively. The number density dis-
tribution versus dev, calculated from the measurements of dm, are shown in
Fig. 5 for various dp, the diameter of the primary particles. For the higher
values of dp, the particles are mostly spherical and dev does not significantly
differ from the measured mobility diameter. The departure from the spherical
shape becomes significant as the characteristic size dp of the primary particles
decreases, leading to aggregates composed of many primary particles.

Additional simulations are performed in which the mobility dm and collision
dc diameters, which enter the calculation of the collision frequencies βvi,vj

, are
estimated from dg, the gyration diameter. The constant of proportionality is
evaluated by considering the limit of a single sphere, as in [5, 23, 27]. dg is
estimated according to the fractal law

np = kf(dg/dp)Df . (45)

np is the number of primary particles in the aggregates, Df is the fractal
dimension, and kf is the fractal pre-factor.Df = 1.73 and kf = 1.94 are assumed
constant for aggregates verifying np > 10 [31, 57]. np = vk/(πd3p/6) can be

inferred from vk, the aggregate volume solved with the PDF of sizes. The only
parameter left to determine dg from (45) is then dp. An attempt to estimate dp
is done by performing a preliminary simulation accounting only for nucleation
and surface growth, thus without agglomeration, leading to dp of the order of
5 nm at the streamwise position H = 1.2 cm.

To analyze the sensitivity of the modeling to these various particle parame-
ters, simulations including the fractal law are performed first fixing dp = 5 nm
and varying αHACA, calibrating in the modeling the surface reactivity of the
particles (Fig. 6). In a second series of simulations (Fig. 7), αHACA = 1 and dp
is varied between 5 nm up to an upper value for which the fractal law provides
results similar to those of spherical particles (denoted ‘spheres’, dotted line in
Fig. 7). It is important to note that we considered the particles to be spheri-
cal when the corresponding volume is lower or equal to the one of a primary
spherule i.e dev ≤ dp.

Experimental results are fairly well reproduced with αHACA = 1.0 and dp =
5 nm (Figs. 6 and 7). For the lower values of dp, the reactive surface available
for C2H2 addition is higher, which explains higher values of the volume fraction
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Fig. 6 Normalized PSD at H = 1.2 cm. dp = 5 nm. Solid line: αHACA = 1.0. Dashed line:
αHACA = 0.9. Dash-dot line: αHACA = 0.8. Dotted line: αHACA = 0.7. Crosses: experiments
dev with dp = 30 nm. Plus symbols: experiments dev with dp = 5 nm.
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Fig. 7 Normalized PSD at H = 1.2 cm. αHACA = 1.0. Solid line: dp = 5 nm. Dashed line:
dp = 7 nm. Dash-dot line: dp = 10 nm. Dotted line: sphere model. Crosses: experiments dev
with dp = 30 nm. Plus symbols: experiments dev with dp = 5 nm.

as observed in Figure 8. Moreover, for small values of dp, aggregates are more
open and dc, the collision diameter, increases, which in turn increases collision
rates (in particular in the free molecular regime) and the distribution is shifted
towards larger particles (Fig. 7).

This exercice illustrates the strong impact of particle shape modeling when
comparing against experiments. In particular, spherical particles might not
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Fig. 8 Soot volume fraction vs height above burner. Solid line: dp = 5 nm. αHACA = 1.0.
Dash-dot line: spheres. αHACA = 1.0. Dotted line: spheres. αHACA from [1] as in [58].
Dashed line: reference [58]. Symbols: experiment.

always be the best choice. Also, bi-variate [42] or even tri-variate modeling [5]
could constitute an interesting alternative to calculate dp.

6 Comparison between hybrid and sectional methods

In this section, the present hybrid method is compared to a representative
sectional method. The source terms for nucleation, growth and agglomeration
are calculated in the same way for both methods. While growth is solved
directly through stochastic particles in the hybrid method, a discretization
scheme is used for the sectional method as in [41]:

∂Ni(x, t)

∂t
=
G(vi−1)Ni−1(x, t)

vi − vi−1
− G(vi)Ni(x, t)

vi+1 − vi
. (46)

The impact of mesh resolution is studied hereafter. Again, a geometric
grid is used as defined by equation (44). The centered section sizes range from
0.88 to 225 nm. This corresponds to a base case grid with Fs = 2 and 25
sections which are typical values in the literature as for example in [11]. As
the number of sections M is varied, the size range is kept constant and Fs is
varied accordingly. The results for height above the burner of 1.2 cm can be
seen in Figures 9 and 10 respectively in logarithmic and in linear scales. For
sake of clarity, the figures do not include the results for all grids for which
calculations were run.

Considering the 200 sections simulation as a reference, the hybrid method
yields better results than the sectional one using the same number of sections.
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Fig. 9 PSD at H = 1.2 cm. Logarithmic scale. Dotted line: Sectional M = 25. Dashed line:
Sectional M = 45. Solid line: Sectional M = 200. Line with empty circles: Hybrid M = 25.
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Fig. 10 PSD at H = 1.2 cm. Linear scale. Dotted line: Sectional M = 25. Dashed line:
Sectional M = 45. Solid line: Sectional M = 200. Line with empty circles: Hybrid M = 25.
Line with full circles: Hybrid M = 45.

For more quantitative comparison, the error against the 200 sections simula-
tion can be calculated for each mesh. The Earth Mover’s Distance (EMD) [48],
also known as Wasserstein-1 distance, is used as metric of error. It is calculated
using the ‘emdist’ package of the CRAN project [55]. The EMD is then nor-
malised by the standard deviation of the reference distribution. The evolution
of this normalised EMD is given as a function of the number of sections in Fig-
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Fig. 12 Normalised CPU cost as a function of the number of sections M . Dashed line:
Sectional method. Solid line: Hybrid method.

ure 11. The hybrid method yields lower error (with the same mesh refinement)
for the whole range of tested grids. On the other hand, it presents a moderate
CPU cost overhead as compared to the sectional method, as can be seen in
Figure 12. The normalized CPU cost presented here is the CPU cost of the
simulation divided by the CPU cost of the base case simulation (sectional, 25
sections). In order to assess the tradeoff between accuracy and cost the EMD
error metric is plotted as a function of normalized CPU cost in Figure 13.
For better readability, only the calculations up to 45 sections are shown on
this last plot. Better accuracy is reached for lower CPU cost in the range of
tested meshes. The hybrid method seems to offer an advantageous tradeoff
in terms of CPU cost and accuracy, at least on this test case. Generalization
of these conclusions will depend on the relative importance of agglomeration
and growth source terms as the advantage of the present method over fixed
sectional methods lays in accurate surface growth solving.
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7 Conclusion

A hybrid stochastic/fixed-sectional approach has been proposed to simulate
the dynamics of soot particles in flames. The method relies on a fixed num-
ber of stochastic particles, whose evolution allows for solving the equation for
the soot size probability density function, which is jointly considered with the
equation for total number density. This hybrid approach is coupled to PAH
chemistry and well-established modeling for nucleation, growth, agglomeration
and soot oxidation and applied to the simulation of a premixed sooting flame
of the literature [58]. The comparison against previous numerical simulation
and experiments, confirms the potential of the proposed strategy. In a second
part, the simulations are used to investigate the influence of the modeling of
the aggregate shape. It is in particular illustrated how this impacts on particle
size distribution. Finally, the interest of the novel approach in term of tradeoff
between cpu cost and accuracy has been quantified. Particle size distributions
obtained from the hybrid method are comparable to those measured and cal-
culated in [58]. In the present work, the use of the hybrid method enabled a
drastic reduction of the number of stochastic particles used (10 000 or 1000
depending on the runs as opposed to 200 000 in [58]). The extension to three
dimensional flows of the soot population balance equation solution method
would require the transport of stochastic particles in physical space. This can
easily be done using well-established approaches, either in Lagrangian [19] or
Eulerian context [45].
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