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Abstract: Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) hyperactivity has
been linked to the development of a number of human malignancies. DYRK1A is the most studied
family member, and the discovery of novel specific inhibitors is attracting considerable interest. The
8-cyclopropyl-2(pyridin-3-yl)thiazolo[5,4-f ]quinazolin-9(8H)-one (also called FC162) was found to
be a promising inhibitor of DYRK1A and was characterized in biological experiments, by western
transfer and flow cytometry on SH-SY5Y and pre-B cells. Here, the results obtained with FC162 are
compared to well-characterized known DYRK1A inhibitors (e.g., Leucettine L41 and EHT1610).

Keywords: thiazolo[5,4-f ]quinazolin-9(8H)-one; CMGC kinases; DYRK family kinases; SH-SY5Y-Tau-4R
cells; pre-B cells; quiescence

1. Introduction

Protein phosphorylation catalyzed by kinases is a key cellular regulatory mechanism that is
frequently dysregulated in human diseases [1]. This universal phenomenon controls major physiological
events that are linked to the development of a variety of diseases such as diabetes [2,3], cancer [4,5],
and neurodegenerative disorders [6–8]. Therefore, the search for new and efficient kinase inhibitors is
a major aspect of drug discovery [9]. In the last 15 years, more than 40 kinases inhibitors have been
approved by the US and Food and Drug Administration (FDA), mainly for cancer indications [10,11].
In the same period, our group has been dedicated to the conception and synthesis of bioactive
heterocycles that can modulate the activity of deregulated kinases (Figure 1) [12–27], with a particular
focus on dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) which play a role in the
development of diseases such as cancer, Alzheimer’s disease (AD) and Down syndrome (DS) [28,29].
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Figure 1. Summary of some of the compounds that have been identified by our group. (a) CDKs and
GSK3 inhibitors [12,13]; (b) CK1 and CLK1 inhibitors [14–16]; (c) DYRKs inhibitors [17–24].

The DYRK family comprises DYRK1A/B, DYRK2, DYRK3, and DYRK4 and is itself included in the
larger CMGC group that is composed of cyclin-dependent kinases (CDKs), mitogen-activated protein
kinases (MAPKs), glycogen synthase kinases (GSKs) and CDC2-like kinases (CLKs) [30]. Due to its
role in various diseases, DYRK1A is the most studied group member, and the discovery of specific
inhibitors is attracting considerable interest [31,32].

In this context, our group focused its activity on the synthesis of novel angular
thiazolo[5,4-f ]quinazolin-9(8H)-one derivatives [25,26]. Innovative microwave-assisted metal-catalysed
chemical reactions were studied [33,34], allowing the synthesis of important arrays of
2-aryl-N8-alkylthiazolo[5,4-f ]quinazolin-9(8H)-ones which were screened on a panel of five kinases
(CDK5/p25, CK1δ/ε (casein kinase 1), GSK-3α/β, CLK1 and DYRK1A, according to standard
methods [35,36].

Among the various thiazolo[5,4-f ]quinazolin-9(8H)-ones tested, only the 8-cyclopropyl-2-
(pyridin-3-yl)thiazolo[5,4-f ]quinazolin-9(8H)-one (also called FC162) (Figure 2) exhibited nanomolar
IC50 values (11, 18, and 68 nM, against DYRK1A, CLK1, and GSK3, respectively) [27]. Compared to
data obtained for other compounds, FC162 was found to be the most promising candidate based on
in vitro cell based assays.
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including the DYRK1A inhibitor FC162 [25–27].

Here we report that activity of FC162 in two biological assays of DYRK1A function. These include
testing the effect of FC162 on Thr212-Tau phosphorylation and on growth of pre-B cells. Finally, the
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activity of FC162 was compared to that of well-characterized chemicals known to be powerful DYRK1A
inhibitors (e.g., Leucettine 41 (L41) [37,38] and EHT1610 [22,39].

2. Results

2.1. Chemistry

The complete synthesis of FC162 has been described in [27,34] (see SI for some Supplementary
Materials). The target compound was obtained in eight steps from 5-nitroanthranilic acid in an overall
yield of 14%, its percentage of purity was more than 99% (HPLC).

2.2. Biological Studies

2.2.1. BBB Permeability Assay

As a complement to the preceding studies, the ability of FC162 to cross the blood brain barrier
(BBB) by passive diffusion was determined by PAMPA BBB assays with theophylline and corticosterone
as standard compounds [40]. The results showed that the thiazolo[5,4-f ]quinazolin-9(8H)-one FC162
is able to cross the BBB by this transport process (Pe = 12.18 ± 1.10 × 10−6 cm.s−1), similarly to the
lipophilic corticosterone (Pe = 13.86 ± 0.07 × 10−6 cm.s−1) (Table 1).

Table 1. PAMPA-BBB permeability assay of FC162 compared to theophylline and corticosterone

Product Name Concentration (µM) logPe Pe (10−6 cm−1) BBB Cross

FC162 100 −4.92 ± 0.04 12.18 ± 1.10 YES
Theophylline 250 −6.26 ± 0.03 0.55 ± 0.03 NO

Corticosterone 100 −486 ± 0.07 13.86 ± 2.20 YES

2.2.2. Effect of FC162 on Thr212-Tau Phosphorylation in SH-SY5Y Cells

Thr212 phosphorylation is an excellent downstream measure of DYRK1A activity and/or inhibition.
We have shown (unpublished) that in Tg (DYRK1A) mice (these animals express one extra copy of
DYRK1A—the level of DYRK1A mRNA, protein, and kinase activity is multiplied by a factor of
1.5 [41]), the level of endogenous brain Tau phosphorylated on Thr212 is increased compared to that
seen in corresponding wild-type mice. The SH-SY5Y neuroblastoma cell line overexpressing the
four-repeat (4R) human Tau isoform (Tau-4R cells) was leveraged to analyze the effect of FC162 on the
phosphorylation of Thr212, a major DYRK1A phosphorylation site [42–45]. SH-SY5Y cells expressing
Tau were exposed for 24 h to a range of FC162 concentrations, harvested and their proteins resolved by
SDS-PAGE, followed by western blotting with antibodies against p-Thr212-Tau, total Tau and GAPDH
(loading control) (Figure 3). The well characterized DYRK1A inhibitor, Leucettine L41 [37,38], was
used as a reference compound. The results shown that there was a FC162 dose-dependent inhibition
of Tau phosphorylation at Thr212, further confirming the specific effect on DYRK1A in cells (Figure 3).

2.2.3. DYRK1A-Specific Inhibitory Activity in Pre-B Cells

Using both a conditional DYRK1A knockout mouse and EHT1610 a well described
DYRK1A-specific inhibitor [20–22], we previously demonstrated that loss of DYRK1A activity decreases
phosphorylation of cyclin D3 at Thr283 in pre-B cells and leads to stabilization of cyclin D3 and a
subsequent drive out of the quiescent stage of the cell cycle [39]. To evaluate the cellular activity of
FC162 and its in vitro activity against DYRK1A, we assayed for changes in growth of primary mouse
pre-B cells after treatment with the inhibitor (Figure 4).
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Figure 3. Inhibition of Tau Thr212 phosphorylation by FC162. SH-SY5Y cells expressing human
Tau-4R were treated for 24 h with dimethylsulfoxide (DMSO) (0) or increasing concentrations of
FC162 or 10 µM of leucettine L41 (used as a positive control). Isolated proteins were resolved by
SDS-PAGE and analyzed by western blotting with antibodies directed against pT212-Tau, total Tau or
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (used as loading control). The arrow indicates
an unknown protein that cross-reacts with anti- pT212-Tau antibodies.
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Figure 4. FC162 reduces cyclin D3 phosphorylation and impairs the entry to quiescent state. (A)
Western blot of protein extracted from murine pre-B cells cultured with vehicle or 2.5 and 5 µM FC162
for 3 h. Densitometry values (below each lane) were normalized to HSC70. (B) Flow cytometry plots
(upper), schematic (lower left), and bar graph (lower right) depicting the percentages of pre-B cells that
have reached the quiescent state (defined as G0). Cells were grown either under growth conditions,
which favor proliferation, or exit conditions, which promote quiescence. * p < 0.05, *** p < 0.001.
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Consistent with an on-target effect of FC162, we observed that the compound led to a reduction
in cyclin D3 phosphorylation at Thr283 in a dose-dependent manner in murine pre-B cells (Figure 4A).
Note that we did not see increased levels of cyclin D3 protein by 3 h, as previously shown [39].
However, when we assayed the cell cycle status of pre-B cells 48 h after the addition of FC162 under
conditions that favor cell cycle exit, we observed the expected decrease in the proportion of cells in
G0 (Figure 4B). These results confirm that FC162 treatment phenocopies the effect of Dyrk1a genetic
deletion as well as EHT1610 treatment.

3. Discussion

This work validates the utility of the thiazolo[5,4-f ]quinazolin-9(8H)-one scaffold for the design
of novel DYRK1A inhibitors. Through two biological assays, we found that FC162 modified Tau
phosphorylation and could alter cell cycle progression of pre-B cells. In both types of cellular in vitro
studies, FC162 was compared with two molecules (e.g., Leucettine L41 and EHT1610) considered to
be amongst the most potent DYRK1A inhibitors. In the context of these experiments the biological
effect observed was found to be similar in both types, suggesting that FC162 exerts its effects through
DYRK1A inhibition. Then, we anticipate that this promising lead compound will aid in the design of
more effective DYRK1A inhibitors.

4. Material and Methods

4.1. PAMPA-BBB Permeability Assay

These permeability assays were performed at the Centre d’Etudes et de Recherche sur le
Médicament de Normandie (CERMN) in Caen, France. These assays were performed following
the methodology developed by PION, by means of the Pampa-BBB Explorer™ system [40]. This
system allows the measurement of the crossing velocity of a compound from one compartment to
another through an artificial membrane at pH = 7.4. The experiment was replicated 6 times in 4 h, with
quantification by UV-spectra reading. The result is given in Pe [cm.s−1]. The assayed compounds were
diluted at 20 mM in DMSO, then diluted at 100 µM in Prisma HT Buffer pH 7.4 (pION). 200 µL of this
solution was placed in the wells of the donor plate. 5 µM of BBB-1 Lipid was placed in the filters of the
acceptor plate followed by 200 µL of Brain Sink Buffer to the wells of the acceptor plate. The sandwich
was assembled and incubated for 4 h at room temperature without stirring, then separated, and the
UV–vis spectra of the donor and acceptor compartments were determined using a plate reader (Tecan
infinite M200, Männedorf, Switzerland). Pe were calculated with the PAMPA Explorer software v.3.7
(pION Inc., Billerica, MA, USA). Standard compounds used were corticosterone and theophylline.

4.2. Effect of FC162 Thr212-Tau Phosphorylation in SH-SY5Y Cells

4.2.1. Culture and Treatment of Cell Lines

SH-SY5Y neuroblastoma cells overexpressing the four-repeat (4R) human tau isoform (gift from
Dr. Fred Van Leuven) were cultured in Dulbecco’s modified Eagle medium (DMEM):Nutrient Mixture
F-12 (DMEM/F-12, Gibco, c/o Invitrogen, Saint Aubin, France) containing 1% penicillin-streptomycin
mixture (Gibco, c/o Invitrogen, Saint Aubin, France) and 10% fetal bovine serum (FBS, Gibco) in a
humidified, 5% CO2 incubator at 37 ◦C. One day before treatment 1.106 cells SH-SY5Y-Tau-4R cells
were seeded into 60 mm dishes. FC162 was then added at different concentrations, or Leucettine L41 at
10 µM (with a final concentration of 0.1% DMSO) and cells were incubated for an additional 6 h before
harvesting. Cells were scraped in cold PBS, centrifuged at 10,000× g for 5 min at 4 ◦C, and pellets were
snap-frozen in liquid nitrogen and kept at −80 ◦C.
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4.2.2. Cell Lysis, Electrophoresis, and Western Blotting

Cell pellets were lysed in homogenization buffer and centrifuged (17,000× g for 10 min at 4 ◦C).
Protein extracts were mixed (1:1 v/v) with sample buffer (2× NuPAGE LDS sample buffer, 200 mM
DTT). Following heat denaturation, equal amounts of proteins (20 or 30 µg) were loaded on NuPAGE
precast 4–12% Bis-Tris protein gels. Electrophoresis was run in MOPS buffer. Rapid blot transfers
were performed at 2.5 A/25 V for 7 min. Membranes were blocked in a buffer containing milk (5%
Regilait in Tris Buffered Saline with 0.1% Tween (TBST)) for 1 h. Membranes were then incubated
with the antibodies against Tau (1/2000 in milk, overnight at 4 ◦C), phospho T212-Tau (1/2000 in milk,
overnight at 4 ◦C) or GAPDH (2 h at RT, 1:30,000 dilution; Bio-Rad, Marnes-la-Coquette, France).
Finally, membranes were incubated for 1 h, at RT with goat anti-rabbit or goat anti-mouse antibodies
(Bio-Rad, Marnes-la-Coquette, France) and chemiluminescent detection was achieved with homemade
ECL-Tris buffer (100 mM Tris pH 8.5, 0.009% H2O2, 0.225 mM p-coumaric acid, 1.25 mM luminol) with
Fusion Fx7 camera software.

4.3. DYRK1A-Specific Inhibitory Activity in Pre-B Cells

CD19+ cells were isolated from murine total bone marrow using the EasySep positive-selection
system (Stem Cell TechnologiesGrenoble, France). Cells were expanded in DMEM supplemented with
10% FBS (Hyclone, Illkirsh, France), 2 mM L-glutamine, 10 mM HEPES (pH 8), 1 mM sodium pyruvate,
55 µM ß-mercaptoethanol, 50 µg/mL gentamicin, and 1x Primocin (Invivogen, Toulouse, France) in the
presence of 5 ng/mL murine IL-7 and 10 ng/mL murine SCF (PreproTech, Neuilly-Sur-Seine, France).
Cells were replated every 2 days, maintaining a concentration of 2e6 cells/mL, and used for assays
after 6 days of expansion.

4.3.1. Immunoblotting

Pre-B cells were treated with FC162 (doses indicated in Figure 4) or vehicle (0.1% DMSO) for
3 h. Cells were then collected and lysed for 30 min on ice in TENT buffer (50 mM Tris, pH 8,
2 mM EDTA, 150 mM NaCl, 1% Triton X-100) supplemented with 5 mM NaF, 2 mM NaVO3, 2 mM
ß-glycerophosphate, 2 mM sodium pyrophosphate, and 1x complete protease inhibitor EDTA-free
(Roche, Basel, Switzerland). Lysates were cleared by centrifugation for 10 min at 21,000× g at 4 ◦C.
Protein lysates were denatured in LDS sample loading buffer (Life Technologies, Carlsbad, CA, USA)
with 5% ß-mercaptoethanol at 95 ◦C for 5 min and electrophoresed on 4–12% Bis-Tris gradient gels (Life
Technologies). Proteins were transferred to PVDF membranes and probed with primary antibodies for
phospho-cyclin D3 Thr283 (ab55322, Abcam), total cyclin D3 (C-16, Santa Cruz Biotechnology, Inc,
Dallas, TX, USA), and HSC-70 (B-6, Santa Cruz Biotechnology, Inc), and detected with HRP-conjugated
secondary antibodies and ECL substrate (GE Healthcare, Marlborough, MA, USA). Immunoblots were
performed in triplicate. Band densitometry values were calculated using ImageJ software.

4.3.2. Cell Cycle Analysis

Wild-type pre-B cells were replated in complete culture media with 100-fold less IL-7 and SCF
for 2 days in order to induce cell cycle exit. Cells were stained with 10 µg/mL Hoechst 33,342 (Life
Technologies, Carlsbad, CA, USA) for 1 h in the dark at 37 ◦C prior to collection, washed, and
resuspended in FACS buffer with 1 µg/mL Pyronin Y (Sigma Aldrich, St.-Louis, MO, USA) for 25 min
before analysis. Cells were analyzed using LSRII flow cytometer (BD Bioscience-US, San Jose, CA,
USA). Cell cycle analysis was performed in triplicate.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8247/12/4/185/s1.
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