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Abstract 

Vasoactive intestinal peptide (VIP) and pituitary adenylyl cyclase-activating polypeptide 

(PACAP) are two structurally-related neuropeptides that exhibit widespread expression 

in the central and peripheral nervous systems. Although these peptides have been 

repeatedly shown to exert potent anti-inflammatory actions when administered in animal 

models of inflammatory disease, mice deficient in VIP and PACAP were recently shown 

to exhibit different phenotypes (ameliorated and exacerbated, respectively) in response 

to experimental autoimmune encephalomyelitis (EAE). Therefore, elucidating what are 

the immunoregulatory roles played by each of their specific receptor subtypes (VPAC1, 

VPAC2, and PAC1) is critical. We found that mice with a genetic deletion of VIPR2, 

encoding the VPAC2 receptor, exhibited exacerbated (MOG35-55)-induced EAE compared 

to wild type mice, characterized by enhanced clinical and histopathological features, 

increased proinflammatory cytokines (TNF-α, IL-6, IFN-γ (Th1), and IL-17 (Th17)) and 

reduced anti-inflammatory cytokines (IL-10, TGFβ, and IL-4 (Th2)) in the CNS and lymph 

nodes. Moreover, the abundance and proliferative index of lymph node, thymus and CNS 

CD4+CD25+FoxP3+ regulatory T cells (Tregs) were strikingly reduced in VPAC2 KO mice 

with EAE, and the in vitro suppressive activity of lymph node and spleen KO Tregs was 

impaired. Our results support a protective role for the VPAC2 receptor against 

autoimmunity by contributing to the expansion and maintenance of the Treg pool. 

Keywords: Experimental autoimmune encephalomyelitis, neuroimmunology, 

autoimmunity, inflammation, neuropeptide, VPAC2 receptor, regulatory T cell 
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1. Introduction 

Vasoactive intestinal peptide (VIP) and pituitary adenylyl cyclase-activating 

polypeptide (PACAP), are two secretin family neuropeptides widely expressed in the 

central, autonomic, sensory, and enteric nervous systems, acting through the G protein-

coupled receptors (VPAC1, VPAC2 and PAC1) which primarily stimulate adenylyl 

cyclase activity (1). Whereas PACAP binds with similar high affinity to all three of these 

receptors, VIP binds only VPAC1 and VPAC2. The expression and actions of these 

peptides and their receptors in preganglionic and postganglionic neurons of the 

sympathetic nervous system (SNS) (2-8) suggest that they may function in the 

autonomic regulation of stress responses, including those associated with inflammation 

(9, 10). In this regard, VIP-immunoreactive fibers, presumably arising from sympathetic 

neurons, have been demonstrated in lymph nodes, spleen and thymus of rats (11), and 

nearly all immune cell types express one or more receptor subtypes (1, 12). For 

example, macrophages express constitutively VPAC1 and PAC1 receptors, and when 

exposed to inflammatory stimulus, express VPAC2 (13). Moreover, VPAC1 is 

expressed constitutively on resting CD4+ T cells, and upon anti-CD3/CD28 activation, 

downregulates VPAC1 and upregulates VPAC2 (14).  

Although VIP and PACAP exert multiple immunomodulatory properties, they are 

mostly regarded as anti-inflammatory peptides (12, 15-17). In this respect, VIP and 

PACAP inhibited the lipopolysaccharide (LPS)-induced production of TNF-α, IL-6, and 

several chemokines in macrophage cultures, increasing the production of IL-10 (18-

20). In addition, VIP and PACAP promote Th2 over Th1 responses. Although studies 

have suggested that these peptides can directly enhance Th2 cell proliferation and 
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survival (21-23), they also act indirectly to affect Th balance by modulating the 

expression of co-stimulatory molecules and Th-polarizing cytokines on antigen-

presenting cells (APCs) (13, 24-26). In fact, human and murine dendritic cells 

differentiated in vitro in the presence of VIP exhibited a “tolerogenic” phenotype and 

promoted the generation of regulatory T (Treg) cells in vivo and in vitro (27, 28).  

In vivo, VIP and PACAP were show to exhibit therapeutic activity in several murine 

experimental models of human autoimmune disease (29-32). For example, 

administrations of VIP and PACAP have been shown to ameliorate the clinical and 

pathological manifestations of acute, chronic, and relapsing-remitting experimental 

autoimmune encephalomyelitis (EAE) murine models of multiple sclerosis (MS) (33, 34). 

These therapeutic effects were associated with an inhibition of the proinflammatory 

cascade, a blockade of Th1 vs Th2 responses and the expansion of CD4+CD25+Foxp3+ 

Tregs (35). In addition, our recent studies subjecting PACAP-deficient (KO) mice to 

MOG35-55-induced EAE demonstrated a protective role for the endogenous source of this 

peptide and revealed a function for PACAP as an endogenous modulator of Treg 

expansion (36, 37).  

Although the aforementioned studies suggest that VIP and PACAP might be able 

to expand Tregs, high-affinity receptor subtype-specific agonists may constitute more 

desirable agents than the peptides themselves. Our present study utilizing VPAC2-

deficient mice suggests an involvement of VPAC2 receptors in the pathogenesis of MOG-

induced EAE through modulation of T cell responses. 

 

1.  Methods 
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1.1.  EAE induction  

Eight to 12-week old VPAC2 KO (38) and WT C57BL/6 mice were bred in the UCLA 

animal facilities. FoxP3EGFP mice were kindly donated by Dr. Talal Chatila (Boston 

Children’s Hospital) (39). All protocols were approved by the UCLA Animal Committee. 

EAE was induced by subcutaneous immunization in the flanks with 100µg of 

MOG35–55 (GLBiochem) in CFA containing 5mg/ml Mycobacterium tuberculosis H37Ra 

(Difco) as described (36). In addition, mice received intraperitoneally 200ng of pertussis 

toxin (List Biological Laboratories) on days 0 and 2 post-immunization. Clinical signs of 

EAE were scored daily from 0 to 4 (0, asymptomatic, 1, tail limpness, 2, wobbling gait, 3, 

hind limb paralysis and 4, moribund/dead). For histological studies, spinal cords were 

fixed in 4% paraformaldehyde (PFA) and paraffin-embedded following standard 

procedures. Seven-µm sections were stained with Hematoxylin-eosin/luxol fast blue and 

histopathology was scored from 0 to 4 according to the level of immune cell 

infiltration/demyelination as described (36). 

 

2.2. Cell suspension preparation 

Cell suspensions were prepared from lymph nodes, spleens or thymi by tapping the 

organs through a 40µm mesh. For CNS mononuclear cell isolation, tissues were minced 

and digested with DNAse I (0.1mg/ml, Worthington) and collagenase IV (0.1mg/ml, 

Roche). After a 40/80% percoll (GE Healthcare) gradient centrifugation (500g, 30 min), 

mononuclear cells were removed from the interface. 

 

2.3. RNA extraction and Real time RT-PCR 
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RNA was isolated from thymi, lymph nodes and spinal cords with Trizol (Sigma) and 

retrotranscribed with the Iscript kit from Bio-Rad. Real time quantitative PCRs were 

performed using iQ SYBR Green Supermix (Bio-Rad). Primers are listed in 

Supplementary Table 1. Amplification was performed as follows: initial denaturation at 

95°C for 5 min, 40 cycles of 95°C for 25 secs followed by 60°C for 35 secs, and 72°C for 

35 secs for IFNγ, IL-4; 96°C for 20 secs, 60°C for 30 secs, and 72°C for 20 secs for IL-6, 

IL-10, IL-17A, IL-23p19; 96°C for 20 secs, 62°C for 30 secs, and 72°C for 20 secs for 

TNFα; 95°C for 1 min, 60°C for 1 min and 72°C for 1 min for Foxp3, 96°C for 20 secs, 

60°C for 1 min secs, and 72°C for 10 secs for VPAC2 with a final elongation at 72°C for 

10 min for all. The housekeeping gene HPRT was amplified for standardization of assay 

conditions. Amplicon sequencing and melting curve analysis confirmed primer specificity. 

Fold increase vs no EAE control was calculated by the 2–ΔΔCt calculation. 

Tregs were purified from thymi of FoxP3EGFP mice for VPAC2 mRNA expression 

measurement, by CD25 magnetic enrichment (StemCell technologies) and FACS sorting 

for CD4+CD8-CD25+FoxP3-EGFP+ cells using PerCP-Cy5.5-CD4 and PE-CD8 

antibodies (eBioscience). 

 

2.4. Antigen recall assays 

Lymph node cells were cultured at 1 x 106 cells/ml in complete medium (RPMI 1640 

containing 25mM HEPES, 2mM L-glutamine, 1% penicillin/streptomycin and 2% FBS) 

with MOG or OVA (10µg/ml). Cytokines in 48 hour supernatants were measured with 

ELISA kits from Peprotech (IFNγ, IL-10) and eBioscience (IL-17, TGFβ) following the 

manufacturer’s protocols. For proliferation assay, after 2 days of culture, 1μCi/well of [3H]-
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thymidine was added for 18 additional hours. Incorporated radioactivity was measured on 

a β-scintillation counter (Beckman). 

 

2.5. Flow cytometry 

For Th profile analysis, cells were incubated for 4 hours in complete medium containing 

PMA (50ng/ml, Sigma), ionomycin (1mg/ml, Sigma), brefeldin (3µg/ml, eBiosciences) and 

monensin (2µM, eBiosciences). Cells were stained with FITC-anti-CD4, fixed in 2% PFA, 

and permeabilized with PBS/0.2% Tween 20. Then, cells were incubated with PE-anti-

IFNγ, PerCP-Cy5.5-anti-IL-17 and APC-anti-IL-4 (eBioscience) in permeabilization buffer.  

For Treg measurement, a staining kit from eBioscience was used. Briefly, cells 

were incubated with PerCP-Cy5.5-anti-CD4 and PE-anti-CD25 (lymph nodes, CNS) or 

PerCP-Cy5.5-anti-CD4 and PE-anti-CD8 (thymus). Then, cells were treated with 

fixation/permeabilization buffer overnight, and incubated with APC-anti-Foxp3 and FITC-

anti-Ki67 (for proliferation).  

Samples were acquired with a FACScalibur cytometer (BD Biosciences), and 

analyzed using Weasel software (Walter and Eliza Hall Institute). 

 

2.6. Treg isolation and expansion ex vivo 

Tregs from WT or KO mice were isolated as CD4+CD25+ by magnetic bead systems 

based on negative selection of CD4+ cells and positive selection of CD25+ cells (StemCell 

Technologies).  

For Treg expansion, IL-2 and CD3/CD28 MACSiBead™ Particles (Miltenyi 

Biotech) were used according to the manufacturer except that the optimal bead 
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concentrations (3:1 bead-to-cell ratio) were also reduced by 1/2 and 1/4. Tregs (1 x 105 

cells/well in 96 well-plates) were cultured in complete medium. Cells were counted on 

culture days 3 and 5, and IL-10 and TGFβ ELISAs were performed on day 5 supernatants. 

For thymidine incorporation assay, 1 x 105 cells were collected on days 3 and 5 and 

cultured for 24 hours with IL-2/anti-CD3/CD28. One μCi/well of [3H]-thymidine was added 

to each well for 18 additional hours and thymidine incorporation was determined. 

 

2.7. Treg suppressive assay 

CD4+CD25+ Tregs and CD4+CD25- Teffs were isolated by magnetic separation as above. 

APCs were obtained by preparation of a syngenic splenocyte suspension, T cell depletion 

with anti-CD4 and anti-CD8 microbeads (StemCell Technologies), and treatment with 

mitomycin C (50μg/ml). WT Teff (5 x 104) and APCs (2 x 105) were cultured in 96-well 

plates with titrated numbers of WT or KO mice Tregs (Treg:Teff = 1:1, 1:2, 1:4, 1:8) in 

complete medium with IL-2 (50U/ml) and with MOG (20μg/mL). Proliferation was 

measured 48 hours after culture as above. 

 

2.8. Statistical analyses 

ANOVA and Student’s t-test were used to assess significance using GraphPad 4.0. 

 

2.  Results 

2.1.  VPAC2 KO mice exhibited exacerbated clinical, histopathological and 

immunological features of EAE 
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We subjected WT and VPAC2-deficient (VPAC2 KO) mice to MOG35-55-induced EAE, and 

found that KO mice developed exacerbated and more prolonged clinical disease course 

than WT animals (Figure 1A). In fact, whereas WT mice reached the peak of the disease 

on day 15 with a score of 1.79 ± 0.18, the average clinical score of VPAC2 KO mice 

continued increasing until day 18, when they reached their maximum score of 2.83 ± 0.15. 

From this time point, the clinical scores of VPAC2 KO mice were consistently higher than 

those in WT mice. In correlation with the clinical scoring, VPAC2 KO spinal cords 

exhibited a higher degree of immune cell infiltration and demyelination than WT (Figure 

1B, C). 

The robust inflammatory response in the CNS during EAE is believed to be 

orchestrated primarily by encephalitogenic Th1 and Th17 cells. By quantitative real time 

RT-PCR, we found that VPAC2 KO spinal cords exhibited higher mRNA expression of 

the pro-inflammatory cytokines TNF-α, IL-6, IFNγ (Th1), IL-17A (Th17), but similar 

levels of IL-23p19 (Th17-promoting) compared to WT mice 30 days post-EAE 

immunization, in agreement with the higher clinical and histopathological scores of the 

KO mice (Figure 2A). However, levels of the anti-inflammatory cytokines IL-4 (Th2), IL-

10 (Th2/Treg) and FoxP3 mRNA (a Treg marker) were reduced compared to those in 

WT animals (Figure 2A). In addition to the cytokine expression analysis, we identified 

different Th cell subsets by flow cytometry in the CNS on day 14 according to their 

prototype cytokines. We found significantly higher Th1 but lower Th2 proportions in 

VPAC2 KO than in WT mice (Figure 2B). However, the proportions of IL-17 producing 

T cells (Th17) did not differ between the two groups of mice.  
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To evaluate the impact of VPAC2 deletion on Th antigen-specific actions, we 

examined the ability of lymph node T cells from MOG-immunized WT vs VPAC2 KO mice 

to respond to a MOG re-challenge ex vivo 14 days post-EAE (Figure 3). We found that 

MOG-driven proliferation and IFNγ (Th1) and IL-17 (Th17) productions were higher in 

VPAC2 than in WT mice, whereas the antigen-specific inductions of IL-10 and TGFβ, two 

Treg-associated anti-inflammatory cytokines, were completely blocked in KO mice. The 

Th2-specific IL-4 cytokine in our cultures was undetectable by ELISA, but IL-4 mRNA 

levels were diminished in lymph node culture extracts from mutant vs. WT mice (Figure 

3). Overall, these results demonstrate that the absence of VPAC2 results in increased 

Th1 and Th17 and reduced Th2 and Treg responses to MOG, which may contribute to 

the elevated inflammation in MOG-treated KO mice. 

 

2.2. VPAC2 KO mice exhibited reduced Treg abundance and proliferation. 

The stronger T cell proliferation and decreased Treg-related cytokine production in 

VPAC2 KO mice suggested that the abundance and/or suppressive activity of Tregs 

might be reduced in these mice. To test this hypothesis, we studied the proportions of 

Tregs as CD4+CD25+FoxP3+ in lymph nodes and CNS, and as CD4+CD8-FoxP3+ in 

thymus in naïve and MOG-immunized mice, by flow cytometry. The latter was examined 

on day 20 after MOG administration, when Tregs are expected to have expanded and be 

most active (40). In naive mice, the proportion of thymic and lymph node Tregs was 

significantly lower in VPAC2 KO compared to WT mice (Figure 4A). The proportions of 

FoxP3+ Tregs in all three tissues increased in WT mice after EAE immunization as 

expected, but these increments were markedly blunted in mice lacking VPAC2 (Figure 
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4A). To determine potentially-impaired mechanisms regulating the expansion of FoxP3+ 

Tregs in KO mice, we studied the proliferative rate of these cells using Ki67 as a mitotic 

marker (Figure 4B). FACS analysis on day 20 showed a blockade of thymic Treg 

proliferation in receptor-deficient mice. Likewise, we observed a proliferative impairment 

in lymph node and CNS Tregs in VPAC2 KO compared to WT mice. A reduction in Treg 

Ki67 staining was also observed in VPAC2 KO naïve animals (Figure 4B), suggesting a 

defect in the basal proliferation of these cells.  

The above data strongly imply that VPAC2 receptor activation is critically-required 

for proper Treg production during homeostasis and inflammation. It has been previously 

reported that Tregs isolated from VIP-treated mice with EAE exhibit  enhanced 

suppressive function (35). To investigate a specific involvement of the VPAC2 receptor in 

modulating Treg function, titrated numbers of Tregs from WT and receptor-deficient mice 

were incubated with MOG and fixed quantities of responder Teff cells and APCs from spleen 

and lymph nodes from MOG-immunized WT mice. The purity of Tregs was on average ~80% 

as assessed by flow cytometry, and 90-95% of these cells expressed Foxp3 (Figure 5A). 

Although both WT and KO Tregs reduced MOG-specific Teff proliferation, VPAC2 KO Tregs 

were less efficient than WT Tregs, significantly at low Treg:Teff ratios (1:4 and 1:8) (Figure 

5B).  

 

2.3. Dynamic changes in VPAC2 receptor gene expression in murine thymus 

during EAE, and enrichment in FoxP3+ Tregs 

Our results demonstrated that the global deletion of VPAC2 has a significant impact on 

Tregs in the thymus, a site of de novo production of natural Tregs. We found that VPAC2 
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mRNA expression in total thymic extracts of naïve WT mice was strongly upregulated 

after MOG-induced EAE (Figure 6A). To investigate if VPAC2 receptors are expressed 

within the Treg subpopulation, we purified Tregs from thymi of FoxP3EGFP mice (39) as 

CD4+CD8-CD25+FoxP3EGFP+ cells. Real time RT-PCR analysis revealed a strong 

enrichment of VPAC2 transcripts in the thymic FoxP3EGFP+ Treg cell fraction compared to 

total thymus and to thymic cell subpopulations that were not FoxP3EGFP+ (Figure 6B). This 

result indicates a high likelihood that the VPAC2 receptor is expressed on Tregs. 

 

2.4. Tregs from VPAC2 KO mice exhibit impaired proliferation ex vivo. 

VPAC2 mRNA transcripts were also significantly enriched in Tregs isolated from lymph 

nodes and spleens of naïve WT mice (Figure 7A). We thus compared the ability of pooled 

lymph node and splenic Tregs from WT vs. VPAC2 KO to expand ex vivo in the presence 

of IL-2 (2000U/ml) and manufacturer-recommended and serial dilutions of anti-

CD28/CD3 MACSiBead™ particles. Reducing concentrations of anti-CD28/CD3 beads 

to 1/2 and 1/4 of that recommended resulted in diminished expansion of WT Tregs (Figure 

7B). Using this assay, we found that VPAC2 KO Tregs exhibited lower fold increases in 

cell numbers compared to WT Tregs (Figure 7C, left panels). As another measurement 

of Treg proliferation, the rate of 3H-thymidine incorporation was determined. For this, cells 

obtained from day 3 and 5 cultures were expanded in the same conditions for an 

additional period of 2 days, and the rate of 3H-thymidine incorporation in the last 18 hours 

was measured (Figure 7C, right panels). Based on this parameter, we found that the 

proliferative rate of VPAC2 KO Tregs was lower than that in WT Tregs. In addition, we 

measured the levels of IL-10 and TGFβ, two cytokines that are produced by Tregs and 
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involved in their suppressive activity, after 5 days of expansion (Figure 7D). The levels of 

these cytokines were diminished in VPAC2 KO cultures. These data suggests that Tregs 

from MOG-induced VPAC2 KO mice exhibit an intrinsic defect in ability to expand ex vivo. 

 

3. Discussion  

We found that mice lacking the VIP/PACAP receptor VPAC2 developed enhanced 

EAE, with exacerbated inflammatory Th1/Th17 responses and a remarkable reduction in 

Th2 and Treg cells. The immunological phenotype of VPAC2 KO mice in response to EAE 

induction correlates with the well-known anti-inflammatory actions of its ligands VIP and 

PACAP (12). Similarly, in previous work, we found that PACAP-deficient mice were more 

sensitive to EAE induction, with qualitatively similar Th/Treg alterations to those in VPAC2 

KO mice. Nevertheless, VIP KO mice were unexpectedly resistant to develop clinical EAE 

(41). Therefore, investigating which receptor modulates the opposing PACAP and VIP 

KO clinical phenotypes is key to unravel the role of this peptide/receptor system in the 

pathogenesis of EAE, and to potentially design receptor targeted therapies. Our findings 

in these ligand and receptor KO mice suggest that the PACAP/VPAC2 signaling pathway 

may play a protective role in autoimmune disease (37).  

Evidence using pharmacological approaches has suggested that the VPAC1 

receptor mediates the immunoregulatory properties of VIP and PACAP with stronger 

activity than VPAC2, decreasing the interest in this latter receptor. Nonetheless, a specific 

although mild immunomodulatory role of VPAC2 has been demonstrated in different in 

vitro and in vivo experimental models. For example, the VPAC2 agonist Ro25-1553 

significantly decreased the production of TNFα and IL-12 by LPS-stimulated peritoneal 
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macrophages and human monocytes in vitro (20, 42), and was partially beneficial in 

mouse LPS-induced endotoxemia (20). These studies were performed by administration 

for a short period of time of receptor analogs. Here, we demonstrate that the long-term 

absence of VPAC2 results in remarkable enhanced inflammation when mice are 

challenged to EAE, and particularly to a strong impairment in the Treg compartment.  

Moreover, it has been recently reported that VPAC2 KO mice exhibited exacerbated 

acute dextran sodium sulphate-induced colitis, with increased levels of the 

proinflammatory IL-1β, IL-6 and metalloprotease (MMP)-9, despite no differences of Treg 

proportions in the spleen, mesenteric lymph nodes and Peyer’s patches were found in 

this model (43). Besides its potential involvement during innate immunity, an important 

role for VPAC2 receptor in the induction of Th2 responses has been demonstrated (22). 

For example, VPAC2 signaling on T cells upregulated the expression of the Th2-

associated transcription factors c-Maf and JunB in vitro and the production of the 

respective target genes IL-4 and IL-5, leading to a Th2-type phenotype (22). Moreover, 

VPAC2 KO mice exhibited enhanced cutaneous delayed-type hypersensitivity in 

response to hapten, in association with increased Th1 vs Th2 splenocyte responses to in 

vitro anti-CD3/CD28 stimulation (44), whereas mice with enforced expression of VPAC2 

in TCD4+ cells exhibited depressed delayed-type hypersensitivity, and a heightened 

allergic state (45). The present studies demonstrate a critical role for VPAC2 in both Th 

polarization and Treg expansion in the MOG EAE model. 

Interestingly, prior data implicated the VPAC1 receptor in the production of the 

inducible form of Tregs (iTregs) in the murine model of relapsing-remitting EAE (35). In 

addition, VIP was reported to promote tolerogenic dendritic cells which induce the 
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generation of iTregs, an effect that was VPAC1 dependent (27). It is noteworthy, however, 

that natural Tregs (nTregs), and not iTregs, are produced in the acute MOG C57BL/6 

EAE model employed in our studies (40). Thus, the current findings implicating VPAC2 

receptor involvement in nTreg expansion cannot be extrapolated to iTregs, or vice-versa. 

Moreover, although our studies imply a critical requirement for VPAC2 in nTreg 

expansion, they do not argue against any involvement of VPAC1 in the expansion of 

these cells. Interestingly, it has been shown that VPAC2 gene expression predominates 

over that of VPAC1 in the thymus, the site of de novo nTreg production (46). In that study, 

VPAC2 was found to be present in non-stimulated double positive and single positive 

human thymic T cells. We found that VPAC2 mRNA transcripts were highly enriched in 

mouse thymic Tregs, and that VPAC2 expression in the thymus increased as EAE 

progressed. Similarly, we found that this receptor was expressed in Tregs from naïve 

C57BL/6 mice lymph nodes and spleen. The presence of VPAC2 on Tregs suggests that 

VIP and PACAP may act directly on these cells to modulate their expansion and/or 

functionality.   

Several lines of investigation have demonstrated the importance of Tregs in the 

pathogenesis of EAE. In fact, Tregs accumulate in the CNS during the recovery phase of 

the disease, and their elimination prior to immunization abrogated the natural recovery 

from EAE (40, 47). It has been also demonstrated in MOG35-55-induced EAE that the 

thymus is critically required for the observed increase of Tregs in the periphery (48). Thus, 

the striking reduction in Treg frequency in the thymus of VPAC2 KO mice prior to and 

after MOG-immunization, may contribute to the decrease in their peripheral numbers. 

Although several mechanisms may account for the reduction in Tregs in VPAC2 KO mice, 
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we found that their proliferative activity was significantly reduced. In addition, we found 

an impairment in their in vitro suppressive activity. Although the molecular mechanisms 

for such effects remain to be elucidated, it has been suggested that cAMP, one of the 

main signal transducers of VPAC2, is essential to maintain Treg suppressive activity (49-

51).  

Deficits in Treg frequency, proliferation potential and suppressive activity have 

been described in patients with relapsing-remitting MS (52). In this line, the use of agents 

that reestablish or increase Tregs numbers or their immunosuppressive function has 

proven beneficial in EAE and MS. In fact, the strong amelioration of PLP-induced EAE by 

VIP administration in SJL mice was associated with an enrichment of Tregs in the lymph 

nodes and the CNS (35). Some of the currently used drugs for the treatment of MS such 

as glatiramer acetate or interferon beta elevate Treg suppressive activity and/or numbers 

in patients (53-55). Nevertheless, the efficiency of these treatments is not optimal.  

 

4. Conclusion 

A critical step towards the development of new therapeutical protocols in autoimmune 

diseases like MS based on the VIP/PACAP/receptor system is the design of highly-

specific and stable agonists to minimize undesirable side effects. Our results highlight not 

only the in vivo immunological relevance of VPAC2 in the pathogenesis of EAE, but also 

its potential as a novel target to control inflammation and enhance Treg expansion and 

functionality.  
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Figure legends 

Figure 1. VPAC2 deficient mice exhibit exacerbated EAE. EAE was induced by 

subcutaneous immunization of C57BL/6 wild type (WT) and VPAC2 KO mice (n=8/group) 

with 100µg of MOG35-55 in CFA/Mycobacterium tuberculosis. In addition, mice received 

i.p. 200ng of Pertussis toxin on days 0 and 2 post-immunization. A) EAE symptoms were 

scored from 0 to 4 as described in Materials and Methods; B) Micrographs of spinal cords 

from WT and VPAC2 KO mice 30 days post-immunization stained with H&E and Luxol 

Fast Blue, and C) histopathological scores (see Materials and Methods). Results shown 

are representative of three independent experiments. *P<.05, ***P<.001 (Student's t-test).  

 

Figure 2. Th1/Th17 profiles are enhanced in the CNS of VPAC2 KO mice compared 

to WT mice. A) Real time PCR analysis of cytokine mRNA expression in the spinal cord 

30 days post-immunization; B) Flow cytometry analysis of IFNγ (Th1), IL-17 (Th17) and 

IL-4 (Th2) cell subsets in the CNS on day 14 post-EAE. Representative FACS plots are 

shown on the left. Y axis represents the percentage of CD4+ cells that are IFNγ+, IL-17+ 

or IL-4+, respectively. ND = not detected. Results shown are representative of three 

independent experiments of n = 8 mice/group. *P<.05, **P<.01, ***P<.001 (Student's t-

test).  
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Figure 3. MOG-induced proinflammatory cytokine production and proliferation in 

lymph node cultures is upregulated in VPAC2 KO mice 14 days after EAE. Cells (1 

x 106 cells/mL) were cultured in complete RPMI 1640 medium with MOG (10 µg/mL) or 

ovalbumin (OVA) (10 µg/mL). Two days later, cytokine concentrations in supernatants 

were determined by ELISA and [3H]-thymidine was added for thymidine incorporation 

assay (see Materials and Methods). Results shown are representative of three 

independent experiments of n = 8 mice/group. *P<.05, **P<.01, ***P<.001 (Student's t-

test).  

 

Figure 4. The abundance and proliferative rate of Tregs is significantly reduced in 

VPAC2 KO mice. Lymph nodes (LN), CNS and thymus were harvested from WT and 

VPAC2 KO mice on days 0 and 20 after MOG-immunization. A) Treg abundance was 

assessed by FACS using CD4, CD25 and Foxp3 antibodies for lymph nodes and CNS, 

and CD4, CD8 and Foxp3 for thymus; In addition to these markers, Ki67 was used to 

determine Treg proliferation (B). Representative FACS plots are shown on the left panels. 

Results shown are representative of three independent experiments of n = 8 mice/group. 

*P<.05, **P<.01, ***P<.001 (Student's t-test). 

 

Figure 5. VPAC2 KO Tregs exhibit reduced in vitro suppressive activity. The Treg 

suppressive activity of CD4+CD25+ Tregs from WT vs VPAC2 KO spleens and lymph 

nodes over WT Teff cell proliferation was determined by [3H]-thymidine incorporation 

assay. (A) Purity of isolated Tregs prior to culture was determined by flow cytometry. 

Representative plots of CD4+CD25+ cells and Foxp3+ cells (gated on CD4+CD25+ cells) 
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are shown. (B) Tregs and Teffs at different ratios (Treg:Teff = 0:1, 1:1, 1:2, 1:4, 1:8) were 

co-cultured with WT APCs in complete RPMI 1640 medium with IL-2 (50U/ml) and MOG  

(20μg/mL). Proliferation was measured 48 hours after culture by thymidine incorporation 

assay (see Materials and methods). Results shown are representative of three 

independent experiments of n = 6 mice/group. In addition, cultures were performed in 

triplicate. *P<.05 (Student's t-test).  

 

Figure 6. VPAC2 mRNA in WT thymus is upregulated during EAE and is enriched 

in FoxP3+ Tregs. A) The expression of VPAC2 in whole thymi of WT mice on days 0, 14, 

20, and 30 after MOG administration was determined by real time RT-PCR. Results 

shown are representative of two independent experiments of n = 6 mice/group. B)  Thymic 

cells from FoxP3GFP+ transgenic mice were purified using anti-CD25 magnetic particles 

(according to StemCell Technology’s instructions) and then sorted by FACS to obtain 

CD4+CD8-Foxp3GFP+ cells. RNA was prepared and reversed transcribed along with equal 

amounts of RNA from whole WT and VPAC2 receptor KO thymi, WT brain (positive 

control), and Foxp3GFP- thymic populations resultant from the magnetic and FACS sorting 

isolations. Real time RT-PCR was performed, using HPRT as a housekeeping gene. 

Results shown are representative of two independent experiments with n = 3. For all 

experiments,   *P<.05, **P<.01, ***P<.001 (Student's t-test).  

 

Figure 7. Tregs from VPAC2 KO mice exhibit reduced expansion ex vivo. A) VPAC2 

receptor gene expression in naïve WT whole axillary lymph nodes (LN) and spleens (SPL) 

vs CD4+CD25+ Tregs and CD4+CD25- cells isolated by magnetic separation. Results 
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shown are representative of two independent experiments of n = 3.  B) Expansion of naïve 

WT Tregs in the presence of IL-2 (2000U/ml) and different concentrations of CD3/CD28 

MACSiBead™ Particles according to the manufacturer’s recommendations (undiluted, 1/2, 

1/4). C) Fold increase in cell numbers and [3H]-thymidine incorporation of WT vs VPAC2 

KO Tregs after 3 and 5 days (upper and lower panels, respectively) of culture. D) IL-10 

and TGFβ levels in the supernatants were determined by ELISA in the end of the culture 

(day 5). For all cultures (B, C, D) results shown are representative of four independent 

experiments with cultures performed in triplicate. For all experiments, *P<.05, **P<.01, 

***P<.001 (Student's t-test). 
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Supplementary table 1. Oligonucleotide primers used for Real time PCR 

 

 

 

 

 

 

Gene GenBank 

Accession Number 

Primer Sequence 

Sense                                                                Antisense 

Target genes   

Foxp3 NM_054039 5’-GGCCCTTCTCCAGGACAGA-OH 5’-CTGATCATGGCTGGGTTGT-OH 

IFNγ NM_008337 5’-TGCTGATGGGAGGAGATGTCT-OH 5’-TTTCTTTCAGGGACAGCCTGTT-OH 

IL-4 NM_021283 5’-CGAGGTCACAGGAGAAGGGA-OH 5’-AAGCCCTACAGACGAGCTCACT-OH 

IL-6 NM_010551 5’-TTCCATCCAGTTGCCTTCTTG-OH 5’-TTGGGAGTGGTATCCTCTGTGA-OH 

IL-7 NM_008371 5′-GCCTGTCACATCATCTGAGTGC-OH 5′-TTCCTGTCATTTTGTCCAATTCA-OH 

IL-10 NM_010548 5’-GGTTGCCAAGCCTTATCGGA-OH 5’-ACCTGCTCCACTGCCTTGCT-OH 

IL-17A NM_010552 5’-GAAGCTCAGTGCCGCCA-OH 5’-TTCATGTGGTGGTCCAGCTTT-OH 

IL-23p19 NM_031252 5’-CCAGCAGCTCTCTCGGAATC-OH 5’-TCATATGTCCCGCTGGTGC-OH 

TNFα NM_013693 5’-CGATCACCCCGAAGTTCAGTA-OH 5’-GGTGCCTATGTCTCAGCCTCTT-OH 

VPAC2 NM_009511 5’-GCGGTGTCTGGGACAACATC-OH 5’-CTGTGACATTTTCCCCAACGT-OH 

Housekeeping Gene   

HPRT NM_013556 5’-TGGTGAAAAGGACCTCTCGAA-OH 5’-TCAAGGGCATATCCAACAACA-OH 


