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Abstract: Every year, several epizooties of equine influenza (EI) are reported worldwide. However, no
EI case has been identified in France between 2015 and late 2018, despite an effective field surveillance
of the pathogen and the disease. Vaccination against equine influenza virus (EIV) remains to this
day one of the most effective methods to prevent or limit EI outbreaks and the lack of detection
of the pathogen could be linked to vaccination coverage. The aim of this study was to evaluate
EI immunity and vaccine coverage in France through a large-scale serological study. A total of
3004 archived surplus serums from French horses of all ages, breeds and sexes were selected from
four different geographical regions and categories (i.e., sanitary check prior to exportation, sale,
breeding protocol or illness diagnosis). EIV-specific antibody response was measured by single radial
hemolysis (SRH) and an EIV-nucleoprotein (NP) ELISA (used as a DIVA test). Overall immunity
coverage against EIV infection (i.e., titers induced by vaccination and/or natural infection above the
clinical protection threshold) reached 87.6%. The EIV NP ELISA results showed that 83% of SRH
positive serum samples from young horses (≤3 years old) did not have NP antibodies, which indicates
that the SRH antibody response was likely induced by EI vaccination alone (the HA recombinant
canarypoxvirus-based EI vaccine is mostly used in France) and supports the absence of EIV circulation
in French horse populations between 2015 and late 2018, as reported by the French equine infectious
diseases surveillance network (RESPE). Results from this study confirm a strong EI immunity in a large
cohort of French horses, which provides an explanation to the lack of clinical EI in France in recent
years and highlights the success of vaccination against this disease. However, such EI protection
has been challenged since late 2018 by the incursion in the EU of a Florida Clade 1 sub-lineage EIV
(undetected in France since 2009), which is also reported here.

Keywords: equine influenza virus; horse; vaccination; immune coverage; DIVA test; surveillance;
epizooty; Florida Clade 1 (FC1)

1. Introduction

Equine influenza (EI) is one of the most important respiratory diseases of horses. Beyond the
welfare issue induced by this infectious disease, the potential impact for the equine industry could be
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devastating, as clearly illustrated in 2007 when EI reached for the first time the naïve population of
Australia, it infected over 76,000 horses [1]. The overall cost for the Australian economy to control this
epizooty and to regain its EI-free OIE status was estimated to have reached A$1 billion.

Due to the density of the equine population and a very high transmission capacity, prevention
methods such as vaccination are essential to prevent or control EI outbreaks. The efficacy of vaccines
against equine influenza virus (EIV) infection has been demonstrated through numerous clinical
and field studies [2–5] but little or no information is available about EI immunity in the field and
vaccine coverage in horse populations. In humans, most of the studies that investigate vaccination
coverage are based on an epidemiological questionnaire and showed that the influenza vaccination
coverage is often less than 60% [6–9]. As for equine influenza, vaccine coverage is well known to be
essential to prevent human influenza, as recently illustrated by Uchida et al. [10], who showed that
high vaccine coverage was significantly and negatively correlated with the level of influenza epidemic
among elementary school units. A postal questionnaire survey of randomly selected horse owners in
Great Britain has reported a frequency of vaccination against EI and tetanus of 71.3% [11]. Through a
retrospective mathematical modeling study of the 1971 Japanese EI outbreak in racehorse facilities,
Satou and Nishiura calculated that 50% to 80% of an equine population should be vaccinated with
a completely effective EI vaccine to achieve protection against an EIV strain with a relatively low to
moderate rate of transmission, respectively. Taking into account that sterilizing immunity is rarely
achieved by EI immunization and that EI vaccines efficacy wanes with time, the author also provided
a more realistic vaccine coverage threshold of 86.5% [12].

The French horse population regroups 1.106 million horses (as recorded in 2016), which represents
15% of the European equid population with France placed third in terms of number behind Germany
and the United Kingdom. Despite active disease surveillance that involves around 800 equine veterinary
practitioners taking part in the French equine pathology epidemiological surveillance network (RESPE),
EI has not been detected in France between mid-2015 to early December 2018 [13]. During this period,
there was evidence of EIV circulation in other European countries and worldwide [14–17]. Since early
December 2018, several European countries (Belgium, France, Germany, Ireland, the Netherlands,
Sweden and the United Kingdom) have reported unusual levels of EIV circulation. The number of
EI outbreaks is staggering in some countries, with more than 200 outbreaks reported in the United
Kingdom between January and October 2019, leading to a 6 day shutdown of horse racing in February
(the last shutdown linked to EI dated from 1979) and more than 174 racing stables placed in lockdown
with mandatory EIV testing. This situation, unseen in Europe since the late 1970s and 1980s, reminds
us of the impact of the 5 months long EI in Australia in 2007, when over 76,000 horses were infected
with EIV and with an economical cost reaching A$1 billion [1]. The H3N8 EIV at the origin of the
current European outbreaks belongs to the Florida Clade 1 (FC1) sub-lineage, which was usually
circulating in North and South Americas [17–20] with only occasional appearances in Europe from
time to time [18]. FC1 EIV strain was not isolated in France since 2009 [13].

The current report aims to present and discuss the results from a large-scale sero-epidemiological
study designed to provide a picture of the immunological status against EI of the French horse
population in late 2017 and the first incursion in a decade of an FC1 EIV. These results should provide
information about vaccine coverage and an explanation about the absence of reported EI outbreaks
between mid-2015 and late 2018. Unlike previous studies on vaccination coverage against human
and equine influenza A viruses, this study is based on an evaluation of antibody levels measured by
single radial hemolysis assay (SRH), a well-recognized correlate of protection against EIV infection
and by an enzyme-linked immunosorbent assay (ELISA), which detects antibodies against the viral
nucleoprotein (NP) of type A influenza viruses and could be used as a DIVA (differentiating infected
from vaccinated animals) marker in specific situations [1]. Due to the large-scale EI epizooty affecting
France and other European countries since late 2018/early 2019, details of the French EI outbreaks
will also be reported. A phylogenetic analysis of the EIV strains involved and the detail of amino
acid substitutions in the hemagglutinin (HA) protein sequence and antigenic sites [15,18], which are
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primary targets for virus-neutralizing antibody response, will be presented. These elements will be
discussed in relation to EI vaccination in the field and the risk of vaccine breakdown.

2. Materials and Methods

2.1. Serum Samples

The serological study was carried out on archived surplus serum samples from the LABÉO
Diagnostic and Research Institute. The initial serum samples were obtained, for diagnostic reasons
unrelated to this study, from 3004 individual horses located in France, of all ages, breeds, sexes and born
in different countries over two time periods, from June 2017 to March 2018 (time period 1, n = 2645)
and from December 2018 to April 2019 (time period 2, n = 359). All serum were kept at −20 ◦C until
analysis. Archived sera were randomly selected from 4 different geographical regions in France with
some of the highest equids and breeding center densities (Normandy, n = 1837; Pays de la Loire, n = 269;
Auvergne-Rhône-Alpes, n = 240 and Occitanie, n = 299) and taking into account the North–South and
East–West localization (Supplementary Figure S1). The larger number of samples from Normandy is
explained by the highest number of horses and breeding centers in this specific region and the location
of the LABÉO Institute. Samples were subdivided into 4 categories according to the initial diagnostic
analyses requested: sanitary check for exportation, sale, breeding or illness diagnosis. Samples from
late 2018 to early 2019 came from the north of France, including Normandy, where EI outbreaks were
reported at the time of sampling (cf. Section 3.4). The number of serum samples per region and
categories is detailed in the Supplementary Table S1. In France, EI vaccination is mandatory for some
of these categories (exportation, sale and breeding) but the vaccination history of these samples was
unknown. Samples were anonymized by a third party prior to analysis, with the age of the horse
at the time of sampling and its country of origin, (i.e., France or others) being the only information
available for this study. This work received ethical approval from the LABÉO ethical advisor. During
the 2018–2019 EI epizooties, 11 serum samples were obtained from field veterinary practitioners in the
context of the epidemiological investigation conducted by the RESPE.

2.2. Single Radial Haemolysis (SRH)

Antibodies were measured by single radial hemolysis (SRH) assay against the EIV strain
A/equine/Jouars/4/06 (H3N8; Florida Clade 2), as previously described [16]. A control reference
serum (A/equine/South Africa/4/03; H3N8; Florida Clade 1; reference Eu SA/4/03 Y0000712) from the
European Directorate for the Quality of Medicines and Healthcare (EDQM) was included on each
plate and used to standardize the results [21]. The titers of SRH antibody were expressed as the
area of hemolysis (mm2). SRH antibody titers measured are correlated to protection (when there
is no significant mismatch between the EIV vaccine and circulating strains); clinical signs of EI are
significantly reduced when SRH antibody levels reach 85 mm2 or greater, virus shedding is significantly
reduced with SRH antibody titer of 154 mm2 or greater [22,23].

2.3. EIV NP ELISA (DIVA Test)

The competition ID Screen Influenza A Antibody Competition Multispecies ELISA for the detection
of anti-nucleoprotein (NP) antibodies of the Influenza A virus was carried out in accordance with the
manufacturer’s instructions (ID Vet Innovative Diagnostics, Grabels, France). Briefly, the results were
measured and recorded at the optical density (OD) at 450 nm using Thermo Labsystems Opsys MR
(Fisher Scientific, Hampton, NH, USA). For each sample, the competition percentage was calculated as
follows: (sample OD value/negative serum control OD value × 100). The samples with a competition
percentage of 45% or less were defined as positive and the samples with a competition percentage of
50% or more were considered as negative. A total of 495 serum samples were analyzed (410 for the
time period 1 and 85 for the time period 2).
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2.4. EIV Genes Sequencing and Phylogenetic Analysis

The HA and neuraminidase (NA) sequences from 2018/2019 French EIV outbreak isolates were
determined. The phylogenetic analysis was carried out for HA1 only. Gene was amplified in one-step
after extraction. PCR products were generated using SuperScript III One-Step RT-PCR System with
Platinum Taq High Fidelity (Invitrogen). HA and NA were amplified with M13 primer sequences
as described previously [24]. Sequencing was performed by Biofidal (Vaulx en Velin, France) using
the Sanger method. Sequences were assembled and contigs were analyzed with the CodonCode
Aligner v1.5.2 software (CodonCode Corporation, Dedham, MA, USA). Multiple alignments of all
sequences were conducted using the Muscle algorithm and neighbor-joining trees method (MEGA
V7 software version 7.2.26, Pennsylvania State University, University Park, PA, USA [25]), with a
maximum likelihood substitution model and bootstrapped 1000 times to assess the reliability.

2.5. Statistical Analysis

Statistical analysis was performed using R version 3.5.1 (R foundation for statistical computing, Vienna,
Austria). Statistical significance was based on a Chi-Square test (contingency table with 2 to 4 categories as
columns and the 4 levels of SRH titers as lines). The level of significance was set as p-value < 0.05.

3. Results

3.1. Overall SRH Antibody Response and Correlation with EI Immune Status

The SRH antibody titers of the 2645 serum samples analyzed are summarized in Figure 1
and Supplementary Table S1. Of these samples, 12.4% (n = 328) were below 85 mm2 (i.e., horses
considered to be at risk of infection), including 190 samples with SRH antibody titer = 0 mm2 and
138 seropositive samples (57.5± 17.4 mm2). Of remaining samples, 27.3% were≥85 mm2 and <154 mm2

(128.1 ± 19.1 mm2; n = 721; i.e., horses considered as clinically protected) and 60.3% ≥ 154 mm2

(194.8 ± 28 mm2; n = 1596; i.e., horses considered as optimally immunised with clinical protection and
little or no virus shedding in case of EIV infection). Overall, 87.6% of serum samples tested possessed
SRH antibody titers above the clinical protection threshold (85 mm2).
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Figure 1. Overall single radial hemolysis (SRH) antibody response for serum samples collected between 2017
and 2018 (all four French regions combined). SRH titers below the clinical protection threshold (>85 mm2) are
in red colors, titers above the clinical protection threshold are in light blue (85 mm2 and <154 mm2), titers
above the clinical and virus shedding protection threshold (154 mm2 and above) are in blue.
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3.2. SRH Antibody Analysis by Geographic Region and Category

In Normandy, 87.9% of serum samples were above 85 mm2 (175.9 mm2; n = 1614; Figure 2),
including 62.3% of samples ≥154 mm2 (195.2 ± 28.3 mm2; n = 1144). The SRH antibody analysis of 1837
serum samples by categories showed that 74.4%, 95.2%, 96.4% and 86.5% of samples were ≥85 mm2 for
the sale, breeding, exportation and diagnosis categories, respectively (Figure 2A), with a statistically
significant difference between categories (p-value < 0.00001). The frequency of serum samples reaching
at least the clinical protection threshold for the sale category was significantly lower than that of other
categories (breeding, exportation and diagnosis; p-values ≤ 0.00001, 0.00001 and <0.0001, respectively).
After the exclusion of samples from horses born in 2016 and 2017 for the sale category, the frequency of
serum samples with SRH antibody titers above 85 mm2 increased significantly from 74.4% to 94.9%
(p-value < 0.00001; Figure 3).Vaccines 2019, 7, x 6 of 19 
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Figure 2. SRH antibody responses obtained from different geographical regions in France. Overall
and categories analysis of immune coverage for Normandy (A), for Pays de la Loire (B), for
Auvergne-Rhône-Alpes (C) and for Occitanie (D). SRH titers below the clinical protection threshold
(>85 mm2) are in red colors, titers above the clinical protection threshold are in light blue (85 mm2 and
>154 mm2), titers above the clinical and virus shedding protection threshold (154 mm2 and above) are
in blue. (*) p-value ≤ 0.0001.
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Figure 3. Analysis of “Sale” and “Diagnosis” categories in Normandy. SRH antibody response in
≤2 and >2 years old horses at the time of sample collection (horses born in 2016 and 2017). (A) Sale
category and (B) Diagnosis category. (*) p-value ≤ 0.00001.

The diagnosis category had also significant differences with breeding and exportation categories
(p-values = 0.0001 and <0.00001, respectively). Similarly to the sale category, a significant difference
was measured between horses 2 years old or less and the others (p-value < 0.00001) (Figure 3).

Sixteen percent of serum samples from horses located in Pays de la Loire (n = 43) were below
85 mm2, including 10.4% samples with SRH antibody titer = 0 mm2. Of these samples, 30.5% were
≥85 mm2 and <154 mm2 (130.6 ± 19.5 mm2; n = 82) and 53.5% ≥154 mm2 (196.4 ± 28.3 mm2; n = 144).
Overall, 84% of serum samples tested possessed SRH antibody titers above the clinical protection
threshold (85 mm2). A significant difference was observed between the serum samples from horses
located in this region and those based in Normandy and Auvergne-Rhône-Alpes (p-value = 0.027).
The breeding category showed a frequency of serum samples with SRH antibody titers above 85 mm2

significantly higher (97.9%; p-value = 0.00081) compared to exportation, diagnosis and sale categories
(63.8%, 80.6% and 77.8%, respectively).

Nearly 9% (8.8%) of serum samples from horses located in Auvergne-Rhône-Alpes (n = 21) were
below 85 mm2, including 4.2% samples with SRH antibody titer = 0 mm2. Of the samples, 31.3% were
≥85 mm2 and <154 mm2 (126.6 ± 20.6 mm2; n = 75) and 60.0% were ≥154 mm2 (198.3 ± 31.0 mm2;
n = 144). Overall, 91.3% of serum samples tested possessed SRH antibody titers above the clinical
protection threshold (85 mm2). A significant difference was observed between the serum samples from
horses located in this region and those based in others (p-value = 0.016). No difference was measured
between the two categories analyzed (p-value = 0.14).

For serum samples from horses based in Occitanie, 13.7% of these samples (n = 41) were below
85 mm2, including 20 samples with SRH antibody titer = 0mm2 and 21 samples seroconverted
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(57.7 ± 20.2 mm2). 31.4% of samples were ≥85 mm2 and <154 mm2 (127.3 ± 18.9 mm2; n = 94) and
54.8% were ≥154 mm2 (186.9 ± 21.3 mm2; n = 164) (Figure 2). The serum samples from horses located
in this region were significantly lower compared to the serum samples tested for the Normandy
(p-value = 0.04). No significant difference has been shown between breeding and diagnosis categories.
The frequency of serum samples, for both categories, with SRH antibody titers above the clinical
protection threshold was 87%.

3.3. NP-ELISA Assays as DIVA (Differentiating Infected from Vaccinated Animals) Test

Four hundred and ten (410) serum samples were tested by the NP-ELISA assay. Forty-four
(44) sera with an SRH antibody titer equal to 0 mm2 (13.9% of samples) were analyzed to confirm
their seronegativity. Overall, 42 sera have been confirmed seronegative (95.5%) and 2 sera were
seropositive (4.5%).

A comparison of EIV NP ELISA results between serum samples from young (≤3 years) and
old (>3 years) horses (i.e., at the time of sampling) that were seropositive by SRH test was carried
out. The ELISA results showed that 83% of serums (n = 136) from young horses born in France
were NP-ELISA negative when compared with serums from old horses (n = 128) for which 52% were
NP-ELISA negative. This difference was significant (p-value < 0.00001). A significant difference was
also observed between serum samples from young horses born in France (n = 126) and abroad (n = 15;
p-value = 0.006), the NP-ELISA negative for serum samples from horses born abroad was 53%. Only
26% of samples from old horses were negative by NP-ELISA (Figure 4).
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Figure 4. Comparison of equine influenza virus (EIV) nucleoprotein (NP) ELISA results between
serum samples from young (≤3 years) and older (>3 years) horses at the time of sampling, which were
seropositive by SRH test. Results for horses born in France (A) or abroad (B). (*) p-value ≤ 0.006.

Results were similar when analyzed by geographical regions, except for Auvergne-Rhône-Alpes
were the number of samples available was too limited (data not shown).

3.4. 2018–2019 Equine Influenza Outbreaks, Phylogenetic Characterization and Relationship with
Immune Status

3.4.1. Equine Influenza Outbreak

From early December 2018 to the end of June 2019, 53 EI outbreaks were reported by the RESPE
or diagnostic laboratories (Table 1). Regretfully, epidemiological information was not always available.
Overall, the number of confirmed clinical cases were ≥246, from 29 different counties located in all
French regions, with the exception of Britany and Corsica (Figure 5).
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Table 1. Details of French equine influenza (EI) outbreaks, from late 2018 to June 2019. Data were
recorded by field equine veterinary practitioners and collated by the equine pathology epidemiological
surveillance network (RESPE) and the LABÉO Research and Diagnostic Institute. Arab. = Arabian horse;
Type = type of premises and/or breed; TB = thoroughbred; TC = training center; Horse/P = number of
horses on the premises.

N Date Location Type Nb.
Horses/P

Nb. of
Clinical Cases

Vaccination
Status

#1 14DEC18 Paris Riding school 100 9 Yes
#2 21DEC18 Pas de Calais French Saddlebred 50 14 No
#3 28DEC18 Ardennes sport unknown 3 No (young)
#4 02JAN19 Nord sport 100 5 Yes
#5 10JAN19 Pas de Calais Draft horse 40 1 No

#6 11JAN19 Pas de Calais
Belgian Warmblood,
Connemara, French

Saddlebred
300 2 Yes

#7 11JAN19 Pas de Calais French Saddlebred 20 3 unknown
#8 11JAN19 Moselle sport 130 3 unknown
#9 16JAN19 Calvados unknown unknown 2 unknown

#10 16JAN19 Seine et Marne Zangersheide 40 1 yes
#11 07FEB19 Orne French Trotters 50 12 yes
#12 13FEB19 Val de Marne TC French Trotters 15 2 yes
#13 18FEB19 Saone et Loire Paint horses, Arab. 15 5 yes
#14 20FEB19 Orne Stud farm TB unknown 2 yes (lapsed)
#15 20FEB19 Mayenne TC Trotters 150 10 yes
#16 20FEB19 Val-de-Marne TC Trotters 1 1 yes
#17 26FEB19 Oise TC TB 12 10 unknown
#18 27FEB19 Oise TC TB unknown 2 unknown
#19 28FEB19 Val-de-Marne TC Trotters unknown 3 yes
#20 07MAR19 Orne Trotter unknown 1 yes
#21 07MAR19 Oise TB unknown 2 (no clin.) unknown
#22 08MAR19 Val-de-Marne Trotters unknown 4 unknown
#23 09MAR19 Orne TB unknown 2 yes
#24 15MAR19 Oise TB unknown 2 unknown
#25 18MAR19 Val-de-Marne Gelding 15 1 yes
#26 20MAR19 Orne Trotters 70 63 unknown
#27 20MAR19 Eure unknown unknown 2 unknown
#28 20MAR19 Oise TB unknown 1 unknown
#29 20MAR19 Allier unknown unknown 1 unknown
#30 26MAR19 Maine et Loire Trotters unknown 1 unknown
#31 27MAR19 Allier unknown unknown 1 unknown
#32 29MAR19 Allier TC TB unknown 2 unknown
#33 29MAR19 Tarn et Garonne unknown unknown 1 unknown
#34 08APR19 Yvellines unknown unknown 2 unknown
#35 26APR19 Côte d’Or Sport unknown 9 unknown
#36 06MAY19 Isère Leisure center 4 1 no
#37 17MAY19 Lot et Garonne Sport Arab. 15 8 unknown
#38 24MAY19 Drôme Breeding center, pony 8 7 no
#39 31MAY19 Pyrénées Atlantiques Donkey unknown 1 unknown
#40 01JUN19 Bouches du Rhône unknown unknown 1 unknown
#41 07JUN19 Jura Heavy horse 15 15 no
#42 11JUN19 Hérault unknown unknown 1 unknown
#43 12JUN19 Vosges Heavy horse 1 1 no
#44 12JUN19 Oise unknown unknown unknown unknown
#45 12JUN19 Val d’Oise unknown unknown unknown unknown
#46 12JUN19 Ardèche Leisure center 30 4 yes
#47 12JUN19 Orne French Trotters 28 10 yes
#48 19JUN19 Calvados unknown unknown 3 unknown
#49 22JUN19 Orne unknown unknown 1 unknown
#50 26JUN19 Orne unknown unknown 6 unknown
#51 27JUN19 Gard Camargue 3 2 no
#52 28JUN19 Pyrénées Atlantiques unknown unknown 1 † unknown
#53 28JUN19 Orne unknown unknown 1 unknown

Number of counties/total 1 29/96 Total clinical cases 246
1 total number of counties from mainland France. † animal found dead.
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Figure 5. Localization of the French EI outbreaks at the county level, month by month. For each month,
new EI cases are highlighted in dark blue, cases from previous months localized in the same county are
highlighted in light blue.

3.4.2. Phylogenetic Characterization

The HA genes from five EIV strains (EI outbreaks #1, #2, #3, #9 and #11) and the NA genes from
two EIV strains (#2 and #9) were sequenced. Results reveals that H3N8 EIV strains at the origin of
the 2018–2019 French outbreaks A/eq/Paris/1/2018 (MK501760), A/eq/Pas-de-Calais/1/2018 (MK501761
and MK501801), A/eq/Ardennes/1/2018 (MK501762), A/eq/Orne/1/2019 and A/eq/Calvados/1/2019
(MK501763 and MK501802) belong to the FC1 sub-lineage (Figure 6). HA gene sequencing reveals two
amino-acid substitutions (p.T163I and p.A372T) when compared with FC1 EIV strains isolated in South
America in 2018 (A/eq/Concepcion/RO6C/2018 and A/eq/Santiago/TT3A/2018), but 13 amino-acid
substitutions with the closest FC1 EI vaccine strain A/eq/Ohio/03 (Supplementary Table S2), with four
of them located in potential antigenic sites B (p.T163I and p.N188T) and E (p.R62K and p.N63D).



Vaccines 2019, 7, 174 10 of 18Vaccines 2019, 7, x 12 of 19 

 

 

Figure 6. Phylogenetic analysis of the HA1 nucleotide sequence for 69 EIV strains, including 

representative strains of the main lineages and sub-lineages. The last French EIV strains belonging to 

the Florida sublineage clade 1 and clade 2 are underlined (open and closed circles, respectively). The 

FC1 EIV strains from the 2018 and 2019 French outbreaks are in red. The FC1 EIV vaccine strains are 

in bold text. Neighbor-Joining, Test phylogeny: Bootstrap method with 1000 bootstrap replication, 

Mode/method: Maximum composite Likelihood. 

Vaccine strain

P
R

E
-D

IV
E

R
G

E
N

T
E

U
R

A
S

IA
N

A
R

G
.

K
E

N
T

.
F

L
O

R
ID

A
 S

U
B

L
IN

E
A

G
E

 C
L

A
D

E
 2

F
L

O
R

ID
A

 S
U

B
L

IN
E

A
G

E
 C

L
A

D
E

 1

A/equine/Miami/1/1963

A/equine/Tokyo/1971

A/equine/Sao Paulo/1/1969

A/equine/California/1/1980

A/equine/Santa Fe/1/1985

A/equine/France/1986

A/equine/Kentucky/1/1986

A/equine/Johannesburg/1/1986

A/equine/Roma/5/1991

A/equine/Hong Kong/1/1992

A/equine/Lambourn/22778/1992

A/equine/Cagnes-sur-Mer/2/2000

A/equine/Grosbois/2003

A/equine/Aboyne/1/2005

A/equine/Sussex/1/1989

A/equine/Suffolk/1/1989

A/equine/Berlin/1/1989

A/equine/Kentucky/1/1992

A/equine/Texas/39655/1991

A/equine/Kildare/1/1992

A/equine/Argentina/1/1994

A/equine/Newmarket/1/1993

A/equine/Kentucky/1/1994

A/equine/Lonquen/1/2006

A/equine/Neuville-Pres-Sees/1/2011

A/equine/Carlow/2011

A/equine/Kildare/1/2012

A/equine/Lannilis/1/1012

A/equine/Ain/1/2014

A/equine/Gironde/2/2014

A/equine/Bayeux/14/2005

A/equine/Cambremer/2012

A/equine/Yokohama/aq6/2012

A/equine/Rome/1/2014

A/equine/Saone-et-Loire/1/2015

A/equine/Worcestershire/1/2010

A/equine/Cagnes-sur-Mer/2/2011

A/equine/Spain/1/2007

A/equine/Saumur/7/2007

A/equine/Guangxi/1/2008

A/equine/Otar/764/2007

A/equine/Richmond/1/2007

A/equine/Heilongjiang/1/2010

A/equine/Xuzhou/01/2013

A/equine/Jouars/4/2006

A/equine/Newmarket/5/2003

A/equine/Ohio/1/2003

A/equine/South Africa/4/2003

A/equine/Virginia/131054-3/2005

A/equine/Florida/612/2004

A/equine/Sydney/6085/2007

A/equine/Kyonggi/SA1/2011

A/equine/Oklahoma/1/2008

A/equine/Belfond/6-2/2009

A/equine/Groisbois/13/2009

A/equine/Dorset/1/2009

A/equine/Limerick/1/2010

A/equine/Argentina/E-2345-1/2012

A/equine/Kentucky/1/2012

A/equine/New York/1/2011

A/equine/Dubai/1/2012

A/equine/Malaysia/M201-1/2015

A/equine/Santiago/TT3A/2018

A/equine/Concepcion/RO6C/2018

A/equine/Paris/1/2018

A/equine/Ardennes/1/2018

A/equine/Calvados/1/2019

A/equine/Orne/1/2019

A/equine/Pas-de-Calais/1/2018

100

92

98

82

99

94

92
94

78

99

73

98

86

96

100

98

85

92

93

96

95

96

97

64

82

94

96

78

93

99

92

100

81

97

68

76

94

95

86

0.01

Last FC1 EIV strains
in France

2018/19 outbreaks
FC1 EIV strains

Figure 6. Phylogenetic analysis of the HA1 nucleotide sequence for 69 EIV strains, including
representative strains of the main lineages and sub-lineages. The last French EIV strains belonging
to the Florida sublineage clade 1 and clade 2 are underlined (open and closed circles, respectively).
The FC1 EIV strains from the 2018 and 2019 French outbreaks are in red. The FC1 EIV vaccine strains
are in bold text. Neighbor-Joining, Test phylogeny: Bootstrap method with 1000 bootstrap replication,
Mode/method: Maximum composite Likelihood.
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3.4.3. 2018–2019 EI Outbreaks and EI Vaccination Status

The EI vaccination status at the time of infection was unknown for 134 horses. Vaccination
status was known for 112 horses, with 68 (60.7%) declared as vaccinated against EI and 44 (39.3%) as
unvaccinated (Table 1). Regretfully, details of EI vaccines used and the date of last vaccination were
unknown for the majority of cases. Vaccination passports were available for 14 horses from 4 different
outbreaks. As shown in Table 2, the time between infection/disease and last vaccination ranged from
1 month to 19.5 months. Thirteen out of fourteen horses received the recombinant canarypox-based HA
vaccine (C) for their last EI immunization. All horses had annual or bi-annual boost immunizations
prior to infection, with the exception of horse #4 that developed EI signs of disease 2 months after V3
and horse #7 that was infected 3.5 months after V2. Serum samples were obtained at the onset of clinical
signs of diseases from 11 out of 14 horses, with 9 negatives by DIVA test, one providing a borderline
result (#7) and one positive (#1), which indicates a possible seroconversion due to EIV infection or a
reminiscent NP antibody response linked to a past immunization with a whole inactivated EI vaccine
(W1), 17.5 months prior to sampling. SRH analyses shown that horse #7 had no measurable SRH
antibody titer at the time of infection, which could be linked to the immunity gap frequently observed
in the weeks preceding V3. Five out of eleven horses (#3, #4, #8, #9 and #13) had an SRH antibody
titer below the clinical protection threshold (i.e., 85 mm2). Three horses (#1, #5 and #10) had an SRH
antibody titer between the clinical protection threshold and the virological protection threshold (i.e.,
154 mm2). One horse (#6) had an SRH antibody titer above the virological protection threshold at the
time of infection.

Table 2. EI clinical cases with known EI vaccination history: time since last vaccination and EIV-specific
antibody responses (SRH and EIV NP ELISA) at the onset of clinical signs of disease: na = not applicable;
nd = not done; neg = negative; pos = positive; V = last EI vaccine administered prior to EI outbreak;
VT = vaccine type: C = EIV HA recombinant canarypoxvirus-based EI vaccine ProteqFlu (±Te),
W1 = whole inactivated EI vaccine Equip FT, W2 = whole inactivated EI vaccine Equilis Prequenza; w
= week.

Horse
ID

Time Since Last
Vaccination (V)

V-1/VT
(Months between

V and V-1)

V-2/VT
(Months between

V-1 and V-2)

SRH
(mm2) 1

EIV NP
ELISA
DIVA

Outbreak

Months VT Months VT Months VT

#1 1 C 9.5 C 7 W1 115.9 1 pos #1
#2 1 W1 12 C 8.5 C nd nd #10
#3 2 C 6 C 6 C 70.6 1 neg #1
#4 2 C 6.5 C 1 C 74.05 1 neg #1
#5 3 C 2 C 12 C 105.9 1 neg #1
#6 3 C 11 C 6 C 177.2 2 neg #19
#7 3.5 C 1 C na na 0 1 borderline #1
#8 4 C 15 C 12 C 79.2 2 neg #19
#9 6 C 12 C 11.5 W2 66.9 1 nd #1
#10 9 C 12 C 1.5 C 129.5 1 neg #1
#11 9 C 11.5 C 6 C 93.9 2 neg #19
#12 9.5 C 12 C 12 C nd nd #6
#13 11 C 12 C 7 C 45.6 1 neg #1
#14 19.5 C 12 C 12 C nd nd #6

1 serum samples taken <3 days after EI confirmation by qRT-PCR. 2 serum samples taken on the day of EI
confirmation by qRT-PCR.

Three hundred and fifty-nine (359) serum samples obtained from late December 2018 to April
2019 (time period 2) from horses located in the north of France were analyzed by SRH (Figure 7A)
and compared with results from time period 1 (i.e., 2017–2018). A significant difference was measured
between the two groups (p-value = 0.013) with an increased frequency of samples >154 mm2. Seventy-six
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(76) of these serum samples were analyzed with the EIV NP ELISA (DIVA test) in order to measure an
eventual NP-specific antibody seroconversion. As illustrated in Figure 7B, the percent of SRH+ NP+

serums reached 42%, when compared with only 14% for serum samples obtained during time period 1
from horses located in Normandy (geographically close to the north of France) and ≤3 years old at the
time of sampling (i.e., born after 2015; p-value = 0.0024), while it remained unchanged in older horses.
While vaccination status is unknown and with the assumption that the type of EI vaccine used as not
significantly changed, such increase tends to support circulation of EIV during this period of time.
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Figure 7. Comparison of overall SRH antibody response (A) and EIV NP ELISA (B) between two
periods of sampling: September 2017 to February 2018 (1) and December 2018 to April 2019 (2). EIV NP
ELISA results between serum samples from young (≤3 years; located in Normandy) and older (>3 years;
located in the north of France) horses born in France and seropositive by SRH test. (*) p-value ≤ 0.007.

4. Discussion

Recent data indicate that influenza vaccination coverage in the US is often below 60% in adult
humans and below 45% in children [6]. This present study uses a serological test to evaluate the
level of specific antibodies to EIV unlike equivalent studies in humans that favor questionnaires and
epidemiological surveys. The overall analysis of immune coverage in horses from the four French
regions studied highlights that only 12.4% of horses were considered as unprotected, based on their
SRH antibody level at the time of sampling. A large proportion of horses have reached the virological
protection threshold (60.3% ≥ 154 mm2). Overall immune coverage is estimated at 87.6%, a level
described by Satou and Nishiura (2006) [12] as sufficient to protect an equine population against an
equine influenza virus presenting a relatively low rate of transmission (retrospective study based on
the 1971 EI outbreak in a Japanese racehorse facility). Such immune coverage in the French horse
population studied could provide an explanation for a lack of detection of EIV and/or the disease
between mid-2015 and late 2018, despite extensive surveillance by the RESPE and associated diagnostic
laboratories (several hundreds of nasopharyngeal swab samples analyzed every year). Prior to this
period, the last French EI outbreaks were reported in 2014 and 2015 but were limited in size and
number (six and four, respectively) [13]. Other European countries with large equids population report
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EI cases every year [15,26]. While no or limited information is available, it would be interesting to
investigate actual EI vaccine use and coverage in these countries to determine if more frequent and
recurrent EI outbreaks recorded through the years may be explained by lower EI vaccination (e.g.,
anecdotal information based on the number of EI vaccine doses sold per year in relation to the number
of horses may be used to calculate rough estimate of EI vaccine coverage).

This study, which aimed to provide an idea of the immune/vaccine coverage against EI in the
French horse population, used a serological test to evaluate the level of EIV-specific antibodies unlike
equivalent studies in humans or horses that used questionnaires, epidemiological survey and provide
vaccine coverage results based on owners and veterinarians confirmation of vaccination. The SRH
assay was selected for this study due to the well-known and described correlation between SRH
antibody titers and protection against EIV infection, development of clinical signs of EI and virus
shedding. The EIV strain used as SRH antigen was selected to be close to the FC2 recommended
vaccine strain A/eq/Richmond/07, which is contained in the HA recombinant canarypox-based EI
vaccine predominantly used in France. At the time of the serological study, EIV strains circulating
in Europe were mostly belonging to the FC2 sub-lineage, which supported the SRH antigen choice.
Cross-reactivity and cross-protection have also often been documented in recent vaccine clinical trials.
Preliminary data indicates that serums used in this study also show cross-reactivity when tested
against the FC1 EIV strain A/eq/Paris/1/2018, but further studies are warranted to explain the current
EI epidemic in Europe. The current study aimed to be representative of the French horse population.
However, some limitations were inevitable and should be taken into account for the interpretation
of results: (i) four geographical regions that represented 57.5% of all French equids breeding centers
were selected, with a known bias for Normandy due to the localization of the serum archive (i.e.,
LABÉO). When adjusted on the number of breeding centers per region (cf. Supplementary Figure S1),
overall results were not significantly different (p-value = 0.085), with 86.8% above the 85 mm2 (when
compared with 87.6% without adjustment, cf. Figure 1). (ii) Some horse populations are never visited by
veterinary practitioners, for multiple reasons (e.g., economic, cultural, etc.). These populations, which
are usually missed by the questionnaire and epidemiological surveys, are probably not represented in
the current study. Obviously, such equids populations that are usually not vaccinated either, represent
an important reservoir for pathogens and the weak link in any strategy of prevention.

Results for each French region selected in this study follow the same trend with protection rates
reaching 84% to 87% (i.e., horses considered as vaccinated with clinical protection and reduced virus
shedding in case of EIV infection). Some differences were measured between each sample’s categories.
Results showed that “sale” and “diagnosis” categories were significantly lower when compared with
other categories. Results indicate that after the exclusion of horses less than 2 years old at the time of
sampling (born in 2016 and 2017), the immune coverage increased significantly from 79% to 96% for
the “sale” category (in Normandy). A possible hypothesis is that horses born in 2016 and 2017 were
sampled during their primary course of EI vaccination and may have not yet developed a complete
and robust EI humoral immune response at the time of sampling. The results are correlated with
a previous field study that highlighted a large frequency of Thoroughbred foals displaying low or
negative SRH antibody titers during their primary EI immunization and up to 5 months after the
third EI immunization (V3) [27] and other clinical studies highlighting the immunity gap frequently
observed in the weeks preceding the third EI immunization [28–30]. In the field study, the frequency of
seronegative foals (i.e., SRH = 0 mm2) was greater than 25% at different sampling time points during
the primary EI immunization (at the time of first immunization, two weeks and three months after
the second immunization and two days after the third immunization) [27]. After V3, the frequency of
seronegative foals remained below 20% up to three months after this immunization [27]. In the present
report, the frequency of horses located in Normandy and born in 2016 and 2017 with negative or low
SRH titers was 49% and 42% for “sale” and “diagnosis” categories, respectively.

The categories “breeding” and “exportation” present high protection rates that reach 87% at least
(excepted for the “exportation” category from Pays de la Loire). This observation is not surprising
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because these categories are submitted to mandatory EI vaccination in France. For the covering season
of stallions, some studbooks require that EI vaccination be carried out in accordance with the EI vaccine
manufacturers recommendations (i.e., primary vaccination with two immunizations 4–6 weeks apart
and a third dose 5 to 6 months after the last immunization, then annual boost immunization afterward)
otherwise breeding cannot be authorized. Similarly, for mares, studbooks and horses, breeding centers
require EI vaccination. The regulation to export horses is also strict. In most cases, the sanitary
measures imposed by importing countries require that horses have received two immunizations prior
to movement. The information available does not provide an explanation for the higher percentage of
negative and <85 mm2 samples in the “exportation” group for Pays de la Loire.

The use of an EIV NP-specific enzyme-linked immunosorbent assay (ELISA) allows differentiating
infected animals from horses vaccinated with the HA recombinant canarypox-based EI vaccine
(ProteqFlu®; Mérial, Lyon, France) [1]. Horses infected with EIV or vaccinated with a whole inactivated
EI vaccine produce antibodies against all viral proteins, including the EIV NP. These horses have a
positive serological status for the NP (NP+) unlike horses immunized with the recombinant canarypox
EI vaccine that seroconvert to HA only and therefore have a negative serological status for the NP
(NP−) [31]. The use of an EI vaccine with DIVA ability has proved very useful in past EI epidemics.
Emergency vaccination was implemented during the 2007 Australian EI outbreak and this specific
vaccine was selected for its successful use in South Africa in 2003 and its DIVA ability, amongst other
reasons. The possibility to differentiate infected animals from vaccinates was of a great importance
for the Australian’s EI outbreak management because it allowed to monitored EIV transmission and
disease spread in light of ring EI vaccination [1]. The use of a DIVA assay to evaluate EI vaccination
coverage in an endemic situation depends on the type of EI vaccine available and used in the field
(i.e., recombinant or whole inactivated EI vaccines). In France, based on anecdotal discussions with
EI vaccine manufacturers, the HA recombinant canarypox-based EI vaccine is predominantly used.
In our current study, the use of a DIVA test confirmed that the EI seropositivity of young horses
(≤3 years) was primarily due to EI vaccination using this specific EI vaccine. The DIVA analysis
showed that 83% of samples from young horses born in France and seropositive by SRH assay were
EIV NP-seronegative compared to old horses for which only 52% were EIV NP-seronegative. This
observation is consistent with the last EI outbreak registered in 2015 (RESPE) and the predominant use
of this specific HA recombinant EI vaccine in France. Before 2015, EI cases have been occasionally
observed, which could explain higher frequency of older horses seropositive for EIV-NP (48%). The
high level of young horses seronegative for EIV-NP supports the RESPE surveillance data that reports
no EI clinical case in France between mid-2015 and late 2018. While the use of whole inactivated EI
vaccines may explain EIV-NP seropositivity for the other 17% of young horses born in France, a low
level of EIV circulation in France could not entirely be ruled out. Only 53% of young horses born abroad
were EIV-NP seronegative. These results could be explained by a broader diversity of EI vaccines used
and possible EIV circulation in other countries. The use of the DIVA test revealed that 96% horses with
SRH antibody titers equal to 0 mm2 were also seronegative by NP-ELISA. In the absence of non-H3
equine influenza circulation, the remaining 4% (SRH negative and NP-ELISA) may be explained by a
difference of sensitivity between the two assays. Hopefully, veterinary vaccine manufacturers will
incorporate DIVA markers in their future EI vaccines, which will greatly benefit disease surveillance,
would help to identify poor-vaccine responders and contribute to reducing fraudulent vaccination in
horses in the long term (i.e., “pen vaccination”).

Despite high EIV-specific immune coverage and the use of an EI vaccine fully updated according
to the last OIE recommendation on EI vaccine strain composition (i.e., EI vaccines should contain
representative EIV strains of both FC1 and FC2 sub-lineages), the absence of clinical EI in France
came to an end in early December 2019. Numerous EI outbreaks were reported in several European
countries (Belgium, Germany, Ireland, the Netherlands, Sweden and the United Kingdom). The
scale, number and duration of this epidemic had not been experienced in Europe since the late 1970s
and 1980s. Sequencing results revealed that H3N8 EIV strains at the origin of the 2018–2019 French
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outbreaks (and EI outbreaks in other European countries, OIE ESP communication) belong to the FC1
sub-lineage, which was not isolated in France since 2009 [13] and was usually circulating in North and
South Americas [17,20,32]. While several amino acids mutation were identified in the HA, results from
the hemagglutination inhibition assay using mono-specific ferret sera and the associated antigenic
cartography analyses indicate that FC1 EIV strains the origin of the 2018–2019 EI outbreaks were still
antigenically closely related to the recommended FC1 EIV strains for inclusion in EI vaccine [33]. As
a consequence, this epidemic was not considered by the OIE ESP to be linked to a mismatch with
the EI vaccine strains and the EI vaccine strain recommendation remained unchanged in 2019. The
introduction of more pathogenic strains could be an alternative explanation. The FC2 EIV strains
isolated in Europe in recent years were of mild and decreasing pathogenicity [34], which may provide
an explanation for the absence of EI in France in recent years (results from this study indicate that EI
immunity/vaccine coverage is close to the level described by Satou and Nishiura [12]). However, a few
anecdotal reports of EI induced mortality in the field in several EU countries and observation of mild
but noticeable clinical signs of disease in EI vaccinated horses raise a question about the pathogenicity
of the current FC1 EIV strain. At the time of this report, the current FC1 EIV strain has not been used
in a controlled experimental infection, which prevents any strong assumption about its pathogenicity.
Surveillance results reported in the current study highlight a larger amount of French EI outbreaks
involving vaccinated horses, which is not entirely surprising when the high EI vaccine coverage
measured here is taken into account. For the few cases where serum were obtained at the onset of
disease, it appears that infection could be explained in half of the cases by a lower than expected
SRH antibody titer at the time of contact with EIV (irrespective of the time since last immunization).
With the exception of horse #6, which had an SRH antibody titer above the 154 mm2 threshold, other
vaccinated horses had average titers (between 93 and 129 mm2), probably high enough to significantly
reduce the clinical signs of disease but insufficient to induce sterilizing immunity, which is rarely
measured [35], even in optimal study conditions.

The overall immune coverage in 2018, which was estimated at 87.6%, was sufficient to prevent EI
clinical cases induced by FC2 EIV strains circulating in the EU between 2015 and late 2018. Regretfully,
such an immune coverage (based on historical SRH protection thresholds) was not high enough to
prevent the 2018–2019 FC1 EIV strains circulation. However, it is very important to note that all known
field and veterinary reports indicate that clinical signs of disease observed in EI vaccinated horses were
clearly reduced when compared with unvaccinated animals, which continue to support the benefit of
EI vaccination. Vaccination has probably slowed the spread of EI in France, which provided invaluable
time to Equine Veterinary Practitioners.

5. Conclusions

These results have a field significance for both equine veterinarians and the scientific community.
When extrapolated to a country level, they highlight the success of EI vaccination and are concomitant
with a lack of detection of the pathogen and an absence of clinical EI in the horse population in France.
This information is particularly timely; the French horse population has suffered from an extended
epizooty of equine herpesvirus infection in early 2018, which could be an indirect consequence of a
nationwide equine herpesvirus vaccine shortage in 2016 and potential modification of vaccination
habit and coverage against this specific pathogen in 2017. As a result, this study and results could
inspire equine veterinary practitioners and horse owners to continue and intensify their effort in
terms of vaccination. While EI immune/vaccine coverage and EI vaccines commercially available are
challenged by this FC1 EIV strain, the benefit of EI immunization in mitigating the disease severity and
to reduce transmission remains clear. Further work is warranted to explain the 2019 EI epidemic. This
study also highlights the beneficial use of serology as a meaningful tool to support disease surveillance
and management in horses, not only to evaluate the immune coverage at a country level but also in
sensitive populations or prior to exportation in order to prevent entry of unprotected horses into a new
country/population.
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