
HAL Id: hal-02427906
https://normandie-univ.hal.science/hal-02427906

Submitted on 20 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Exact and heuristic methods for the vertex separator
problem

Haeder Althoby, Mohamed Didi Biha, André Sesboüé

To cite this version:
Haeder Althoby, Mohamed Didi Biha, André Sesboüé. Exact and heuristic methods for
the vertex separator problem. Computers & Industrial Engineering, 2020, 139, pp.106135.
�10.1016/j.cie.2019.106135�. �hal-02427906�

https://normandie-univ.hal.science/hal-02427906
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Exact and heuristic methods for the
vertex separator problem

Haeder Y. Althoby1,2, Mohamed Didi Biha1 and André Sesboüé1

1 Normandie Université ,UNICAEN,Labratoire des Mathématiques Nicolas Oresm CNRS UMR
6139, 14032 Caen Cedex ,France.
mohamed.didi-biha, andre.sesboue@unicaen.fr

2 Dept. of Math., College of Science, AL-Qadisiyah University, AL-Diwaniyah,Iraq.
hadiryounis@gmail.com

Abstract

In this paper, we propose a pratical and efficient methods to solve
the vertex separator problem (VSP for short), based on branch-and-
bound procedure, which uses linear programming, and a greedy algo-
rithm. This problem arises in many areas of applications such as graph
algorithms, communication networks, solving systems of equations, fi-
nite element and finite difference problems. We show, by computational
experiments, that our approach is able to solve in short time large-scale
instances of VSP from the literature to optimality or near optimality.

Key words: Graph partitioning, Vertex separator, Integer pro-
gramming, Branch-and-Bound, Greedy algorithm.

1 Introduction

The graphs we consider are finite, undirected and connected. We denote a
graph by G = (V,E), where V is the node set and E is the edge set. Let
G = (V,E) be a graph and β(n) be a positive integer, where n = |V |. The
vertex separator problem (VSP for short) is to find a partition of V into three
nonempty classes A, B, and C such that:

(i) There is no edge between A and B;

(ii) max{|A|, |B|} ≤ β(n);

(iii) |C| is minimum.

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0360835219306047
Manuscript_0e98a6ba5d540b642850eae99b55937c

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0360835219306047
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0360835219306047

2

The subset C is called a separator. The subsets A and B are called shores of
the separator C. For convenience, a partition {A,B,C} of V which satisfies
(i) and (ii) will be also called a separator.

The VSP appears in wide range of applications. In the field of graph al-
gorithms, the computation of balanced small-sized separators is very useful,
especially for divide-and-conquer algorithms. In communication networks, a
separator is seen as a bottleneck when a graph represents the network. To
check the capacity and brittleness of a network, the separator is used to find
bounds and brittle nodes. In bioinformatics and computational biology, separa-
tors are wanted in grid graphs providing a simplified representation of proteins.

The VSP is NP-hard [3, 11] and still NP-hard in planar graphs [9].

When β(n) = n − k for some positive constant k, the problem becomes
polynomially solvable [1]. As it was mentionned in [1], the VSP is trivial if
β(n) = 1 and it is polynomially solvable if β(n) ≥ n− 1.

A few exact algorithms have been developped for VSP. They are based
on branch-and-cut [1, 20], branch-and-bound [7], lagrangian relaxation [5, 4].
Theses methods achieve good performance for instances with up 150 vertices,
but fail to solve larger instances. Many heuristics have been proposed to obtain
good solutions for large VSP instances. Benlic and Hao [2] and Zhang and
Shao[23] used breakout local search BLS. Jesús, Juan and Abraham [17] used
four shake algorithms and embed them into a Variable Neighborhood Search
scheme. Sanchez-Oro et al. [19] introduced several Variable Neighborhood
Search(VNS) algorithms, which alternate between a local search phase and a
shaking phase. Hager et al. [15] proposed a continuous optimization approach.

The article is organised as follows. In the next section, we present the
mixed linear integer programming introduced by [1] for VSP and we show how
we can strengthen it’s linear relaxation. In Section 3, we present a simple
greedy algorithm to solve VSP. Our computational results are presented in
Section 4, and finally some concluding remarks are given in Section 5.

2 Mixed integer linear programming formula-

tion

Let G = (V,E) be an undirected graph and β(n) be a positive integer, where
n = |V |. For every separator {A,B,C} we associate an incidence vector

3

(x, y) ∈ R2n defined by xv = 1 if v ∈ A and 0 otherwise, and yv = 1 if v ∈ B
and 0 otherwise. In [1], Balas and de Souza give the following mixed integer
linear prrogram for VSP:

(MIP)



max
∑
v∈V

(xv + yv)

xu + yv ≤ 1 ∀(uv) ∈ E
xv + yu ≤ 1 ∀(uv) ∈ E
xv + yv ≤ 1 ∀v ∈ V
1 ≤

∑
v∈V

yv ≤ β(n)

1 ≤
∑
v∈V

xv ≤ β(n)

xv ∈ {0, 1} ∀v ∈ V
yv ≥ 0 ∀v ∈ V

First and second inequalities come from the fact that there is no edge be-
tween A and B. Third inequalities come from the fact that A∩B = ∅. Fourth
and fifth inequalities come from the fact that A 6= ∅ 6= B and max{|A|, |B|} ≤
β(n).

In general, the linear relaxation of (MIP) is very weak and not appropriate
to obtain a good upper bound for VSP. Let u and v be tow non-adjacent nodes.
Denote by αuv the maximum number of node-disjoint paths between u and v.
Define

α = min{αuv : u, v ∈ V, (uv) /∈ E}.

We note that for any path between any two vertices a ∈ A and b ∈ B, then
C have at least one vertex in common. Therefore |C| ≥ α. Thus, α is as a
lower bound of the cardinality of any separator. In order to strengthen the
linear relaxation of (MIP), Didi Biha and Meurs [7] added the following valid
inequality: ∑

v∈V

(xv + yv) ≤ n− α (2.1)

The calculation of α can be done by solving p maximum flow problems,
where p = |{(uv) : u, v ∈ V, (uv) /∈ E}|, and thus can be achieved in polyno-
mial time by various maximum flow algorithms [6, 8, 10, 12, 13]. For a survey
of efficient maximum flow algorithms see Goldberg and Tarjan [14].
For two non-adjacent vertices i and j the calculation of αij is described below.
We first construct a directed graph from G by replacing each edge of E by

4

two parallel arcs of opposite direction, then we replace any vertex u by two
vertices u′, u

′′
and make an arc (u′u

′′
) with capacity equal to 1. Finally, we

replace every arc (uv) by the arc (u
′′
v′) with infinite capacity. Let αij be the

value of the maximum i− j-flow in this network. Then, by Menger’s theorem,
αij is equal to the maximum number of vertex-disjoint paths between u and v
(see Schrijver’s book for more details [21]) .

For small and medium instances, with up 200 vertices, inequality (2.1) will
plays an important role in the successful computational experiments reported
in Section 4. For large instances, this inequality make a significant improve-
ment in the quality of the upper bound obtained by the branch-and bound
procedure based on the formulation (MIP). It is obvious that when α is small
then the inequality (2.1) is weak. We can improve it by replacing α by ᾱ ≥ α.
In the following, we will explain how we obtain such ᾱ. For every u ∈ V , define
αu = min{αuv : v ∈ V, (uv) /∈ E}. Without loss of generality, we suppose that
V = {u1, . . . , un} and αu1 ≤ αu2 ≤ . . . ≤ αun .

Remark 2.1 If (A,B,C) is a separator, then |C| ≥ max{αu : u ∈ A ∪B}.

Let (A?, B?, C?) be a solution of VSP, for example, the solution obtained
from the greedy algorithm presented in the next section. If (Ā, B̄, C̄) is a
solution of VSP such that |C̄| < |C?|, or in equivalent manner |Ā| + |B̄| >
|A?|+ |B?|, then we must have uk ∈ Ā∪ B̄ for some k ≥ |A?|+ |B?|+ 1. Thus,
by Remark 2.1, |C̄| ≥ αk ≥ α|A?|+|B?|+1. Thus, a suitable value of ᾱ is given
by α|A?|+|B?|+1 and we can replace (2.1) by the following inequality :∑

v∈V

(xv + yv) ≤ n− ᾱ (2.2)

3 A simple greedy algorithm

Le G = (V,E) be a graphe. The neighborhood of a vertex u ∈ V , denoted by
N(u), is the set of vertices v ∈ V such that (uv) ∈ E. The neighborhood of
a subset A ⊆ V , denoted by N(A), is the set of vertices v ∈ V \ A such that
(uv) ∈ E for some u ∈ A.

We build a solution (A,B,C) of VSP as follows: to initialize the algorithm,
choose a vertex a ∈ V with minimum degree in G, set A = {a}, C = N(a)
and B = V \ (A ∪ C). In the second step, choose a vertex i /∈ A with

5

minimum neighborhood in B \ {i} (i.e., |N(i) ∩ B| is minimum). Set A =
A∪{i}, C = N(A) and B = V \ (A∪C), and so on until satisfy the condition
|A| + |C| ≥ n − β(n). The last condition guarantees that, at the end of the
algorithm, (A,B,C) is a separator such that max{|A|, |B|} ≤ β(n). We denote
this algorithm by GA (for Greedy Algorithm).
The following code specifies the algorithm more formally.

Algorithm 1 GA

1: choose a vertex a with minimum degree.
2: A = {a}; C = N(A);B = V \ (A ∪ C).
3: while |A|+ |C| < n− β do
4: Let i ∈ V \ A such that |N(i) ∩B| is minimum .
5: A = A ∪ {i};C = N(A);B = V \ (A ∪ C).
6: End while

Notice that since the while loop runs at most n−β times, the running time
of this heuristic is O(n).

4 Computational results and discussion

Our numerical test were programmed in C++ and compiled with GNU g++
under GNU/Windows 7 running on a Dell laptop with an Intel Core i7-4800MQ
with 2.70 GHz and 8 GB of RAM. In order to compare our approach with the
state-of-the-art, they have been performed on the same instances considered
by De Souza and Cavalcante [4] and Benlic and Hao [2]. De Souza and Cav-
alcante consider 62 instances with a number of vertices between 73 and 212.
These instances can be download from [25]. Benlic and Hao consider 54 more
challenging graphs generated by Helmberg and Rendl [16]. This benchmark
consists of toroidal, planar, and random graph instances ranging from 800 to
3000 vertices. These instances can be download from [27]. Based on the argu-
ments for the development of efficient divide-and-conquer algorithms [18], the
value of the parameter β(n) is set to b2n

3
c, which is more used in literature.

We apply branch-and-bound procedure (BB) and algorithm GA to the in-
stances mentioned above. For instances with more than 250 vertices, branch-
and-bound procedure fails to obtain optimal solutions. However, it allows us
ton obtain good upper bounds. The branch-and-bound procedure has been
conducted in two steps. We first calculated the parameter α, the lower bound
of any cardinality of any separator. This achived by calculating p max-flow
problems, where p = |{(uv) : u, v ∈ V, (uv) /∈ E}|. We use the Lemon library

6

[24] in order to solve the max-flow problems. After adding inequality (2.2),
we then solve the mixed-integer program (MIP) introduced in Section 2 using
Ilog-CPLEX 12.6 [26].

The results of our computational experiments are presented in Tables 1,2,3
and 4, where each line corresponds to one specific instance.

Table 1 summarizes our results compared with those obtained by Caval-
cante and de Souza [4]. For every instance, we compare our results with the
best one among the four algorithms developped by Cavalcante and de Souza.
The first column contains the instance name. The second column contains the
number of vertices of the graph. The third column contains the value of the
objective function obtained by the heuristic GA. The fourth column contains
the value of the objective function obtained by the branch-and-bound proce-
dure (BB), actually, the optimal solution. The fifth column gives the running
time of BB in seconds. The two last columns contain respectively the best
values of the objective function obtained by Cavalcante and de Souza and the
corresponding running times. We didn’t record the running time of the heuris-
tic GA. In fact, for all instances, this time is less than 0.05 second.

With the branch-and-bound procedure, we were able to find the optimal
solution for all instances in small time. The only exception being instance
dim.DSJC125.1 for wich the optimal solution was found after 61 minutes.
These good results prove the importance of inequality (2.2). From Table 1,
we see that 16 instances (the value in sixth column appears in bold) could not
be solved by Cavalcante and de Souza. We recall that for every instance, to
make a comparison with our result, we have choosen the best result obtained
by Cavalcante and de Souza among the four algorithms they developped. If we
consider every algorithm separately, we can observe in [4] that there is at least
27 instances for which their algorithm could not reach an optimal solution. We
can observe also that they proved optimiality only for 4 instances. We note the
good performance of our heuristic GA. It was able, in less than 0.05 second,
to obtain an optimal solution for 34 instances (the value in third column is
indicated with *) and quasi-optimal solution for the other instances.

7

Table 1: Comparison of our results with those obtained by Cavalcante and de
Souza (62 instances)

Instances |V | Heuristic GA BB time BB CS time CS

dim.DSJC125.1 125 89 91 3666 89 4.12
dim.games120 120 99 102 5.23 99 1.67
dim.myciel7 191 156* 156 4.91 155 3.71
dim.myciel6 95 76* 76 0.58 75 1.18
dim.queenl2 12 144 97* 97 6.47 97 6.69
dim.Queenl1 11 121 81* 81 3.18 81 5.56
dim.Queenl0 10 100 67* 67 1.45 67 4.04
dim.queen8 12 96 65* 65 2.93 65 3.69
dim.Queen9 9 81 55* 55 0.9 55 2.73
dim.Queen8 8 64 43* 43 0.08 43 1.67
miles1000 128 110* 110 1.87 109 8.23
dim.Queen7 7 49 31* 31 0.06 31 0.9
dim.DSJC125.5 125 74* 74 3.29 74 5.11
dim.DSJC125.9 125 22* 22 0.58 22 5.73
mat.can96 96 72* 72 0.69 72 1.78
mat.can73 73 53* 53 0.53 53 1.60
mat.rw136 136 120 121 1.06 120 2.49
mat.gre 115 115 95* 95 0.87 93 3.45
mat.L125.gre 185 125 104* 104 1.45 104 4.64
mat can144 144 126* 126 0.12 126 5.60
mat.L125.can 161 125 95 97 8.42 97 4.10
mat.lund a 147 115 118 1.05 116 4.83
mat.L125.bcsstk05 125 99 101 1.08 101 3.48
mat.L125.dwt 193 125 94 95 1.30 95 3.49
mat.L125.fs-183-1 125 92 98 1.89 98 2.70
mat.bcsstk04 132 83 84 0.45 84 4.63
mat.arc130 130 88* 88 0.47 88 7.51
mat.L100.steam2 100 75 76 0.39 76 2.84
mat.L120.fidap025 120 100 102 0.25 102 2.57
mat.L120.cavity01 120 95 99 0.41 99 2.60
mat.L120.fidap021 120 93 98 0.34 98 2.84
mat.L120.rbs480a 120 87 88 0.75 88 3.40
mat.L120.wm2 120 96 98 2.67 92 1.73
mat.L100.rbs480a 100 72 73 0.45 73 2.26
mat.L80.wm2 80 60 61 1.09 61 1.96
mat.L100.wm3 100 75 77 13.79 77 2.43
mat.L120.e05r0000 120 85 90 0.19 90 2.39
mat.L100.wm1 100 74* 74 2.21 73 2.30
mat.L120.fidap022 120 84* 84 0.39 84 3.87
mat.L100.fidapm02 100 69* 69 0.77 69 2.28
mat.L120.fidap001 120 82* 82 0.48 82 4.08
mat.L100.e05r0000 100 69 70 0.16 70 1.92
mat.L80.fidapm02 80 53* 53 0.22 53 1.54
mat.L120.fidapm02 120 85 86 0.98 86 3.44
mat.L100.fidap001 100 64* 64 0.17 64 2.76
mat.L80.fdap001 80 52 54 0.16 54 1.40
mat.L100.fidap022 100 62* 62 0.33 62 2.83
mat.L80.fidap022 80 41* 41 0.09 41 1.65
mat.L100.fidap027 100 69* 69 1.69 69 2.48
mat.L100.fidap002 100 66* 66 1.19 66 1.91
mat.L120.fidap002 120 67 68 0.30 68 3.58
mat.L120.fidap027 120 83* 83 0.47 83 2.33
miplib.noswot.p 182 166 167 2.07 146 2.77
miplib.khb05250.p 100 75* 75 1.54 75 1.20
miplib.stein27r.p 118 62* 62 3.49 62 3.78
miplib.10teams.p 210 119 120 13.04 120 10.55
miplib.mod010.p 146 90* 90 61.84 88 3.99
miplib.1152lav.p 97 60 61 2.34 60 1.73
miplib.lp41.p 85 50* 50 3.28 49 4.32
miplib.air03.p 124 73 75 6.21 74 5.83
miplib.misc03.p 96 52* 52 3.70 52 2.81
miplib.misc07.p 212 113 116 43.9 115 20.19

8

Table 2: Comparision of GA with BLS algorithm on graphs generated by
Helmberg and Rendl (26 instances).

Instances |V | GA time BLS time BLS UB

g1 800 543* 0.96 543 7.2 543
g2 800 543* 0.66 543 8.7 543
g3 800 543* 0.23 543 66.3 543
g5 800 543* 0.19 543 65.9 543
g6 800 543* 0.25 543 8.5 543
g7 800 543* 0.26 543 10.0 543
g8 800 543* 0.26 543 69.6 543
g9 800 543* 0.15 543 34.0 543
g10 800 543* 0.21 543 70.7 543
g11 800 784** 2.68 784 0.0 784
g12 800 768* 1.48 768 0.0 768
g13 800 755* 1.43 755 0.2 755
g14 800 628 1.22 654 768.7 680
g15 800 633 1.22 656 856.7 680
g16 800 626 1.17 656 188.6 680
g17 800 633 1.10 656 401.1 680
g18 800 628 1.18 654 623.5 680
g19 800 633 1.17 656 1085.8 680
g20 800 626 1.09 656 353.2 680
g21 800 634 1.11 656 552.5 680
g22 2000 1412 10.71 1412 657.7 1800
g23 2000 1410 10.40 1410 310.4 1800
g24 2000 1411 10.68 1411 371.5 1800
g25 2000 1411 10.56 1411 832.5 1800
g26 2000 1413 10.70 1413 313.9 1800
g33 2000 1950* 39.59 1950 0.2 1950

In table 2, we present our numerical tests on a subset of instances con-
sidered by Benlic and Hao [2]. In their experiments, the value of parameter
β(n) is set to b2n

3
c for 26 instances (presented in Table 2) and b1.05×n

2
c for

28 instances (presented in table 3). Obviously, the value of β(n) plays a key
role in the hardness or easiness of instances. The influence of this parameter
is not the subject of this work and needs to be explored in further studies.
Thus, we compare ours results with those obtained by Benlic and Hao only for
instances for which the value of β(n) is set to b2n

3
c. Benlic and Hao proposed

an nondertministic heuristic based on Breakout Local Seearch (BLS). For evey
instance, they apply their heuristic over 100 runs. The results are presented in
Table 2. The first column contains the name of the instance. The second col-
umn contains the number of vertices of the graph. The third column contains
the values of objective function obtained by our heuristic GA. The fourth col-
umn contains the running time of GA in seconds. The fifth and sixth columns
contain respectively the values of objective function obtained by Benlic and
Hao and the corresponding running time. In order to evaluate the quality of
solutions obtained we calculate for every instance an upper bound. This is

9

done by applying the branch-and-bound procedure within 3 hours. The upper
bounds are reported in seventh column.
We see in Table 2 that the heuristic GA has a similare performance to BLS
with less computation time. It was able to obtain an optimal solution for 13
instances (the value in third column is indicated with *). For the rest of in-
stances, the percentage of optimality reached by the heuristic GA is more than
92% for 8 instances and more than 78% for 5 instances.

Table 3: Computational results for the second group of instances generated by
Helmberg and Rendl (28 instances)

Instances |V | GA time UB

g4 800 543* 0.34 543
g27 2000 1412 10.18 1700
g28 2000 1410 10.29 1700
g29 2000 1410 10.52 1700
g30 2000 1410 10.60 1700
g31 2000 1411 10.36 1700
g32 2000 1960* 38.60 1960
g34 2000 1920* 38.09 1920
g35 2000 1580 32.12 1700
g36 2000 1580 32.32 1700
g37 2000 1576 31.91 1700
g38 2000 1573 31.60 1700
g39 2000 1580 32.74 1700
g40 2000 1580 32.74 1700
g41 2000 1576 31.6 1700
g42 2000 1578 31.66 1700
g43 1000 705 0.97 750
g44 1000 705 1.02 750
g45 1000 706 1.03 750
g46 1000 703 0.97 750
g47 1000 704 0.97 750
g48 3000 2900* 143.8 2900
g49 3000 2940* 145.7 2940
g50 3000 2950* 149.5 2950
g51 1000 788 2.92 850
g52 1000 783 2.88 850
g53 1000 789 2.93 850
g54 1000 786 2.77 850

In table 3, we present our computational results on the second class of
graphs generated by Helmberg and Rendt. The first column contains the
name of the instances. The second column contains the number of vertices of
the graph. The third and forth columns contains respectively the results ob-
tained by heuristic GA and the corresponding running times in seconds. The
last column contains the values of upper bounds obtained as mentioned above.
It appears from Table 3 that 6 instances have been solved to optimality (the

10

value in third column is indicated with *). For the others instances, we can
see that the percentage of otimality reached by the heuristic is more than 83%.

In table 4, we present computational results on the set of 11 new instances
which can serve as reference for future works. These instance come from the
DIMACS challenge on graph coloring. The first column contains the instance
name where all instances have 450 vertices. In order to illustrate that inequality
(2.2) is an interesting improvement of inequality (2.1), the values of α and ᾱ are
respectively given in the second and third column. The fourth and fifth column
contain respectively the values of objective function obtained by heuristic GA
and the corresponding running times. The last column contains the upper
bounds of the optimal solutions. We can see in Table 4 that one instance is
solved to optimality (le450-25a) and for the other instances, the percentage of
optimality reached by the heuristic is more than 96%.

Table 4: DIMACS instances (11 instances)

Instances α ᾱ GA time GA UB

le450-5a 13 16 317 0.10 326
le450-5b 12 16 316 0.11 326
le450-5c 27 31 308 0.20 318
le450-5d 29 32 309 0.61 319
le450-15b 1 12 326 0.72 336
le450-15c 18 32 307 0.10 317
le450-15d 18 33 308 0.14 318
le450-25a 2 6 340* 0.62 340
le450-25b 2 8 337 0.14 347
le450-25c 7 21 311 0.20 322
le450-25d 11 23 311 0.41 321

5 Conclusions

In this article, we have considered the vertex separator problem. To resolve this
problem, we have proposed a simple greedy heuristic and a branch-and-bound
procedure based on the linear integer programming model introduced in [1].
We strengthen the relaxation of this model by adding an efficient inequality
which is obtained by exploiting the solution given by the greedy heuristic. Our
computational results show that our methods were able to solve, in very small
time, to optimality all the instances considered in [4] and to optimality or near
optimality all instances considered in [2]. Furthmore, we solved to optimality,
for the first time, many benchmark instances.

11

An interesting contibution of this work is to propose simple and pratical
methods to solve to optimality or near optimality a large-scale instances of
VSP and therfore can be used by a non specialist. In fact, VSP arises in
many non-mathematical applications such bioinformatics and social networks
analysis. Furthemore, It could also be used as the basis to build sophisticated
algorithms able to solve larger instances of VSP. Another interesting aspect
of our approach, due to the combining heuristic and linear integer program-
ming, is the possibility to know how the solution we obtain is close to an
optimal solution. This is particularly important when the instances are large,
and consequently it is difficult to obtain an optimal solution in reasonable time.

On the larger instances (number of vertices more than 800), our approach
shows its limits despite the fact that it is competitive with the state-of-the-art
methods. With the aim to solve those instances to optimality, more sophis-
ticated techniques need to be developed. Thus, it would be intersesting to
devise a branch-and-cut algorithm based on the valid inequalities introduced
by Balas and Souza [1] and Didi Biha and Meurs [7].

In this paper, as often considered in the literature, the parameter β(n) is set
to b2n

3
c and the objective is to minimize the size of the separator. It would be

intersting to extend the study developed in this paper to more general weigthed
case where each vertex v has a weight w(v) and the goal is to minimize the
total weight of the separator. Also, it would be intersting to investigate the
impact of the parameter β(n) on the efficiency of our approach.

Acknowledgments

We would like to thank the two anonymous referees for their helpful comments
and suggestions which helped to improve this paper.

References

[1] E. Balas and C. de Souza, The vertex separator problem : a polyhedral
investigation, Mathematical Programming, n. 3, 103(2005), pp. 583–608.

[2] U. Benlic and J.K. Hao, Breakout local search for the vertex separator
problem, Proceedings of the Twenty-Third international joint conference
on Artificial Intelligence, August(2013),Beijing,China.

12

[3] T.N. Bui and C. Jones, Finding Good Approximate Vertex and Edge
Partitions is NP-Hard, Information Processing Letters,42(1992), pp. 153–
159.

[4] V.F. Cavalcante and C.C. de Souza, Exact algorithms for the vertex
separator problem in graphs, Networks, n. 3,57(2011), pp. 212–230.

[5] V.F. Cavalcante and C.C. de Souza, Lagrangian relaxation and
cutting planes for the vertex separator problem, , in Combinatorics, Algo-
rithms, Probabilistic and Experimental Methodologies,Lecture Notes in
Computer Science, B. Chen, M. Paterson, and G. Zhang, eds., Springer-
Verlag,(2007),pp. 471-482.

[6] B.V. Cherkassky and A.V. Goldberg, On Implementing Push-
Relabel Method for the Maximum Flow Problem, Algorithmica, 19(1997),
pp. 390-410.

[7] M. Didi Biha and M.J. Meurs, An exact algorithm for solving the
vertex separator problem, Journal of Global Optimization,n. 3,49(2011),
pp. 425–434.

[8] E. A. Dinic, Algorithm for Solution of a Problem of Maximum Flow
in Networks with Power Estimation, Soviet Math. Dokl., 11 (1970),
pp. 1277–1280.

[9] J. Fukuyama, NP-completeness of the planar separator problems, Jour-
nal of Graph Algorithms and Applications, 4(2006), pp. 317–328.

[10] L. R. Ford, Jr. and D. R. Fulkerson, Flows in Networks, Princeton
Univ. Press, Princeton, NJ, (1962).

[11] M.R. Garey and D.S. Johnson, Computers and Intractabiliy,
W.H. Freeman and Compagny, (1979).

[12] A. V. Goldberg, A New Max-Flow Algorithm, Technical Report
MIT/LCS/TM-291, Laboratory for Computer Science, M.I.T., (1985).

[13] A. V. Goldberg and R. E. Tarjan, A New Approach to the Maximum
Flow Problem, J. Assoc. Comput. Mach., 35(1988), pp. 921–940.

[14] A. V. Goldberg and R. E. Tarjan, Efficient Maximum Flow Algo-
rithms, Communications of the ACM, Vol. 57, 8(2014), pp. 82–89.

[15] W. Hager and J.T. Hungerford, Continuous quadratic programming
formulations of optimization problems on graphs, European Journal of
Operational Research, 240(2014), pp. 328–337.

13

[16] C. Helmberg and F. Rendl, A spectral bundle method for semidefinite
programming, SIAM J. Numer. Anal., 36(1979), pp. 177–189.

[17] S. Jesú s , J.P. Juan and D. Abraham, Combing inteensification
and diversification strategies in VSN.An application to the Vertex Separa-
tor problem, Computers and Operations Research,52(2014), pp. 209–219.

[18] R.J. Lipton and R.E. Tarjan, A separator theorem for planar graphs,
SIAM J. Num. Anal., 36(1979), pp. 177–189.

[19] J. Sanchez-Oro , N. Mladenovic and A. Duarte, General vari-
able neighborhood search for computing graph separators, Optimization
Letters,(2014), pp. 1–21.

[20] C. de Souza and E. Balas, The vertex separator problem : algorithms
and computations, Mathematical Programming, n. 3, 103(2005), pp. 609–
631.

[21] A. Schrijver, Combinatorial optimization: polyhedra and efficiency,
Spring-Verlag, Berlin Heidelberg, 2003.

[22] R. E. Tarjan, A Simple Version of Karzanov’s Blocking Flow Algorithm,
Operations Research Letters, 2(1984), pp. 265–268.

[23] Z. Zhang and Z. Shao, An improved K-opt local search algorithm for
the vertex separator problem, Journal of Computational and Theoretical
Nanoscience, n. 11, 12(2015), pp. 4942–4958.

[24] http://http://lemon.cs.elte.hu/trac/lemon

[25] http://www.ic.unicamp.br/~cid/Problem-instances/VSP.html

[26] http://www.ilog.com

[27] http://www.optsicom.es/maxcut/]instances.com

