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Generation of Stationary Gaussian
Processes and Extreme Value
Distributions for High-Cycle Fatigue
Models – Application to Tidal Stream
Turbines
The operating environment of tidal stream turbines is random due to the variability of the
sea flow (turbulence, wake, tide, streams, among others). This yields complex time-varying
random loadings, making it necessary to deal with high cycle multiaxial fatigue when
designing such structures. It is thus required to apprehend extreme value distributions of
stress states, assuming they are stationary multivariate Gaussian processes. This work
focus on such distributions, addressing their numerical simulation with an analytical
description. For that, we first focused on generating one-dimensional Gaussian processes,
considering a band-limited white noise in both the narrow-band and the wide-band cases.
We then fitted the resulting extreme value distributions with GEV distributions. We secondly
extended the generation method to the correlated two-dimensional case, in which the
joint extreme value distribution can be obtained from the associated margins. Finally,
an example of application related to tidal stream turbines introduces a Bretschneider
spectrum, whose shape is commonly encountered in the field of hydrology. Comparing the
empirical calculations with the GEV fits for the extreme value distributions shows a very
well agreement between the results.
Keywords: stochastic processes generation, correlated Gaussian processes, multivariate
extreme value distribution, high cycle fatigue, tidal stream turbines

Introduction

Nowadays, it has become necessary to make the most of
renewable energies. Tidal stream turbines allow this by harnessing
the kinetic energy of sea streams (see Fig. ??). But in order to come
through they have to be economically competitive, which implies
reduced maintenance. However, they are immersed in flows having
not mastered characteristics resulting from many contributions such
as turbulence, wake, swell, current, etc. These structures are then
submitted to random time-varying multiaxial stress states, which
can be described from probability distributions associated to a time
evolution. Numerically, these stress states can be estimated from a
statistical description of the sea load that acts on these submerged
structures; see for example Theodorsen (1934), Gmür (1997), Guéna
et al. (2006) and Thresher et al. (2009). Such stresses imply a risk
of fatigue failure which must be taken into account during the design
stage to ensure structural integrity. In this study, we are concerned
with the infinite fatigue life, that is based on the greatest stress
values reached during the service life (Lambert et al., 2010; Khalij
et al., 2010). By taking into account their randomness, this leads us
to study their multivariate extreme value distributions. We assume
that the stress states are stationary multivariate Gaussian processes,
described by their means and power spectral densities. More
specifically, we focus in this paper on the way to get, from numerical
simulations, bivariate extreme value distributions of components of
the stress tensor, with analytical descriptions of the results. Since the
mechanical stresses reach their maximum value on the skin of the
structure, we shall consider the plane stress case only.

The paper is divided in three parts. The first part deals with
generating one-dimensional Gaussian processes in order to evaluate
its empirical extreme value distribution. Then, we perform a fit with
a GEV distribution. Secondly, these concepts are adapted to multi-

dimensional Gaussian processes and applied to a bivariate correlated
case. A bivariate extreme value distribution, evaluated from the
associated margins, is found to be a well-adapted model. Finally, we
apply the previous considerations to a realistic example related to tidal
stream turbines.

Figure 1: Projects of tidal stream turbines: Skerries Islands, Wales, 2015
(left) and Islay strait, Scotland, 2015 (right).

Nomenclature

Acronyms

AR = Average Random
EV D = Extreme Value Distribution
GEV = Generalized Extreme Value
IFFT = Inverse Fast Fourier Transform
MA = Moving Average
PSD = Power Spectrum Density

Operators

arg [•] = argument of the complex number •
E [•] = statistical expectation of •
Prob [•] = probability of the event •
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Re [•] = real part of •
V [•] = statistical variance of •
|•| = modulus of the complex number •
〈•〉 = temporal mean of •

Latin Symbols

f = frequency (Hz)
j = imaginary unit
m = association parameter between the maxima of two

processes
mi = i-th spectral moment
n = number of stochastic processes
n f = number of frequencies
sp = thresholds associated to the maximum of the p-th process

(MPa)
t = time (s)
F = cumulative distribution function
Fpq = bivariate distribution function between the p-th and the

q-th processes
Fp = marginal distribution function of the p-th process
N0 = number of cycles
R = auto-correlation function (MPa²)
Rpz = component of correlation function matrix R (MPa²)
S = PSD of a single process (MPa²/Hz)
S = PSD matrix (MPa²/Hz)
Sxx = traction component of the stress tensor (MPa)
Sxy = shear component of the stress tensor (MPa)
T = samples duration (s)
X = stochastic process (MPa)

Calligraphic Symbols

U = uniform distribution
R = Rayleigh distribution
N = normal distribution

Greek Symbols

µXp = statistical mean of the process Xp (MPa)

µ
(r)
Xp

= temporal mean of the r-th realization of the process Xp

(MPa)
ρ = auto-correlation coefficient
ρm = correlation coefficient between the maxima of two

processes
σ = standard deviation (MPa)
ω = angular frequency (rad/s)

The One-Dimensional Case

Let us consider a stationary process characterized by its one-
sided PSD, measured in MPa²/Hz and denoted by S, and its statistical
distribution: both these quantities provide the frequency distribution
of the process. Classically, two extreme situations may be considered:
wide-band and narrow-band cases. Let us introduce the frequency f ,
measured in Hz. Both the cases may be illustrated by considering a
band-limited white noise:

S( f ) =

{
S0 if f ∈ ( f1, f2]
0 else

. (1)

For instance:

• the narrow-band case corresponds to | f2− f1| “small”: in the
sequel, we take f1 = 9.5 Hz, f2 = 10.5 Hz, S0 = 7 MPa2/Hz,
the frequency f1 being included in the spectral definition
domain;

• the wide-band case corresponds to | f2− f1| “large”: in the
sequel, we take f1 = 0 Hz, f2 = 20 Hz, S0 = 0.35 MPa2/Hz,
the frequency f1 being excluded from the spectral definition
domain, since it is the zero value.

It should be noted that in either case, S0 is such that V [X(t)] = 7
MPa2, V [X(t)] denoting the statistical variance of the process X(t).
These two extreme situations are represented in Fig. 2: the narrow-
band PSD corresponds to the first case and the wide-band PSD
represents the second one.

Figure 2: Narrow-band (top) and wide-band (bottom) PSDs of the
investigated one-dimensional case.

As announced in the introduction, we consider the generation of
these processes for the analysis of the extreme value distribution. In
either case (wide and narrow) we proceed as follows: at first, 104

realizations are generated. Afterwards, the extreme value distribution
is constructed from these empirical data and fitted with a GEV
distribution. In the following, the results regarding both cases are
presented and illustrated together whenever it is possible.

Theory of Gaussian process generation

Let X(t) be a temporal zero-mean Gaussian process. Let S( f ) be
the associated PSD, uniformly discretized in n f points:{

( fi,S( fi)) = ( fi,Si)

∆ f = fi+1− fi, 1≤ i≤ n f −1

where ∆ f is the frequency step and n f denotes the number of
frequencies fi whose associated PSD magnitude Si is such that Si 6= 0
(i.e. the number of frequencies fi such that fi ∈ [ f1, f2]). Two main
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classes of generation methods exist in the literature (Sun, 2006).
The first one includes time series models: Average Random (AR),
Moving Average (MA) and ARMA processes. The other one is about
spectral decomposition methods. We focus on the last category in this
document. Each realization of X(t) is made of a sum of harmonic
functions of time, whose amplitude and frequency are determined
from the PSD:

X(t) =
n f

∑
i=1

Xi (t) . (2)

One way of computing X(t) is to regard each harmonic
contribution Xi (t) as a cosine function with deterministic modulus
Mi and random uniformly distributed phaseφi:

Xi (t) = Micos(2π fit +φi) (3)

where: {
Mi =

√
2Si∆ f

φi ∼ U (0,2π)
.

Another possibility is to use the same expression as in Eq. (3) with
Mi following a Rayleigh distribution, i.e.:

{
Mi ∼R

(√
Si∆ f

)
φi ∼ U (0,2π)

.

Finally, we can write Xi (t) as a sum of a sine and a cosine functions
with Gaussian amplitudes:

Xi (t) = Aicos(2π fit)+Bisin(2π fit) (4)

with: {
Ai,Bi ∼N (0,σi)

σi =
√

Si∆ f
.

Figure 3: Process samples during a short (left) and a longer (right) time, narrow-band (top) and wide-band (bottom) PSDs.

It should be noted that processes generated from Eq. (3)
considering deterministic moduli are asymptotically Gaussian when
the number of frequency points n f tends to infinity, in virtue of the
Central Limit Theorem. Besides, the use of Eq. (3) with Rayleigh
distributed moduli is equivalent to the use of Eq. (4) with Gaussian
amplitudes (Tucker, 1984). In the sequel, computations are performed
using Eq. (4). One realization of the processes under consideration is
shown in Fig. 3 to illustrate the narrow-band and wide-band concepts.

Numerical aspects

The random amplitudes Ai and Bi involved in Eq. (4) are
computed using the Matlab generator of normally distributed numbers
(randn function). The expression proposed for their standard
deviation arises from the statistical interpretation of the auto-PSD.
As a matter of fact, the integral of S gives the variance of X. The
definition of σi then ensures units coherence: with this choice, Ai and
Bi have the same dimensional units as X. The total variance of the
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process is the sum of the variances of each harmonic contribution:

V [X(t)] =
n f

∑
i=1

V [Xi (t)] =
n f

∑
i=1
σ2

i =
n f

∑
i=1

V [Xi] = V [X] .

The temporal variable vanishes due to the expected stationarity of
the process. However, the reader must keep in mind that empirical
processes cannot be stationary if the number of frequencies n f is not
large enough. On the contrary, they are Gaussian for any number
of frequencies since they are computed as a linear combination
of Gaussian random variables. In addition, it can be shown that
the processes under consideration are ergodic for the mean but not
for the correlation function (see Appendix). Besides, each PSD is
characterized by its central frequency f0 such as:

f0 =
1

2π

√
m2

m0

where mk is the k-th order spectral moment, defined from the PSD by:

mk =
∫ +∞

0
(2π f )k S( f )d f .

We recall that the PSD S( f ) is one-sided and involves the frequency
variable. For PSDs derived in terms of the circular frequency variable
and/or two-sided, the previous expression is to be adapted. Let N0
denote the number of up-crossings of the zero threshold (i.e. the
number of cycles) and T the time duration of the signals. We have
the following relation:

N0 = f0T.

Thus the knowledge of both the number of cycles and the PSD yields
the samples duration. Moreover, it should be noted that the computed
processes are periodic, due to the use of harmonic functions. So we
make sure to adjust the time period T to the samples length in order
to avoid any duplication of the signals in the observation window. In
practice, the value of T must be large enough to cover 106 cycles
considering high cycle fatigue applications. Then a large number of
frequencies are needed, which makes the frequency step ∆ f being
very small and the generation time-consuming. One way to solve this
problem is to take advantage of the IFFT algorithm. As matter of fact,
adapting Eq. (4), we have:

X(t) =
n f

∑
i=1

Aicos(2π fit)+Bisin(2π fit)

=
n f

∑
i=1

Aicos(2π fit)+Bicos
(
−π

2
+2π fit

)
=

n f

∑
i=1

AiRe
[
e j2π fit

]
+BiRe

[
e− j π2 e j2π fit

]
= Re

[
n f

∑
i=1

(Ai−Bi)e j2π fit

]

=
n f

∑
i=1

(Ai−Bi)e j2π fit .

The real operator vanishes since the calculations yield an inverse
Fourier transform whose result is real-valued. This transform can be
rapidly computed using the ifft function implemented in Matlab. On
top of that, computing extreme value distributions requires accurate
peaks in the temporal signals, which is conditioned by a refined
sampling, as shown in Fig. 4. To get enough time points, we

perform a zero-padding up to 100 Hz in the frequency domain.
Indeed, due to the use of the IFFT algorithm, the number of
sampling points is the same in both the time and the frequency
domains. n f = 105 frequencies are used in the narrow-band case
and n f = 2.106 frequencies are used in the wide-band case. To get
accurate distributions, 104 realizations of the processes are required.
Complying with the last remarks leads to dealing with a huge amount
of data. Generating 104 narrow-band samples requires 7h15 user time
using Matlab 7.11 without any specific launch options on a Linux
server having 24 processors Intel(R) Xeon(R) CPU X5680 cadenced
at 3.33 GHz with 12 MB cached size and 192 GB total memory. In
comparison, nearly 115h are needed when using the filter function
implemented in Matlab to generate the same Gaussian processes via
AR series.

Figure 4: Importance of temporal discretization.

Results analysis

To verify the adequateness of the computed samples, the
empirical auto-correlation coefficient is calculated and compared to
the analytical one in Fig. 5. For stationary processes, the auto-
correlation coefficient is defined as:

ρ (τ) =
R(τ)

V [X]
. (5)

R(τ) being the auto-correlation function defined as:

R(τ) = E [X(t)X(t +τ)] , t ∈ [0,T ] (6)

where τ is the time shift between the two instants t and t +τ involved
in Eq. (6), E [•] being the mean operator. Note that τ ∈ [−T,T ]. Due
to Eq. (1), in both the low-pass and the band-pass cases, the auto-
correlation function is given by:

R(τ) =
S0

2π
sin(2π f2τ)− sin(2π f1τ)

τ
. (7)

In order to compare the empirical and analytical auto-correlation
coefficients in a proper way, both of the empirical and analytical
auto-correlation functions are normalized using the theoretical value
of the variance. To quantify the precision of the simulation, we
shall compare in detail the theoretical and empirical values of the
variances and auto-correlation coefficients. Figure 5 and Table 1
show the results, using here only n f = 102 and 2.103 frequencies
for the narrow-band and the wide-band case respectively. The
empirical auto-correlation coefficient and variance agree well with
the analytical ones, what implies that the simulated processes actually
correspond to their respective target PSDs.
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Table 1: Comparison between the theoretical and the empirical variances,
narrow-band (top) and wide-band (bottom) cases.

Empirical (target) variance Relative gap
7.0082 (7) 0.12 %

Empirical (target) variance Relative gap
7.0037 (7) 0.05 %

Figure 5: Comparison between empirical and analytical auto-correlation
coefficients, narrow-band (top) and wide-band (bottom).

The greatest value of each realization is stored in order to compute
the associated distribution. In the sequel, EVD stands for “extreme
value distribution”. Different verifications are made to evaluate the
quality of the empirical EVDs. First, its mean and standard deviation
are computed for an increasing number of samples. The values
are provided in Fig. 6 with the related confidence intervals (95%),
obtained from the bootstrap method. When generating 104 samples
of each process, the mean and standard deviation have converged, as
well as the related confidence intervals. Secondly, the empirical EVD
is plotted together with its 95% confidence interval, computed from
the Greenwood formula. It must be underlined that this interval is
extremely reduced, due to the large number of realizations. Finally,
it is interesting to check (see Fig. 7) if the empirical EVDs actually
“look like” usual EVDs. These are then fitted with 3 parameters
Generalized Extreme Value (GEV) distributions:

F (x;ξ,µ,β) = exp

[
−
(

1+ξ
x−µ
β

)− 1
ξ

]
, 1+ξ

x−µ
β

> 0, ξ 6= 0

(8)

Figure 6: Convergence of the EVDs mean (top) and standard deviation
(bottom) value.

In probability theory and statistics, the GEV distribution is a
family of continuous probability distributions developed under the
extreme value theory in order to combine the Gumbel, Fréchet and
Weibull families. The parametrization involved in Eq. (8) results
from the work of von Mises (1936) and Jenkinson (1955). The GEV
distribution arises from the extreme value theorem (Fisher and Tippet,
1928) as the limiting distribution of properly normalized maxima of a
sequence of independent and identically distributed random variables.
It has been shown that the framework can be extended to Gaussian
processes; see for example De Haan and Ferreira (2006). The above-
mentioned GEV distribution is computed from the simulation results
by means of the maximum likelihood method (gevfit function in
Matlab). It should be noted that the resulting curve lies in the
confidence interval. A particular attention is paid to the distribution
tails since these may be involved in reliability calculations. We end
by evaluating the relative error err (p) between the empirical CDF and
the related GEV distribution for any probability level p, 0 ≤ p ≤ 1.

Let sth (p) be the threshold such that Prob
[

max
t∈[0,T ]

(X(t))< sth

]
= p in

the theoretical model (GEV, here). Let sMC (p) be the threshold such

that Prob
[

max
t∈[0,T ]

(X(t))< sMC

]
= p in the MC simulations. Then the

relative error is computed as follows:

err (p) =
sth (p)− sMC (p)

sMC (p)
. (9)

It must be underlined that the relative error between the empirical
EVD and its GEV fit is low. These observations allow us to state that
the amount of data (in particular the number of realizations) is large
enough to yield accurate EVDs.
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Figure 7: Confidence interval of the EVDs and fit with GEV distributions.

Extension to the Multi-Dimensional Case

Both cases introduced in the previous paragraph are now
generalized to several processes. Using the PSDs relative to the n
processes to be considered, we have the spectral matrix:

S( f ) =


S11 ( f ) S12 ( f ) · · · S1n ( f )
S21 ( f ) S22 ( f ) · · · S2n ( f )

...
...

. . .
...

Sn1 ( f ) Sn2 ( f ) · · · Snn ( f )



=


S11 ( f ) S12 ( f ) · · · S1n ( f )
S∗12 ( f ) S22 ( f ) · · · S2n ( f )

...
...

. . .
...

S∗1n ( f ) S∗2n ( f ) · · · Snn ( f )

 .

Spp ( f ), p = 1, . . . , n being the process p auto-PSD and Spq ( f ),
p, q = 1, . . . , n being the cross-PSD between processes p and q.
Each auto-PSD shows the variance frequential repartition of the
related process. Each cross-PSD provides the covariance frequential
repartition of the associated processes. In particular, we now consider
the two-dimensional correlated case. Unlike the general case, cross-
PSDs are real-valued in the following. As in the first section, the

academic case of band-limited white noise is considered:

S11 ( f ) =

{
S01 if f ∈ ( f1, f2]
0 else

S22 ( f ) =

{
S02 if f ∈ ( f1, f2]
0 else

S12 ( f ) =

{
S012 if f ∈ ( f1, f2]
0 else

. (10)

Analogously to the one-dimensional case:

• in the narrow-band case, we take f1 = 9.5 Hz, f2 = 10.5
Hz, S01 = 3 MPa2/Hz, S02 = 5 MPa2/Hz, S012 = 0.9

√
S01S02

MPa2/Hz;

• the wide-band case, we take f1 = 0 Hz, f2 = 20 Hz, S01 = 0.15
MPa2/Hz, S02 = 0.25 MPa2/Hz, S012 = 0.9

√
S01S02 MPa2/Hz.

It should be noted that in either case, S01 is such that V [X1 (t)] = 3
MPa2, S02 is such that V [X2 (t)] = 5 MPa2 and S012 is such that

cov[X1(t),X2(t)]√
V[X1(t)]V[X2(t)]

= 0.9, cov [X1 (t) ,X2 (t)] denoting the statistical

covariance between the processes X1 (t) and X2 (t). These two
situations are represented in Fig. 8: the narrow-band PSD corresponds
to the first case and the wide-band PSD represents the second one.
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Figure 8: Narrow-band (top) and wide-band (bottom) PSDs of the
investigated multi-dimensional case.

Analogously to the one-dimensional situation, for either case
(wide and narrow) we proceed as follows: at first, 104 realizations are
generated by assuming that the processes are Gaussian. Afterwards,
the bivariate extreme value distribution is estimated from these
empirical data as well as the associated margins and empirical
cross-correlation coefficient. Like in the previous Results analysis
subsection, the marginal EVDs are fitted with GEV distributions. The
latter are then used together with the cross-correlation coefficient in
order to compute a theoretical bivariate distribution.

Theory of Gaussian processes generation

Here again, each realization of a Gaussian process results from
a sum of harmonic functions of time with random amplitudes
computed from the PSD. Compared to the one-dimensional case,
the difference lies in the fact that random quantities have to be
appropriately correlated such that processes are correlated according
to their associated target cross-PSD. Then, Eq. (4) is generalized as
follows:

Xp (t) =
n f

∑
i=1

n=2

∑
q=1

{
Aipqcos

(
2π fit +θipq

)
+Bipqsin

(
2π fit +θipq

)}
(11)

where: 

Aipq = Aiq ( fi)σipq

Bipq = Biq ( fi)σipq

Aiq,Biq ∼N (0,1)
σipq =

∣∣Hpq ( fi)
∣∣√∆ f

θipq = arg
[
Hpq ( fi)

]
H( fi) = S( fi)

1
2

.

i being the frequency index, p being the current process index and q
being the summation index (p being fixed) on all the processes (to
introduce correlation between Xp and Xq).

Results analysis

In order to verify the adequateness of the computed samples,
the empirical auto and cross-correlation functions are calculated and
compared to the analytical ones in Fig. 9. Analogously to Eq. (5), for
a stationary process, the (auto and cross) correlation coefficients are
defined as:

ρpq (τ) =
Rpq (τ)

V
[
Xp
]

V
[
Xq
] . (12)

Rpq (τ) being the related correlation function defined as:

Rpq (τ) = E
[
Xp (t)Xq (t +τ)

]
, t ∈ [0,T ] (13)

where τ is the time shift between the two instants t and t +τ involved
in Eq. (13). As mentioned earlier, τ ∈ [−T,T ]. Using Eq. (11) in (13)
yields:

Rpq (τ) =
n f

∑
i=1

n

∑
z=1

∣∣Hpz ( fi)Hqz ( fi)
∣∣∆ f cos

(
2π fitτ+θiqz−θipz

)
.

(14)

Due to Eq. (10), in both the low-pass and the band-pass cases, the
correlation functions are given by:

R11 (τ) =
S01

2π
sin(2π f2τ)− sin(2π f1τ)

τ

R22 (τ) =
S02

2π
sin(2π f2τ)− sin(2π f1τ)

τ
(15)

R12 (τ) =
Re [S012]

2π
sin(2π f2τ)− sin(2π f1τ)

τ

+
Im [S012]

2π
cos(2π f2τ)− cos(2π f1τ)

τ
.

Table 2: Comparison between the theoretical and the empirical variances
and cross-correlation coefficients, narrow-band (top) and wide-band
(bottom) cases.

Empirical (target) value Relative gap
V [X1] 3.0267 (3) 0.89%
V [X2] 5.0462 (5) 0.92%
ρ12 0.9082 (0.9) 0.91 %

Empirical (target) value Relative gap
V [X1] 2.9999 (3) -0.004%
V [X2] 5.0005 (5) 0.011%
ρ12 0.9001 (0.9) 0.008 %

In order to compare the empirical and analytical correlation
coefficients in a proper way, both the empirical and analytical
correlation functions are normalized using the theoretical values of
the variances. To quantify the precision of the simulation, we
are interested in comparing in detail the theoretical and empirical
values of the variances and cross-correlation coefficients. n f =

102 frequencies are used in the narrow-band case and n f = 2.103

frequencies are used in the wide-band case. We can see from Fig. 9
that the empirical auto and cross-correlation coefficients agree well
with the analytical ones. Moreover, Table 2 shows that the empirical
variances and cross-correlation coefficients of the computed processes
are in total agreement with the theoretical ones. This implies that
the simulated processes actually correspond to their respective target
PSDs and are accurately correlated.

Here again, storing the greatest value of each realization enables
us to compute the bivariate EVD as well as the associated margins.
The latter are fitted by GEV distributions in Fig. 11, as we did for
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the one-dimensional case. These can be used to find the bivariate
distribution. In the literature, Raynal-Villasenor and Salas (1987) and
Elshamy (1992) present two differentiable models that are well suited
for our study. From them, we consider the more flexible and widely
applicable model:

Fm12 (s1,s2) = exp
{
− [{−ln [Fm1 (s1)]}m +{−ln [Fm2 (s2)]}m]

1
m

}
(16)

where Fmi (si) is the marginal EVD of the process Xi (t), Fm12 (s1,s2)
denotes the related bivariate EVD and m is the association parameter.
It is such that m ∈ [1,+∞[, where m = 1 gives the independence case
and m → +∞ corresponds to a complete dependence between the
margins. This parameter is a function of the correlation coefficient
ρm between the marginal EVD:

m = (1−ρm)
− 1

2 . (17)

Figure 9: Comparison between empirical and analytical correlation coefficients, narrow-band (left) and wide-band (right) PSDs.
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Figure 10: Bivariate extreme value distributions, narrow-band (top) and
wide-band (bottom) cases.

Figure 11: Relative error between the empirical margins and their GEV
fits, narrow-band (top) and wide-band (bottom) cases.

In this work, ρm is obtained from empirical data using Matlab
(corrcoef function). Then Eq. (16) can be used with the GEV fit of
the margins. The resulting distribution fits very well the empirical
bivariate EVD, as shown by Fig. 10. This arises since fitting the

extreme value margins with GEV distributions yields little errors (see
Fig. 11).

Application Considering an Hydrology Spectrum

Input data

Here we consider mechanical stresses involved in a combination
of a traction and a torsion loading, respectively Sxx (t) and Sxy (t).
Other components of the stress tensor are considered equal to zero. In
the following, instead of simulating Sxx (t) and Sxy (t), we generate the
associated stresses processes needed for a fatigue criterion (Lambert
et al., 2010): {

X1 (t) =
√

3
3 Sxx (t)

X2 (t) = Sxy (t)
.

Statistical moments are supposed to be the following:
E [Sxx (t)] = 0MPa
E
[
Sxy (t)

]
= 0MPa

V [Sxx (t)] = 2700MPa2

V
[
Sxy (t)

]
= 675MPa2

⇒


E [X1 (t)] = 0MPa
E [X2 (t)] = 0MPa
V [X1 (t)] = 900MPa2

V [X2 (t)] = 675MPa2

.

The previous considerations will now be applied to a realistic
example which may be related to a tidal stream turbine. In this case,
the mechanical stresses PSDs may be of the following type:Spq ( f ) = 2π Apq

(2π f )5 e
−
(

3.11
(2π f )4×82

)
f > 0

Spq ( f ) = 0 f = 0
. (18)

Equation (18) represents a Bretschneider spectrum and is illustrated
in Fig. 12. This kind of PSD is often encountered in the field of
hydrology (Dalrymple, 1994). The values of the constants Apq are
set as follows: A11 = 174.94 S.I. units, A22 = 131.21 S.I. units,
A12 = 136.35 S.I. units. It should be noted that in either case, A11
is such that V [X1 (t)] = 900 MPa2, A22 is such that V [X2 (t)] = 675
MPa2 and A12 is such that cov[X1(t),X2(t)]√

V[X1(t)]V[X2(t)]
= 0.9. This situation is

represented in Fig. 12.

Figure 12: PSDs of the interested hydrology case.

Using the above-mentioned PSDs and properties, the signals
samples look like those illustrated by Fig. 13. n f = 104 frequencies
are used. When comparing with Fig. 3, these signals correspond to
wide-band processes. Moreover, it should be noticed that “short time”
does not represent the same duration as in the academic cases. This is
due to the difference of the related central frequencies: 10 Hz in the
academic examples and 0.1 Hz in this application example.
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Figure 13: Process (X1) sample during a short (top) and a longer (bottom)
time.

Results analysis

In order to verify the adequateness of the computed samples,
the empirical auto and cross-correlation functions are compared to
the analytical ones in Fig. 14. n f = 104 frequencies are used.
Equations (12) to (14) are still valid in this situation. To compare
the empirical and analytical correlation coefficients in a proper way,
both the empirical and analytical correlation functions are normalized
using the theoretical values of the variances. Due to the complexity
of the involved PSDs, the analytical correlation functions cannot be
evaluated analytically but they are computed by means of the IFFT
algorithm. To quantify the precision of the simulation, let us compare
in detail the theoretical and empirical values of the variances and
cross-correlation coefficients. From Fig. 14, the empirical correlation
coefficients agree well with the analytical ones. Moreover, Table
3 shows that the variances and cross-correlation coefficient of the
computed processes are in total agreement with the theoretical values.
This implies that the simulated processes actually correspond to their
respective target PSDs and are correctly correlated.

As we did in the previous subsection Results analysis, marginal
EVDs are fitted by GEV distributions. Figure 15 shows that the
relative error is low. Then Eq. (16) can be used with the GEV
approximations of the margins. The resulting distribution fits very
well the empirical bivariate EVD, as shown by Fig. 16.

Table 3: Comparison between the theoretical and the empirical variances
and cross-correlation coefficients.

Empirical (target) value Relative gap
V [X1] 899.7903 (900) -0.0233 %
V [X2] 674.7338 (675) -0.0394 %
ρ12 0.8997 (0.9) -0.0325 %

Figure 14: Comparison between empirical and analytical correlation
coefficients.

Figure 15: Relative error between the empirical margins and their GEV
fits.
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Figure 16: Bivariate extreme value distributions.

Conclusions and Perspectives

We have presented an appropriate generation method for
correlated Gaussian processes, dealing quite fast with a great amount
of data thanks to the use of the IFFT algorithm. Moreover, it is
able to give the processes extreme value distributions (univariate
and multivariate) with a good quality, having a great confidence
interval. Fitting the extreme value margins with GEV distributions
provides excellent approximations and the model chosen for building
the bivariate extreme value distribution is accurate. With this result,
the structural reliability can then be evaluated by estimating the
equivalent shear stress that is involved in multiaxial fatigue criteria;
see Lambert et al. (2010) for an example of such an approach.

However, the bivariate extreme value distribution model involves
the associated margins (or here their GEV fits) as well as the
extreme value cross-correlation coefficient. Both these quantities are
currently known from Monte-Carlo simulations, which are still time-
consuming. Further work is then to be carried out to evaluate the
cross-correlation coefficient of the extreme value distribution directly
from the spectral description of the related processes. The same
remark holds for the parameters of the GEV distributions fitting the
margins. The influence parameters may be the spectral shapes and
moments of the involved PSDs as well as the samples duration. The
extension of the presented model for building bivariate EVD to more
than two processes is also to be considered in order to deal with up to
six-dimensional stress fields.

Appendix

Ergodicity for the mean

For more convenience, we introduce ωi = 2π fi in the following
statements. At any given time t, the mathematical expectation of the
process Xp (t) is:

µxp (t) = E
[
Xp (t)

]
=

n f

∑
i=1

n

∑
q=1
σipq

{
E
[
Aiq
]

cos
(
ωit +θipq

)
+ E

[
Biq
]

sin
(
ωit +θipq

)}
= 0.

For any given realization of the process Xp (t), the temporal mean is:

µ
(r)
xp =

1
T

n f

∑
i=1

n

∑
q=1
σipq

{
A(r)

iq

∫ T

0
cos
(
ωit +θipq

)
dt

+ B(r)
iq

∫ T

0
sin
(
ωit +θipq

)
dt
}
= 0.

Both the mathematical expectation and the temporal mean are equal
(to zero), hence the processes are ergodic for the mean value.

Non ergodicity for the correlation function

At any given time t, the correlation function between the
processes Xp (t) and Xz (t) is:

Rpz (τ) = E
[
Xp (t)Xz (t +τ)

]
=

n f

∑
i1=1

n f

∑
i2=1

n

∑
q1=1

n

∑
q2=1

σi1 pq1σi2zq2

×
{

E
[
Ai1q1 Ai2q2

]
cos
(
ωi1 t +θi1 pq1

)
cos
(
ωi2 (t +τ)+θi2zq2

)
+E

[
Ai1q1 Bi2q2

]
cos
(
ωi1 t +θi1 pq1

)
sin
(
ωi2 (t +τ)+θi2zq2

)
+E

[
Bi1q1 Ai2q2

]
sin
(
ωi1 t +θi1 pq1

)
cos
(
ωi2 (t +τ)+θi2zq2

)
+ E

[
Bi1q1 Bi2q2

]
sin
(
ωi1 t +θi1 pq1

)
sin
(
ωi2 (t +τ)+θi2zq2

)}
=

n f

∑
i=1

n

∑
q=1
σipqσizq

×
{

E
[
A2

iq

]
cos
(
ωit +θipq

)
cos
(
ωi (t +τ)+θizq

)
+ E

[
B2

iq

]
sin
(
ωit +θipq

)
sin
(
ωi (t +τ)+θizq

)}
.

Since Aiq and Biq are zero-mean random variables, their mean

square values are equal to their (unit) variances E
[
A2

iq

]
=E

[
B2

iq

]
= 1.

This yields:

Rpz (τ) =
n f

∑
i=1

n

∑
q=1
σipqσizq

{
cos
(
ωit +θipq

)
cos
(
ωi (t +τ)+θizq

)
+ sin

(
ωit +θipq

)
sin
(
ωi (t +τ)+θizq

)}
=

n f

∑
i=1

n

∑
q=1
σipqσizqcos

(
ωitτ+θizq−θipq

)
.

For any given realization of the processes Xp (t) and Xz (t), the
temporal correlation function is:

R(r)
pz (τ) =

〈
X(r)

p (t)X(r)
z (t +τ)

〉
=

1
T

∫ T

0
X(r)

p (t)X(r)
z (t +τ)dt

=
1
T

n f

∑
i1=1

n f

∑
i2=1

n

∑
q1=1

n

∑
q2=1

σi1 pq1σi2zq2

×
{

A(r)
i1q1

A(r)
i2q2

∫ T

0
cos
(
ωi1 t +θi1 pq1

)
cos
(
ωi2 (t +τ)+θi2zq2

)
dt

+A(r)
i1q1

B(r)
i2q2

∫ T

0
cos
(
ωi1 t +θi1 pq1

)
sin
(
ωi2 (t +τ)+θi2zq2

)
dt

+B(r)
i1q1

A(r)
i2q2

∫ T

0
sin
(
ωi1 t +θi1 pq1

)
cos
(
ωi2 (t +τ)+θi2zq2

)
dt

+ B(r)
i1q1

B(r)
i2q2

∫ T

0
sin
(
ωi1 t +θi1 pq1

)
sin
(
ωi2 (t +τ)+θi2zq2

)
dt
}

=
1
T

n f

∑
i1=1

n f

∑
i2=1

n

∑
q1=1

n

∑
q2=1

σi1 pq1σi2zq2

×
{

A(r)
i1q1

A(r)
i2q2

I1 +A(r)
i1q1

B(r)
i2q2

I2 +B(r)
i1q1

A(r)
i2q2

I3 +B(r)
i1q1

B(r)
i2q2

I4

}
.
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After some calculations, we find:

I1 =
1
2

∫ T

0
cos
(
(ωi1 −ωi2) t−ωi2τ+θi1 pq1 −θi2zq2

)
dt

I2 =−
1
2

∫ T

0
sin
(
(ωi1 −ωi2) t−ωi2τ+θi1 pq1 −θi2zq2

)
dt

I3 =
1
2

∫ T

0
sin
(
(ωi1 −ωi2) t−ωi2τ+θi1 pq1 −θi2zq2

)
dt

I4 =
1
2

∫ T

0
cos
(
(ωi1 −ωi2) t−ωi2τ+θi1 pq1 −θi2zq2

)
dt.

Replacing I1 to I4 by their respective expressions gives:

R(r)
pz (τ) =

1
T

n f

∑
i1=1

n f

∑
i2=1

n

∑
q1=1

n

∑
q2=1

σi1 pq1σi2zq2

×

A(r)
i1q1

A(r)
i2q2

+B(r)
i1q1

B(r)
i2q2

2

∫ T

0
cos
((
ωi1 −ωi2

)
t−ωi2τ+θi1 pq1 −θi2zq2

)
dt

+
B(r)

i1q1
A(r)

i2q2
−A(r)

i1q1
B(r)

i2q2

2

∫ T

0
sin
((
ωi1 −ωi2

)
t−ωi2τ+θi1 pq1 −θi2zq2

)
dt


=

1
T

n f

∑
i=1

n

∑
q=1
σipqσizq

A(r)2

iq +B(r)2

iq

2

∫ T

0
cos
(
−ωiτ+θipq−θizq

)
dt

=

n f

∑
i=1

n

∑
q=1
σipqσizq

A(r)2

iq +B(r)2

iq

2
cos
(
ωiτ+θizq−θipq

)
.

Both the mathematical expectation and the temporal mean are not
equal, hence the processes are not ergodic for the correlation function.
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