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Abstract—The resolution of a Direction of Arrival (DOA) es-

timation algorithm is determined based on its capability to re-

solve two closely spaced signals. In this paper, authors present

and discuss the minimum number of array elements needed

for the resolution of nearby sources in several DOA estima-

tion methods. In the real world, the informative signals are

corrupted by Additive White Gaussian Noise (AWGN). Thus,

a higher signal-to-noise ratio (SNR) offers a better resolution.

Therefore, we show the performance of each method by ap-

plying the algorithms in different noise level environments.

Keywords—covariance matrix, direction of arrival, geolocation,

resolution, noise, smart antenna.

1. Introduction

Direction-of-arrival (DOA) estimation [1], [2] aims essen-

tially to find the direction of arrival of multiple signals,

which can be in the form of electromagnetic or acoustic

waves, impinging on a sensor or antenna array. The require-

ment for DOA estimation arises from the needs of locating

and tracking [3] signal sources in both civilian and military

applications, such as search and rescue, law enforcement,

sonar, seismology, and emergency call locating.

A large amount of work has been performed on DOA al-

gorithms, e.g. [4]–[6]. In [2] Krim et al. presented an

interesting comparative study between a set of DOA es-

timation algorithms, such as beamforming techniques and

subspace-based methods. The basic idea of beamforming

techniques [7]–[9] is to steer, electronically, the array in one

direction at a time and measure the output power, so when

the steered direction coincides with a DOA of a signal,

the maximum output power will be observed. The scheme

leads essentially to the formation of an appropriate form of

output power that will be strongly related to the DOA.

Although beamforming techniques are simple to implement

and require low computational time and power, they suffer

from their poor resolution. For this reason, we introduce

the concept of subspaces and propose the subspace-based

methods [10], [11] that use the decomposition of the out-

put data covariance matrix to benefit from the orthogo-

nality of the two subspaces: the signal subspace and the

noise subspace. Other methods have been proposed re-

cently to overcome the computational load provided by the

decomposition of the data covariance matrix, such as the

propagator [12], [13] and the partial propagator [14].

Obviously, it has been proven [1], [15] that the accuracy

and resolution of DOA estimation can be affected by sev-

eral factors such as the number of the impinging sources,

the number of array elements, the SNR, number of snap-

shots and angle differences [16]. In this paper, we focus

on a study of the resolution capability of several DOA es-

timation algorithms by selecting the minimum array ele-

ments needed to separate closely spaced signals in differ-

ent noise level environments. Our aim is to analyze the

resolution performance of those methods, and at the same

time, show their sensitivity against the noise. The study is

restricted to one-dimensional signals that are assumed to

be narrowband [17] and corrupted by a uniform Additive

White Gaussian Noise (AWGN), impinging on a Uniform

Linear Array (ULA).

2. Problem Modeling

Before presenting the data model, authors consider the same

assumptions taken in [1]:

• isotropic and linear transmission medium,

• far-field,

• narrowband,

• the noise is AWGN.

Consider a ULA consisting of M identical elements that

are aligned and equally spaced on a line by a distance ∆,

receiving a wavefield generated by d narrowband sources

in the presence of an AWGN, as presented in Fig. 1 [1].

The data received by the antenna array elements can be

expressed as:

x(t) = As(t)+n(t), (1)
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Fig. 1. Data model for DOA estimation of d sources with a linear

array of the M element.

where x(t) = [x1(t) x2(t) . . . xM(t)]T denotes the received

array data vector, s(t) = [s1(t) . . . sd(t)]T denotes the source

waveform vector, n(t) = [n1(t) n2(t) . . . nM(t)]T is the vec-

tor of the uncorrelated additive noise in the array.

A = [a(θ1)a(θ2) . . . a(θd)] denotes the steering matrix con-

taining the steering column vectors a(θi) defined as:

a(θi) =


1 e

j2π∆
λ

sin(θi)
. . . e

(M−1)
j2π∆

λ
sin(θi)




T

,

where ∆ is the element spacing which satisfies ∆ ≤ λ
2 ,

λ is the wavelength of the propagating signals, and θi is

the unknown direction of arrival of the i-th source.

The noise is assumed to be uncorrelated between array el-

ements, and to have identical variance σ 2 in each element.

Under this assumption, the M×M spatial covariance matrix

of the data received by an array can be defined as:

Rxx = E[x(t)xH(t)] = ARssA
H +σ 2IM , (2)

where (.)H is the conjugate transposition, E is the expec-

tation operator and Rss = E[s(t)sH(t)] is the d × d signal

covariance matrix.

In practice, the exact Rxx is hard to find, due to the limited

number of data sets received by the array, but it can be

estimated by:

Rxx ' R̂xx =
1
N

N

∑
t=1

x(t)xH(t) =
1
N

XXH
, (3)

where X denotes the noise corrupted signal (or data) matrix

composed of N snapshots of x(t), 1 ≤ t ≤ N. Many DOA

estimation algorithms basically try to extract the informa-

tion from this array data covariance matrix.

Knowing the data model, and before dealing with our prin-

cipal aim, which is to study the resolution capability of

several popular DOA estimation techniques by showing the

minimum array elements they require to split two nearby

sources, here is a brief overview about these techniques.

3. Algorithms

3.1. Conventional Beamforming

Conventional beamforming [7], also known as the Bartlett

spectrum, is one of the beamforming techniques which are

based on an electronic steering of the array in one direc-

tion at a time, and measure the output power, so when the

steered direction coincides with a DOA of a signal, the

maximum output power is observed.

An array can be steered electronically just as an antenna

can be steered mechanically by designing a weight vector

w and combining it with the data received by the array

elements to form a single output signal y(t):

y(t) = wHx(t) . (4)

By taking N snapshots, the total averaged output power of

an array is given by:

P(w) =
1
N

N

∑
n=1

|y(tn)|2 =
1
N

N

∑
n=1

wHx(tn)xH(tn)w =

= wH R̂xxw . (5)

The conventional beamforming method consists of w =
a(θ ) with θ being the scanning angle, and the steering

vector a(θ ) is defined as:

a(θ ) =


1 e

j2π∆
λ

sin(θ)
. . . e

(M−1)
j2π∆

λ
sin(θ)




T

,

where ∆ is the element spacing which satisfies ∆ ≤ λ
2 , λ is

the wavelength of the propagating signals.

In practice, w = a(θ ) is normalized as:

wBartlett =
a(θ )√

aH(θ )a(θ )
. (6)

Thus, the output power is obtained as:

PBartlett (θ ) =
aH(θ )R̂xxa(θ )

aH(θ )a(θ )
. (7)

3.2. Capon’s Beamformer

The conventional beamforming method has a poor res-

olution. We can increase the resolution by adding array

elements, as will be shown further. However, to overcome

this problem, Capon [8] proposed a method that uses the

degrees of freedom to form a beam in the look direction

and at the same time the nulls in other directions. For a par-

ticular look direction, Capon’s method uses all but one of

the degrees of the freedom to minimize the array output

power while using the remaining degrees of freedom to

constrain the gain in the look direction to be unity:

minP(w) = 0 subject to wHa(θ ) = 1 . (8)
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Thus, the weight vector is expressed as:

wCapon =
R̂
−1
xx a(θ )

aH(θ )R̂
−1
xx a(θ )

. (9)

By combining this weight vector with the Eq. (5), the output

power is:

PCapon(θ ) =
1

aH(θ )R̂
−1
xx a(θ )

. (10)

3.3. Linear Prediction

Linear prediction [9] aims to minimize the mean output

power of the array, subject to the constraint that the weight

on a selected element is unity. The weight vector is given

by:

wLP =
R̂
−1
xx u

uH R̂
−1
xx u

(11)

and the power spectrum is:

PLP =
uH R̂

−1
xx u

∣∣∣uH R̂
−1
xx a(θ )

∣∣∣
2 , (12)

where u is a column vector of all zeros except for the

selected element, which is equal to 1. This selected element

corresponds to the position of the selected element in the

array. There is no criterion for the proper choice of this

element.

3.4. Maximum Entropy

Maximum entropy [18] is similar to the linear prediction

method, it is based on an extrapolation of the covariance

matrix. The extrapolation is selected with maximized sig-

nal entropy, where its maximum is achieved by searching

for the coefficients of an auto-regressive model that mini-

mize the expected prediction error:

w = min wH R̂xxw subject to wHei = 1 , (13)

where ei is a column vector of all zeros except for the i-th
element, which is equal to 1.

Developing the computations leads to achieving the follow-

ing power spectrum:

PMEM =
1

a(θ )CiC
H
i a(θ )

, (14)

where Ci is the i-th column of the inverse of R̂xx.

3.5. MUSIC

Multiple Signal Classification (MUSIC) [10] is considered

as one of the most popular subspace-based techniques. It

uses the property of orthogonality between the two sub-

spaces, the signal subspace and the noise subspace. The

eigen-decomposition of the covariance matrix can be ex-

pressed as:

Rxx = ARssA
H +σ 2IM = UsΛsU

H
s +σ 2UnUH

n , (15)

where Us is the matrix that contains the eigenvectors (the

signal eigenvectors) corresponding to the d largest eigen-

values of Rxx, Un is the matrix that contains eigenvectors

(the noise eigenvectors) corresponding to the M−d small-

est eigenvalues of Rxx, the diagonal matrix Λs contains the

M largest eigenvalues. Since the eigenvectors in Un, are

orthogonal to A, we have:

Una(θi) = 0 i = 1, . . . , d . (16)

Using this property, the power spectrum of MUSIC tech-

nique is:

PMUSIC =
1

aH(θ )UnUH
n a(θ )

. (17)

3.6. Minimum Norm

The minimum norm technique can be seen as an enhance-

ment of the MUSIC algorithm, it consists in finding the

DOA estimate by searching for the peaks in the power spec-

trum:

PMN =
1

|wHa(θ )|2
. (18)

By determining the array weight w, which is of minimum

norm [18] we find the spectrum:

PMN =
1

|aH(θ )UnUH
n WUnUH

n a(θ )|
, (19)

where the matrix W = e1eT
1 (e1 is the first vector of a M×M

matrix) is needed to make the matrix dimensions match

mathematically.

3.7. The Propagator Method

To reduce the computational complexity of the methods

that are based on the eigen-decomposition. The propagator

method [12], [13], [19] exploits the partition of the data

covariance matrix defined as:

R̂xx =

(
R̂1

R̂2

)
, (20)

where R̂1 is a square matrix of size d×M and R̂2 is a matrix

of size (M − d)×M. The propagator operator is defined

as:
{

R̂2 = Ψ21R̂1

Ψ21 = R̂2R̂
†
1

, (21)

where R̂
†
1 is the pseudo-inverse of R̂1 defined as R̂

†
1 =(

R̂
H
1 R̂1

)−1
R̂

H
1 . Then the noise subspace constructed by

this operator is given by Un = [Ψ21,IM−d ], and the power

spectrum is:

PPr =
1

aH(θ )UnUH
n a(θ )

. (22)
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3.8. The Partial Propagator

Unlike the propagator method, the partial propagator [14]

only needs to use the partial covariance matrix and reduce

the computation complexity. The partial propagator is based

on partitioning the steering matrix into three blocks under

the assumption M > 2d. The steering matrix is partitioned

as:

A =




A1
A2
A3


 , (23)

where A1, A2 and A3 are matrices of size: d × d, d × d,

(M −2d)×d respectively. Using this partition, the partial

correlation matrix are defined as:

R12 = E
[
X(t)(1 : d, :)XH(t)((d +1) : 2d, :)

]
=

= A1RssA
H
2 , (24)

R31 = E
[
X(t)((2d +1) : M, :)XH(t)(1 : d, :)

]
=

= A3RssA
H
1 , (25)

R32 = E
[
X(t)((2d +1) : M, :)XH(t)(d +1 : 2d, :)

]
=

= A3RssA
H
2 , (26)

where X is the matrix defined in Eq. 3. Based on these

partitions, we define a matrix Un as:

Un =
[
R32R−1

12 R31R−1
21 −2IM−2d

]
(27)

for which we have: UnA = 0. So, similarly to MUSIC and

the propagator methods, we can form the power spectrum

as follows:

PPartial =
1

aH(θ )UnUH
n a(θ )

. (28)

4. Experimental Results

This section focuses on testing the resolution capability of

each algorithm mentioned in Section 3. We determine the

minimum number of the array antennas required to sep-

arate two far field sources that are spaced with an an-

gular distance of 5◦. The simulation is done by taking

d = 4 sources impinging on a ULA of identical anten-

nas with element spacing equaling to the half of the in-

put signal wavelength, the number of snapshots is fixed at

N = 200. Since the SNR highly influences on the resolu-

tion, four different noise level environments are considered

in this study, which are SNR1 = −10 dB, SNR2 = 0 dB,

SNR3 = 10 dB, and SNR4 = 20 dB. The number of array el-

ements is thus varied until we find the minimum satisfying

the resolution of the second and the third sources which are

closely separated (5◦). All the simulations are made using

Matlab R2016b, the noise is a random process generated

using a Matlab function and the signals are assumed to

be snapshots of demodulated electromagnetic sources. Dif-

ferentiation between the different sources is detected by

vision. The degree of sensitivity to the number of array el-

ements is different for the individual methods. This is why

we notice, for some methods, that there’s a small valley

and a big one for others.

In the following figures, we show some of the simulations

that we have performed. We present the response of each

method for two values of the number of antennas, before

and after resolution, at the noise level of SNR2 = 0 dB.

We start with the conventional beamformer. Figure 2 rep-

resents the spectrum before and after resolution and the

number of array elements used.

Fig. 2. Bartlett’s spectrum: (a) before – 14 elements and (b) af-

ter – 30 elements.

We remark that as mentioned in Section 3, Bartlet’s method

has a poor resolution. Indeed, it requires about 30 elements

as a minimum to slightly separate our two close sources.

Figure 3 shows the result obtained by using the Capon’s

beamformer technique.

With the Capon’s beamformer, we start having a low num-

ber of elements needed to separate the two close sources

(14 elements). It performs much better than the conven-

tional beamformer at the resolution level, but as illustrated

in Fig. 3, the separation is not complete. To achieve better

resolution while using this method, we should add more

elements.

Figure 4 shows the spectrum obtained by using the linear

prediction method and choosing the selected element for u

in Eq. (12) as the element in the center.

The linear prediction method performs well. As can be

seen clearly in the Fig. 4, the two close sources are well

separated once we use 12 array elements.
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Fig. 3. Capon’s spectrum: (a) before – 12 elements and (b) after –

14 elements.

Fig. 4. Linear prediction spectrum: (a) before – 11 elements and

(b) after – 12 elements.

Figure 5 shows the result obtained by using the maximum

entropy method by choosing ei as the element in the cen-

ter. As illustrated in Fig. 5, the maximum entropy method

performs well too and allows to have a good resolution by

using 14 array elements.

Figure 6 represents the result obtained by using the MUSIC

method. With MUSIC, we could achieve a good resolution

Fig. 5. Maximum entropy spectrum: (a) before – 13 elements

and (b) after – 14 elements.

Fig. 6. MUSIC spectrum: (a) before – 9 elements and (b) after –

10 elements.

using only 10 array elements in this noise level. In addition,

one can notice that the spectrum contains no secondary

lobes which makes MUSIC be one of the most performing

DOA estimation algorithms.

We now see the performance of minimum norm in Fig. 7.

Minimum norm seems to be the best performing technique

at this noise level among all the methods discussed earlier.
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Fig. 7. Minimum norm spectrum: (a) before – 8 elements and

(b) after – 9 elements.

It only needs 9 elements to give a good and clear resolution

of the second and the third sources as illustrated in Fig. 7.

We will see further the results found at other noise levels.

The next spectrum is the propagator’s one, it’s represented

in Fig. 8.

The propagator method requires 14 elements as a minimum

to provide a clear resolution of the two close sources.

Fig. 8. Propagator spectrum: (a) before – 13 elements and

(b) after – 14 elements.

Although the number of array elements required is higher

than minimum norm and MUSIC, the big advantage of the

propagator method is lower level of complexity compared

with the eigen-decomposition-based methods [16].

We finally deal with the partial propagator method, its spec-

trum is illustrated in Fig. 9.

Fig. 9. Partial-propagator spectrum: (a) before – 10 elements

and (b) after – 11 elements.

The partial propagator method needs at least 11 elements

as a minimum to separate clearly the two close sources,

which is also a good result of high resolution. In addi-

tion, the partial propagator performs well in the presence

of a colored noise [14], and it also reduces the computa-

tional complexity compared to the propagator method.

We now discuss the resolution capability of these methods

in four noise levels, namely SNR1 = −10 dB, SNR2 = 0
dB, SNR3 = 10 dB, and SNR4 = 20 dB.

Figure 10 illustrates the number of array elements needed

for each method at the different noises levels, to resolve the

two closely separated sources.

The first remark to be made here is that the Bartlett’s spec-

trum is not influenced very much by the noise. Indeed, the

minimum array elements remain stable for all the noise lev-

els, and this can be explained by the fact that noise eigenval-

ues (the smallest ones) of the covariance matrix R̂xx do not

have much influence in Eq. (7) because it’s in the numer-

ator of the equation, unlike the other methods which have

the covariance matrix or some of its characteristics (like

the noise subspace) in the denominator. As can be seen in

Fig. 10, in noisy environments (low SNR), the minimum

norm method performs better than all the others methods,

by requiring fewer array elements for the resolution. On

the other hand, one can see that in a high SNR environ-
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Fig. 10. Minimum elements needed for resolution in each SNR

level.

ment, the MUSIC method is the best performing one. One

can also note that in the noise-level SNR4 the propagator

requires the same number of elements as MUSIC.

However, an experimental verification of the proposed study

in the research laboratory using physical materials is a di-

rection for future work.

5. Conclusion

In this paper we have discussed the performance analy-

sis related to the resolution capability of several DOA al-

gorithms. The noise was assumed to be AWGN and the

sources were narrowband and far-field impinging on a uni-

form linear array. The algorithms have been simulated un-

der four different noise level environments. For each noise

level, we have presented the performance of the resolution

of the algorithms by searching the minimum array elements

needed to separate two closely spaced sources. The results

shown that in noisy environments, the minimum norm al-

gorithm is the best performing one and requires fewer el-

ements to separate the close sources. The minimum norm

algorithm is more significant and in the same time the less

sensitive to noise. Otherwise, in clean environments, MU-

SIC performs well and requires less array elements.
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