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Abstract

Background: Coagulase negative staphylococci (CoNS) are commensal bacteria on human skin. Staphylococcus
lugdunensis is a unique CoNS which produces various virulence factors and may, like S. aureus, cause severe infections,
particularly in hospital settings. Unlike other staphylococci, it remains highly susceptible to antimicrobials, and genome-
based phylogenetic studies have evidenced a highly conserved genome that distinguishes it from all other staphylococci.

Results: We demonstrate that S. lugdunensis possesses a closed pan-genome with a very limited number of new genes,
in contrast to other staphylococci that have an open pan-genome. Whole-genome nucleotide and amino acid identity
levels are also higher than in other staphylococci. We identified numerous genetic barriers to horizontal gene transfer
that might explain this result. The S. lugdunensis genome has multiple operons encoding for restriction-modification,
CRISPR/Cas and toxin/antitoxin systems. We also identified a new PIN-like domain-associated protein that might belong
to a larger operon, comprising a metalloprotease, that could function as a new toxin/antitoxin or detoxification system.

Conclusion: We show that S. lugdunensis has a unique genome profile within staphylococci, with a closed pan-genome
and several systems to prevent horizontal gene transfer. Its virulence in clinical settings does not rely on its ability to
acquire and exchange antibiotic resistance genes or other virulence factors as shown for other staphylococci.

Keywords: Staphylococcus lugdunensis, Comparative genomics, Pan genome, Core genome, Toxin/antitoxin,
Restriction-modification, CRISPR

Background
Staphylococcus lugdunensis is a commensal bacterium
found on human skin that has been reported as a cause of
severe infections in hospital and community settings [1].
Its clinical virulence clearly distinguishes this coagulase-
negative staphylococcus (CoNS) from others in the genus.
It appears closest to S. aureus in terms of clinical sig-
nificance and virulence; infection rates may reach 40%
when, typically, hospital microbiology laboratories consider

infection rates of 25% or less for other CoNS [2]. In vitro
studies have revealed the existence of several putative
virulence factors, such as haemolysins, adhesion proteins,
and one protease that might constitute the cornerstone of
S. lugdunensis virulence [3, 4]. Recent genomic studies
have demonstrated some general characteristics of this
particular CoNS. Its genome is closer to that of S. aureus
than other CoNS, possessing several mobile genetic ele-
ments (MGEs) such as plasmids and prophages, which
have been described at a genetic level in seven strains,
although these do not seem to support the virulence
profile of this bacterium [5, 6]. In contrast, MGEs in the
form of plasmids, phages, phage-related chromosomal
islands (PRCIs, including S. aureus pathogenicity islands
SaPIs), transposons, staphylococcal cassette chromosomes
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(SCCs), integrative and conjugative elements, accounting
for up to 25% of the genome of S. aureus, are also wide-
spread in other CoNS, and play a crucial role in the
modulation of their virulence [7]. Surprisingly, S. lugdu-
nensis, in contrast to all other staphylococci, displays a
highly conserved antibiotic sensitivity profile, and methi-
cillin resistance is extremely rare even in hospital settings,
notwithstanding the few SCC mec-bearing strains that
have been described [3, 8, 9]. Prophages, plasmids, and
SaPIs usually bear S. aureus pore-forming toxins and
superantigen enterotoxin coding sequences [10]. The
existence of such a large repertoire of MGEs in
staphylococci is evidence of an open pan-genome with a
constantly increasing collection of distinct genes [11–13].
This is exemplified in S. aureus and S. epidermidis, despite
their core genome being limited and remarkably con-
served, favoring their clonality. In contrast to sexual
species such as Streptococcus pneumoniae, recombina-
tions are very rare in S. aureus, and to a lesser extent in
S. epidermidis. Similarly, Chassain et al. found that S.
lugdunensis also presents a clonal population structure
in multilocus sequence typing (MLST) studies with an
allelic polymorphism even lower than in S. aureus and
S. epidermidis [14, 15]. This observation, along with the
highly conserved antibiotic susceptibility, probably indi-
cates the existence of barriers to horizontal genetic transfer,
and correlates with the difficulties experienced in trans-
formation of S. lugdunensis [16–18].
Various genetic elements have been proposed that con-

trol genome stability in bacteria [19]. In S. aureus, whose
genetic resistance to horizontal gene transfer (HGT) has
long been noticed in laboratories, this relative “immunity”
mainly relies on a strong restriction-modification (RM)
system that also exists in CoNS such as S. epidermidis,
and this noticeably impairs phage infectivity [20–23]. To
date, four RM systems have been described in staphylo-
cocci—Types I, II, III, and IV—with Type II not observed
in S. epidermidis [20, 24]. These systems comprise two
enzyme factors, a restriction endonuclease and a methyl-
transferase, which may differ in their subunit composition,
sequence recognition, cleavage position, cofactor re-
quirements, and substrate specificity [24]. Heilbronner
et al. showed that the S. lugdunensis strain N920143
possessed a functional Type I RM system (SluI), whose
inactivation resulted in improved transformation with
E. coli plasmid [16].
Clustered regularly interspaced short palindromic repeats

(CRISPR) associated with Cas protein (CRISPR/Cas)
systems have been described more recently in S. aureus
and S. epidermidis, and constitute another strong barrier to
foreign DNA uptake, particularly plasmid DNA [25–27]. In
S. aureus and CoNS, Class 1 Type IIIA CRISPR/Cas
systems have been predominantly identified, containing the
universal cas1–2 genes in addition to cas6, and csm1 to

csm6 [28, 29]. Class 2 Type IIC CRISPR/Cas systems have
also been identified in staphylococci, containing the cas9
gene in addition to the cas1–2 genes. Rossi et al. screened
122 genomes from 15 species of CoNS and found that only
15% of them harbored complete CRISPR/Cas systems,
mainly from Type IIIA (Cas6-associated system) and Type
IIC (Cas9-associated system) [28]. It has been proposed
that this low abundance of CRISPR/Cas systems in CoNS
(compared to other bacteria among which 40 to 50% bear
CRISPR/Cas systems) could be linked to their role as
gene reservoirs for other staphylococci such as S. aureus,
particularly for antibiotic resistance genes [29].
Toxin/antitoxin (T/AT) systems form a third group of

systems that might prevent foreign DNA uptake in
bacteria, including S. aureus and CoNS. If, as has been
proposed, their role in controlling bacterial growth and
metabolic processes is central, then these systems could
protect their host from phages and other MGE acquisition
[30, 31]. Currently, various models have been described in
S. aureus, including some among Type I systems (SprA1/
SprA1AS, SprF/SprG), Type II systems (MazEF, PemIK,
YefM-YoeB, Omega/Epsilon/Zeta), and Type III systems
(tenpIN). MazEF was originally described in E. coli and
was the first chromosomal T/AT system reported in S.
aureus. Since then, a MazEF system has also been charac-
terized in S. equorum, and several orthologues have been
described in Gram-positive bacteria, but not in CoNS
(other than S. equorum), even though the presence of such
systems might be expected considering their wide distri-
bution [32]. To date, the MazEF system from S. aureus is
the best characterized, particularly through the work of
Schuster et al. [33–36].
The extremely conserved antibiotic sensitivity profile

of S. lugdunensis, along with the existence of various
MGEs in this pathogenic species, motivated our study to
explore its core and pan-genome profiles through com-
parative genomics analysis, and to further research the
presence of barriers to HGT.

Results
Comparative genomics
The core and pan-genome development plots of S. lugdu-
nensis, S. aureus, and S. epidermidis are shown in Fig. 1
and Additional file 1. S. aureus and S. epidermidis possess
an open pan-genome that constantly grows as new
genomes are added, reaching 3864 genes for S. epidermi-
dis after the inclusion of 13 genomes, and 3828 genes for
S. aureus after the inclusion of 15 genomes. In contrast, S.
lugdunensis seems to possess a closed pan-genome that
rapidly plateaus at under 3000 genes even after the inclu-
sion of 15 genomes. The core genome of the 3 species
displays a similar evolution, and rapidly stagnates at
close to 2000 genes. Core and pan-genome development
extrapolations gave the same results, projecting a constantly
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increasing number of genes in the pan-genome of S. aureus
and S. epidermidis while projecting S. lugdunensis to
plateau at under 3000 genes (Fig. 1 and Additional file 1).
Growth exponent value was 0.066 (95% confidence
interval 0.065–0.067) for S. lugdunensis versus 0.217
(95% confidence interval 0.214–0.220) and 0.123 (95%
confidence interval 0.121–0.124) for S. epidermidis and
S. aureus, respectively (Additional file 1). Core genome
trends are similar, rapidly becoming limited to about 2000
genes for the three species. The extrapolated core genome
sizes were 1944 (95% confidence interval 1933–1956) for
S. lugdunensis, 2099 (95% confidence interval 2091–2015)
for S. aureus, and 1811 (95% confidence interval 1807–
1817) genes for S. epidermidis, respectively (Additional
file 1). As suggested by MLST studies, S. lugdunensis
might even possess a conserved core genome with average
nucleotide identity (ANI) ranging from 99.5 to 99.9%,

whereas it ranges from 97.5 to 99.8% for S. aureus and
96.6 to 99.7% for S. epidermidis (detailed results in
Additional file 2) [14, 15]. Average amino acid identity
(AAI) ranges were similar, from 99.5 to 99.9% for S.
lugdunensis, 98.5 to 99.9% for S. aureus and 98.3 to
99.7% for S. epidermidis.
A phylogenetic tree created for all three species together

shows a clear separation of S. aureus, S. epidermis, and S.
lugdunensis (see Fig. 2). They all form monophyletic
branches that are clearly separated from each other.
Phylogenetic distances were very small in general, with
the S. lugdunensis branch showing the lowest distances
between within-species branches. Structural genomic ana-
lysis of S. lugdunensis genomes gave further evidence of
the highly conserved genomes of the S. lugdunensis spe-
cies. With the exception of small translocations in strains
C33, VISLISI 37 and VISLISI 22, all 15 compared genomes

A B

C D

E F

Fig. 1 Pan-genome and core genome development plot projections for S. lugdunensis (Panel a and b), S. epidermidis (Panel c and d), and S. aureus
(Panel e and f). All calculations were done using the EDGAR software platform. For pan-genome development plot extrapolation: the red curve shows
the fitted exponential Heaps’ low function, and the blue and green curves indicate the upper and lower boundary of the 95% confidence interval. For
Core genome development plot extrapolation: the red curve shows the fitted exponential decay function, and the blue and green curves indicate the
upper and lower boundary of the 95% confidence interval
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show a highly conserved gene order, with no signs of
larger genomic rearrangements. This again demonstrates
the genomic stability of S. lugdunensis (Fig. 3).

Functional analysis
To compare core genome functional categories, we used
functional assignments from the COG database. Results
are shown in Fig. 4. The core gene category repartition
was highly similar among the 3 species, exceptions being
that S. epidermidis lacks any genes involved in chromatin
structure and dynamics, and both S. lugdunensis and S.
aureus lack any cytoskeleton category genes.

Identification of barriers to HGT in MGEs
S. lugdunensis genome length ranged from 2.5 to
2.7 Mb, with GC content constituting between 33.7 and
33.9% (Table 1). All genomes contained 2397–2584 coding
sequences, with 46–60 tRNA, 4–19 rRNA, and all strains
displayed one tmRNA. In addition to the phages previ-
ously identified in the VISLISI strains, we identified 3
additional prophages. One additional plasmid was retrieved
from the strain FDAARGOS_381. We did not identify
pathogenicity islands in any of the 15 published genomes
for S. lugdunensis. Seven complete prophages were identi-
fied (Table 2). Length ranged from 37.7–57 kb, and GC
content varied from 33.8 to 35.2%. All are close to known

Fig. 2 Phylogenetic tree illustrating genetic relationships between strains. The phylogenetic tree was built based on the complete core genome
of the analyzed strains. Alignments of the each individual core gene set were generated using MUSCLE and subsequently concatenated to one
large supermatrix. Fasttree was used to infer a maximum likelihood tree from this core gene alignment. Shimodaira-Hasegawa support values.
Calculations were made for the three species and show that they form three clearly separated clusters within the phylogenetic tree
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prophages previously identified in S. aureus, S. epidermidis,
and S. hominis. Four of the 7 prophages exhibited a Zn2+

carboxy peptidase gene sequence, but no sequences for
antibiotic resistance genes or T/AT systems. We identified
a CRISPR-associated gene cas2 in the phage from
VISLISI_22, but without either CRISPR-associated
genes or CRISPR sequence. None of the plasmid sequences
retrieved from the GenBank database carried any loci cod-
ing for protease, PIN-like domain, T/AT, or CRISPR/Cas.
A Type II RM system was identified in C33 pVISLISI_5,
and sequence analysis is detailed below.

Identification of CRISPR/Cas systems
CRISPRFinder identified several CRISPR structures in
the 15 S. lugdunensis genomes, some being confirmed
CRISPR sequences, others being questionable as CRISPR
either because of their small size (with only 2 or 3 direct
repeat (DR) sequences), or because the repeat motifs in
the CRISPR were not 100% identical. The complete list
of all CRISPRs recovered is available in Additional file 3.
Overall, 6 confirmed CRISPR/Cas systems were identi-
fied in 6 different genomes from the strains: HKU0901,
N920143, VISLISI_27, VISLISI_33, VISLISI_37, and C33.
Several questionable CRISPRs were identified in all 15
strains, with a total number ranging from 4 to 11 per
genome. The genetic environment of all CRISPR sequences
was analyzed using ARTEMIS (v.16.0.0), and we identified

Cas genes in association with the 6 confirmed CRISPR
sequences. The CRISPR/Cas systems from HKU0901,
N920143, VISLISI_27, VISLISI_33, and VISLISI_37 corre-
sponded to a Class 1 Type IIIA system according to the
classification of Koonin et al., with the conserved modular
organization of this family [29]. The adaptation module
comprised cas1 and cas2, followed by the small subunit loci
csm1 to csm6, the cas6 gene, which is the endonuclease
that belongs to the effector module, and finally the CRISPR
sequences. Unlike in S. aureus, the CRISPR sequences are
located downstream of the cas6 gene, as seen in most other
Type IIIA CRISPR/Cas systems in CoNS [26, 28]. These 5
CRISPR/Cas systems were aligned using Easyfig (v.2.2.2),
and showed 100% sequence identity regarding the Cas
coding sequences (Additional file 4). The CRISPR regions
showed variable sequence identity levels, ranging from 71
to 100%. We identified 19 distinct spacers and 3 DRs
(Fig. 5). Spacer sequence details are available in Additional
file 3. No known origin was found in BLAST for any of the
12 spacers, whereas putative matches were found for 7 of
them with sequences that might originate from known
MGEs. Results are detailed in Table 3. We also observed
that DRs are highly conserved and nearly identical in all 5
strains. In particular, the core region included a CCCC
region separated by 8 nucleotides from a GGGG pattern;
these could interact to form the typical hairpin structure
involved in the initial processing of the CRISPR transcript.

A B

Fig. 3 Structural genomic comparison of S. lugdunensis reference strain HKU0901 with the 14 other complete S. lugdunensis genomes. Synteny
plots were produced by using EDGAR web server, showing the stop positions of orthologous gene pairs in different genomes. S. lugdunensis
HKU09101 genome was compared with the 14 other genomes by splitting the analysis in two for better visual representation (panel a and b).
Although some genomes have differing start positions, they all show a high degree of co-linearity, indicating a high level of relatedness and a
low level of genomic rearrangement activity within the nalayzed set
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Fig. 4 COG functional categories from the core genome of S. lugdunensis, S. aureus, and S. epidermidis strains. Gene lists were predicted using the
EDGAR web server, and COG categories obtained by loading them into the WebMGA web server. COG categories are as follows: for cellular processes
and signaling, d is cell cycle control, cell division, and chromosome partitioning; m is cell wall/membrane/envelope biogenesis; n is cell motility; o is
post-translational modification, protein turnover, and chaperones; t is signal transduction mechanisms; u is intracellular trafficking, secretion, and
vesicular transport; v is defense mechanisms; and z is cytoskeleton. For information storage and processing, b is chromatin structure and dynamics; j is
translation, ribosomal structure, and biogenesis; k is transcription; and l is replication, recombination, and repair. For metabolism, c is energy
production and conversion; e is amino acid transport and metabolism; f is nucleotide transport and metabolism; g is carbohydrate transport and
metabolism; h is coenzyme transport and metabolism; i is lipid transport and metabolism; p is inorganic ion transport and metabolism; and q is
secondary metabolite biosynthesis, transport, and catabolism. r is for general function prediction only, and s for unknown function

Table 1 S. lugdunensis whole genome sequence content in comparison with S. aureus and S. epidermidis

Strain Size (Mb) GC (%) Content Gene Protein rRNA tRNA tmRNA Plasmids Phages PRCIs1

S. lugdunensis HKU0901 2.7 33.9 2567 2425 19 61 1 0 1 0

N920143 2.6 33.8 2498 2383 16 55 1 0 1 0

FDAARGOS_141 2.6 33.8 2465 2350 19 60 1 0 0 0

FDAARGOS_143 2.6 33.9 2515 2347 19 60 1 0 1 0

FDAARGOS_222 2.5 33.8 2414 2261 16 59 1 0 0 0

Klug93G-4 2.6 33.8 2501 2358 20 69 1 0 0 0

FDAARGOS_377 2.6 33.8 2479 2351 19 60 1 0 0 0

FDAARGOS_381 2.6 33.8 2482 2344 19 60 1 1 0 0

VISLISI_21 2.5 33.7 2437 2344 6 46 1 0 0 0

VISLISI_22 2.6 33.8 2459 2353 6 59 1 1 1 0

VISLISI_25 2.5 33.8 2397 2293 4 48 1 0 0 0

VISLISI_27 2.6 33.7 2508 2391 7 59 1 1 0 0

VISLISI_33 2.7 33.7 2584 2465 6 55 1 1 2 0

VISLISI_37 2.6 33.7 2482 2391 6 52 1 0 1 0

C33 2.5 33.9 2405 2292 5 52 1 2 0 0

S. aureus MW2 2.8 32.8 2934 2778 19 60 1 0 2 1

S. epidermidis ATCC12228 2.6 32.0 2545 2378 19 60 1 2 0 1

1 Phage Related Chromosomal Islands (including S. aureus pathogenicity islands)
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This conserved motif is also present in other CoNS and
S. aureus [26, 28].
Unlike in the other 5 strains, the C33 complete

CRISPR sequence was not associated with Type IIIA Cas
coding loci but with Class 2 Type IIC cas genes (as
classified according to Koonin et al. [29]), including the
cas1 and cas2 genes from the adaptation module, and
the cas9 gene, which is the effector of this CRISPR/Cas
system type. CRISPR sequences were located upstream
of the cas9 gene that displayed several stop codons,
making it a pseudogene and the whole operon probably
ineffective. Nevertheless, when analyzing the possible
BLAST matches of the 11 spacers, only 1 match for the

second spacer was observed, for a Bacillus phage sequence
(coverage 66%, identity 100%, score 39).
Finally, we performed BLAST searches for the 91

questionable CRISPR sequences that were not associated
with any cas loci, since several CRISPRs described in the
literature are not associated with cas genes, and conversely,
several cas genes might be isolated [37]. We identified one
recurrent DR sequence that does not match any of the
3 DRs identified in the Type IIIA complete CRISPR/Cas
systems of S. lugdunensis, and that notably lacks the
highly conserved CCCC-GGGG motif, which might
confer loss of function. Nevertheless, we also identified
1 recurrent spacer that gives an interesting BLAST hit

Table 2 S. lugdunensis complete prophages and identification of putative barriers to HGT

Strain Complete
Prophage

Length (kb) GC% Total
Proteins

Common Phage Peptidases T/AT1 RM2 CRISPR/Cas
Systems

HKU0901 1 37.7 34.57 58 PHAGE_Staphy_PH153 0 0 0 0

N920143 1 49.4 34.42 63 PHAGE_Staphy_TEM1234 Zn2+ carboxy peptidase 0 0 0

FDAARGOS_143 1 57.0 35.24 55 PHAGE_Staphy_CNPx_NC_0312415 0 0 0

VISLISI_22 1 49.4 34.3 53 PHAGE_Staphy_StB126 Zn2+ carboxy peptidase 0 0 cas2

VISLISI_33 1 44.4 33.8 52 PHAGE_Staphy_StB12 Zn2+ carboxy peptidase 0 0 0

1 28.1 34.4 52 PHAGE_Staphy_PH15 0 0 0 0

VISLISI_37 1 47.0 34.35 58 PHAGE_Staphy_StB12 Zn2+ carboxy peptidase 0 0 0
1 T/AT systems
2 RM systems
3 PHAGE_Staphy_PH15: S. epidermidis phage
4 PHAGE_Staphy_TEM123: S. aureus phage
5 PHAGE_Staphy_CNPx_NC_031241: S. epidermidis phage
6 PHAGE_Staphy_StB12: S. hominis phage

Fig. 5 DR sequences and spacers in type IIIA CRISPR/Cas systems from S. lugdunensis
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with the S. aureus pathogenicity island SaPI2 from the
strain RN3994 (coverage 100%, identity 100%, score 79)
[38]. Thus, most of these sequences are probably real
orphan CRISPRs that have lost their function and are
not misidentified repeated sequences (false CRISPRs).

Identification of T/AT systems
T/AT identification was performed on the available
annotations of the 15 annotated S. lugdunensis genomes,
and on the de novo annotations that were generated using
PROKKA (v1.12). As described for S. equorum and S.
aureus, we identified a complete MazEF-rsbUVW-sigB
T/AT system in the 15 strains with a conserved operon
organization at about 100% BLAST identity (Additional
file 5). The mazEF genes are located upstream the of
the sigB locus that comprises rsbU, rsbV, rsbW and sigB.
We also identified an alanine racemase rac that belongs to
this operon (whose role has not been clearly determined
to date). MazEF has been reported in the genomes of
several Gram-positive bacteria, but among these, the only
CoNS representative is S. equorum KM1031 (NCBI
accession number NZ_CP013980.1). We therefore extended
the search for this system in S. aureus MW2, and 3 other
CoNS: S. xylosus strain S170 (NCB accession number
NZ_CP013922.1), S. capitis FDAARGOS_378 (NCBI acces-
sion number NZ_CP023966.1), and S. epidermidis strain
ATCC12228 (NCBI accession number) (Additional file 5).
All genes from the MazEF operon of the 15 S. lugdunensis
genomes have conserved open reading frames except the
strain FDARRGOS_143 in which the MazF coding sequence
consisted of nonsense mutations.
We did not identify any of the other T/AT systems that

have been previously described in S. aureus as detailed in
the material and methods section. Nevertheless, we found
one locus with a predicted PIN-like domain in 13 of the
15 S. lugdunensis genomes. This locus was systematically
associated with 1 metalloprotease coding sequence that

might belong to the M48 family (according to the
MEROPS database), and 1 N-acetyl transferase coding
sequence, leading us to hypothesize the presence of a
possible T/AT system (Fig. 6) [39]. These 3 loci, and the
10 kb upstream and downstream nucleotide sequences,
display 100% sequence identity in the 13 genomes. The
PIN-like domain locus could be regarded as a pseudogene
rather than a functional PIN gene, since the length of its
coding sequence was 41 amino acids, while the minimum
length for the PIN fold is ~ 100 amino acids. Also, its
protein product lacks a cluster of positively charged
residues that would be necessary for nucleic acid binding,
and consequently might fail to work as a functional nucle-
ase, as expected for PIN-domain containing proteins. The
downstream gene encodes a member of the minimal
acetyltransferase CG family (GCN5-related N-acetyl-
transferase, Pfam family PF14542). In an article reporting
its crystal structure in an S. aureus member of this family,
it was suggested that a second protein providing a
substrate-binding region must combine with it to yield
fully functional N-acetyltransferase [40]. It could be that
in S. lugdunensis the binding partner for the GNAT-like
protein is the deteriorated PIN protein, and the acetylation
target could be the MarR-like (of the HTH fold) protein,
encoded on the other strand.

Identification of RM systems in the main chromosome of
S. lugdunensis.
All 15 genomes were examined for the presence of RM
systems using the REBASE database, resulting in the
identification of multiple Type I and Type II RM systems
(Table 4 and Additional file 6 for genomic coordinates)
[23],. Six nearly identical Type I RM systems were identi-
fied in HKU0901, N920143, FDAARGOS_143, VISLISI_27,
VISLISI_33, and VISLISI_37. The methylase coding se-
quence displayed 90 to 98% aminoacid identity level with
the methylase Sau18 from S. aureus strain C18, a draft S.

Table 3 Origin of the spacers of the 5 Type IIIA CRISPR/Cas systems from S. lugdunensis strains HKU0901, N920143, VISLISI_27,
VISLISI_33, and VISLISI_37

Spacers BLAST Match with Known MGEs Cov1 ID2 Score3

S1 Campylobacter phage CP220 81% 90% 41

S2 Clostridium botulinum plasmid pND7 74% 92% 39

S4 Lactobacillus plasmid 78% 92% 37

S5 Bacillus thuringiensis plasmid pAM65–52-2-350 K 87% 85% 39

S6 Lactobacillus salivarius ZL5006 plasmid 77% 89% 37

S7 Streptococcus phage IPP55 77% 93% 39

S15 Staphylococcus phage vB_SepS_SEP9 100% 89% 48

S3, S8–14, S16–19 None
1 Coverage level
2 Identity level
3 BLAST score
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aureus genome with 123 contigs (NCBI accession number
GCA_001921685.1). The methylase target specificity re-
mains unknown. All 6 operons comprised 3 consecutive
genes as described for this RM Type: hsdR (restriction
locus), hsdM (modification locus), and hsdS (specificity
locus). A BLAST alignment performed with Easyfig

(v.2.2.2) found nearly 100% sequence identity among all 6.
We extended the comparison with S. aureus strain MW2,
and with E. coli strain K-12 (GenBank accession number
SC000913.3), which bears the canonical Type I RM, EcoKI
[41]. We found a very low level of identity between EcoKI
and S. lugdunensis VISLISI_33 hsd subunit amino acid

Fig. 6 Genomic context of the PIN-like domain coding sequence of S. lugdunensis and other staphylococci

Table 4 RM systems identified in S. lugdunensis using the REBASE database, and homology analysis of methylase

S. lugdunensis RM System Closest Methylase

ID1 ID score REBASE score Strain origin Nucleotide specificity

HKU0901 Type I M.SauC18 98% 1127 S. aureus C18 Unknown

N920143 Type I M.SauC18 91% 1128 S. aureus C18 Unknown

FDAARGOS_141 None

FDAARGOS_143 Type I M.SauC18 90% 1121 S. aureus C18 Unknown

Type I Sca9557 97% 1170 S. caprae 9557 Unknown

FDAARGOS_222 Type II M.ShaJ 82% 844 S. haemolyticus JCSJ1435 GATC

VISLISI_22 Type II M.ShaJ 82% 844 S. haemolyticus JCSJ1435 GATC

VISLISI_25 Type II Methylase 1

M2.Sep60 66% 329 S. epidermidis BCM-HMP0060 GGTGA

Methylase 2

M1.Sep60 66% 558 S. epidermidis BCM-HMP0060 GGTGA

VISLISI_27 Type I M.SauC18 91% 1128 S. aureus C18 Unknown

Type I M.SauMSSIII 94% 1346 S. aureus MSSA476 TAAYNNNNNNNTCNNC

VISLISI_33 Type I M.SauC18 91% 1128 S. aureus C18 Unknown

VISLISI_37 Type I M.SauC18 91% 1128 S. aureus C18 Unknown

C33 pVISLISI_5 Type II M.EfaPC41 60% 312 E. faecium PC4.1 Unknown
1 Identity
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sequences, with identity scores ranging from 16 to 25%
(according to EMBOSS Needle pairwise sequence align-
ment). Conversely, we observed higher levels of identity
between S. lugdunensis VILSISI_33 and S. aureus MW2
loci, with scores of 71, 58, and 35% for hsdM, hsdR, and
hsdS, respectively. Alignment files are available in Add-
itional file 7. Interestingly, despite low AAI levels between
hsdR from S. aureus and that from S. lugdunensis, we ob-
served that the essential motifs for DNA cleavage and
translocation were highly conserved according to the
amino acid sites identified by Roberts et al. This could
support the hypothesis that both systems belong to the
same subfamily [41]. The strains FDAARGOS_143 and
VISLISI_27 have 2 other distinct Type I RM systems, with
their methylase coding sequences displaying 97% AAI
level with methylase Sca9557 from S. caprae strain C18,
and 94% AAI level with SauMSSIII from S. aureus, re-
spectively. Type II RM systems were identified in 4 strains,
FDAARGOS_222, VISLISI_22, VISLISI_25, and the plas-
mid sequence pVISLIS_5 from C33. pVISLISI_5 is a
mobilizable plasmid with a repA replication gene,
whose closest homologous plasmid is VRSAp from S.
aureus (NCBI accession number NC_002774.1) [5].
The closest homologue found for the methylase of pVI-
SLISI_5 (60% identity) was EfaPC41 from Enterococcus
faecium strain PC4.1 (and there are no RM systems in
VRSAp). The methylase from FDAARGOS_222 and
VISLISI_22 showed 82% identity with ShaJ from S. hae-
molyticus, and the nucleotide sequence specificity was
known (GATC). Finally, the Type II RM system from
VISLISI_25 was unique among S. lugdunensis strains. The
methylase gene was duplicated as seen in its closest
homologue, Sep60 from S. epidermidis, and the sequence
specificity was known (GGTGA).

Discussion
This study presents the first comparative genomic ana-
lysis of S. lugdunensis, a species emerging as a significant
nosocomial pathogen [3]. Pan-genome and core genome
analyses revealed that S. lugdunensis displays a closed
pan-genome in contrast to all other staphylococci studied
to date and to most commensal and pathogenic human
bacteria [11, 42–46]. This wholly unexpected observation
could be explained by the concomitant identification of
several barriers to HGT, namely, CRISPR/Cas, RM, and
T/AT loci that constitute specialized systems preventing
HGT, particularly through MGEs. Although RM systems
are widespread in staphylococci, according to the REBASE
database, the identification of T/AT systems in 100% of
the 15 S. lugdunensis genomes, and of complete CRISPR/
Cas systems in 33% of them, is more surprising. Indeed, in
2017 Rossi et al. found that only 15% of 122 genomes in
15 different CoNS species harbored complete CRISPR/
Cas systems [28]. In addition, T/AT systems have been

described in only 1 CoNS species, S. equorum. The
characterization of multiple HGT prevention systems
in a single species, S. lugdunensis, is consistent with the
presence of a closed pan-genome. Besides specialized
elements such as phages and plasmids, homologous
recombination constitutes another frequent modality
for HGT, but it is seldom seen in staphylococci, even
though such a mechanism may have had an impact on
the evolutionary history of lineage separation. Indeed,
Meric et al. found evidence that homologous recombin-
ation might have changed 40 and 24% of the core genome
of S. epidermidis and S. aureus, respectively [13]. However,
over a short time scale, such events are extremely rare,
and the core genome remains mostly conserved. The high
values we found for AAI and ANI from S. lugdunensis
genomes, higher even than for S. epidermidis and S.
aureus, also suggest that genomic diversity of this species
is lower than for other staphylococci, and this observation
clearly correlates with the previously reported highly
clonal population structure of this species [14, 15].
MGEs are able directly and rapidly (within hours, even)

to modify the Staphylococcus accessory genome in vivo via
any genetic exchange occurring between S. aureus and S.
epidermidis [7]. MGEs are not to be underestimated in
their ability to reshape the whole bacterial genome, even
in what are usually considered as “immune” species, such
as staphylococci (which display a small genome size that
reflects evolutionary constraints that probably fitted them
to a limited number of hosts). Interestingly, a pan-genome
study of the sexual species S. pneumoniae, which is highly
susceptible to HGT through homologous recombination,
showed a relatively limited pan-genome size that plat-
eaued at under 5000 genes, placing this species on the
boundary between an open and closed pan-genome [43].
The openness of the pan-genomes of S. aureus and S.
epidermidis obviously relies on MGEs and, if their core
genome is highly conserved, their dispensable genomes
offer an extremely large repertoire of genes that confer
specific advantages in a defined host under particular
environmental conditions, and from a clinical point of
view, support their virulence [11]. Additionally, in
staphylococci, MGEs allow the occurrence of inter-species
genetic exchange, providing real potential for CoNS to act
as gene reservoirs facilitating the transfer of methicillin
resistance to S. aureus, especially since S. aureus has
recently been exposed as a putative gene reservoir for
CoNS [47, 48]. In this context, the existence of a closed
pan-genome in S. lugdunensis (a species emerging as a
significant pathogen) and a putative relative immunity to
HGT cannot be clearly understood in terms of evolutionary
advantage. MGEs facilitate the acquisition of genes confer-
ring antibiotic resistance and thus confer evolutionary
advantage in staphylococci such as S. epidermidis and S.
aureus, which easily and frequently acquire various
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resistance genes (one example being methicillin resistance
through SCC mec). However, S. lugdunensis remains
highly susceptible to most antibiotics, and identification of
SCC mec-bearing strains is rare; another illustration of its
apparent immunity to HGT.
Another hypothesis could be that S. lugdunensis speci-

ation has occurred only recently, and we are only now
experiencing the start of the emergence of new S. lugdu-
nensis clones whose genomes have been augmented by
various MGEs originating from other CoNS or S. aureus;
and yet, S. lugdunensis has been studied for several years
now, even in clinical settings where such genetic exchange
should have occurred. In addition, our study included
genomes from strains originating not just from one
location but from multiple countries and various settings
(nosocomial, community, infective, and contaminant
strains) (see Additional file 8). Since its first description in
1988 by Freney et al., several phylogenetic studies have
suggested that S. lugdunensis always appears to occupy
a unique cluster group, whatever the method used for
phenotyping (16S rRNA, housekeeping genes, whole
genome sequences) [49–51].
The role of the MazEF T/AT system in S. lugdunensis

has to be interpreted in the light of its particular location
on the bacterial chromosome. If the roles of plasmid
T/AT systems have been only partially elucidated, those
of chromosomal T/AT are even less well understood
(Fernández-García et al. 2016; Lee & Lee 2016; Schuster &
Bertram 2016) [33, 49, 50]. It has been suggested that such
elements lead to genetic stabilization of various MGEs as
prophages or pathogenicity islands, or impact the stress
response functions of modular elements of bacterial
growth and death [49, 51]. Interestingly, Saavedra De
Bast et al. also showed that chromosomal T/AT systems
could efficiently act as anti-addiction modules by protect-
ing bacteria against post-segregation killing, a mechanism
by which plasmid-encoded T/AT systems favour plasmid
maintenance by eliminating daughter bacteria that do not
receive a plasmid copy [30]. The widespread occurrence
of the MazEF system and its highly conserved nucleic acid
sequence do not support the hypothesis that it is a simple
remnant of past evolutionary events, and its role needs
now to be phenotypically elucidated. By searching T/AT
systems, we identified a PIN-associated locus with an
undetermined role, although the genetic environment
might help us to formulate a hypothesis. Perhaps the PIN
protein used to work as a toxin in a toxin-antitoxin
system, as a partner for another helix-turn-helix (HTH)
folded transcription factor. HTH transcription factors are
typical antitoxins for PIN-like toxins. The MarR protein
could work as a transcription factor, regulating transcrip-
tion of other genes involved in that pathway. However, the
system could also be independent of the PIN protein,
since the homologous operon is absent in other

Staphylococcus species (Fig. 6), and acetylation could be
performed on a metabolite or an antibiotic [52]. Other
genes in the genomic neighborhood would support this
hypothesis; they encode dioxygenases, aldehyde dehydro-
genases, alpha/beta hydrolases and some metal-binding
receptors, which could work in a concerted way to detox-
ify a specific molecule.
Regarding CRISPR/Cas loci, we identified a complete

Type IIIA CRISPR/Cas system in 5 strains among the 15
studied, whereas such systems have been identified in only
15% of CoNS. CRISPR/Cas systems can efficiently prevent
plasmid conjugation and transformation, as well as phage
infection. This specific observation has been reported in S.
epidermidis and S. aureus Type IIIA CRISPR/Cas systems
[26]. Our genetic findings need functional confirmation,
but a similar observation with S. lugdunensis would be ex-
pected. Additionally, we identified several orphan CRISPR
sequences with a repeated spacer that might correspond
to an extract from the sequence of S. aureus pathogenicity
island SaPI2. The significance of such sequences is un-
known, but they probably constitute remnants of past
genomic events involving MGEs, and their role in S. lug-
dunensis might be limited or even non-existent due to the
absence of functional DR sequences. Isolated CRISPRs
can be orphans, though it has been shown that they
may be functional in combination with distant cas loci,
even where the median distance between CRISPR and
corresponding type cas genes is 268 bp for type IIIA,
and 103 bp for Type II [37]. Additionally, questionable
CRISPRs can also be false CRISPR sequences, corre-
sponding to other kinds of repeated element such as tan-
dem repeats, S. aureus repeat (STAR) elements, or even
simple repeat elements [53, 54]. Regarding isolated cas loci,
they are widespread in bacterial genomes as remnants of
lost CRISPR/Cas complete systems, now without any im-
mune function; however, they could play a role in the
maintenance of other functions, such as DNA repair [37].
Finally, we identified several Type I and Type II RM

systems in 10 strains among the 15 studied, and 1 Type
II RM system in a plasmid sequence. RM systems have
many features in common with T/AT systems, one being
cell killing in the case of foreign DNA invasion which, in
this case, is based on epigenetic identities (methylation
level) [55]. RM systems, particularly Type I, are one of the
major mechanisms by which S. aureus prevents HGT.
Phage- and plasmid-mediated HGT between S. aureus
strains from different lineages is strictly controlled by RM
systems, particularly Type I [41]. Identification of such
systems in CoNS is exceptionally rare; we found only one
complete report involving the presence of an RM system
in S. epidermidis [20]. The presence of an RM system in S.
lugdunensis constitutes a novel barrier for HGT, a situ-
ation identified by Heilbronner et al. as the main obstacle
for transformation with E. coli using a hsdR mutant [16].
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We reported in a previous study the whole genome
sequence of seven S. lugdunensis strains and the presence
of MGE: plasmids and prophages which genetic content
suggested the existence of HGT with CoNS and S. aureus
[5]. The results of the present study suggest that such
HGT might remain scarce and, if they can mobilize
genetic elements between those species, and enrich the
whole genome, they are probably too rare to enrich signifi-
cantly S. lugdunensis pan-genome.
Our study is limited by the number of S. lugdunensis

genomes included even if pan and core genome size
extrapolation tool that uses a Heaps’ law function, gave
concordant results. Among 15 S. lugdunensis genomes,
seven originated from a unique location over a 3 year
period (VISLISI clinical trial), which might have limited,
de facto, the genetic diversity of the genomes. In addition,
we did not bring any evidence of a causative link between
the presence of several barriers to HGT and a closed
pan-genome, we only observed their co-occurrence which
is only very suggestive.

Conclusions
S. lugdunensis displays a closed pan-genome, a striking
observation for a human pathogenic bacterium, and par-
ticularly for a Staphylococcus. This trait is co-occurring
with the presence of multiple and dispersed mechanisms
that could prevent HGT by MGEs then suggesting their
implication in such an unusual pan-genome profile. Func-
tional analysis using knockout mutants is now needed to
prove that all the described operons are operational. Also,
the presence of such systems in S. aureus, and also more
rarely in other CoNS that display an open pan-genome,
lead us to hypothesize the existence of other mechanisms.
Identification of PIN-like domain-encoding loci, and of
several putative nucleases, constitute new pathways that
need to be explored.

Methods
The 15 S. lugdunensis genome sequences used in this
study, and their associated plasmid sequences, were
taken from the GenBank database. S. lugdunensis strain
HKU0901 (NCBI accession number NC_013893), whose
complete genome sequence was first published in 2010
by Tse et al., was used as a reference in the comparative
analyses [56]. Clinical and geographical origins of all 15
strains are listed in Additional file 8. Regarding S. aureus,
we randomly selected 1 genomes from the 299 complete
sequences in the GenBank database, where 8450 genome
assemblies are available, most being draft sequences. The
genome of S. aureus strain DSM 20231 (NCBI accession
number NZ_CP011526), served as a reference in the
comparative analyses. The complete genome of this
type strain was determined in 2015 by PacBio single-
molecule real-time technology by Shiroma et al., and

proposed as a reference strain to perform comparative
genomic studies due to its genotypic and phenotypic
characteristics [57]. Thirteen complete genomes of S.
epidermidis among the 532 genome assemblies avail-
able in the GenBank database were included in this
study (a fourteenth genome from strain GTH 12 is also
available but with no annotation). S. epidermidis strain
ATCC_12228 (NCBI accession number NZ_CP022247),
a non-biofilm-forming, non-infection-associated strain,
was selected as a reference for the comparative ana-
lyses. NCBI accession numbers of all strains are listed
in Additional file 8. We excluded draft sequences from
S. lugdunesis (eight additional genomes) and S. epider-
midis (518 additional genomes) for which only scaffolds
are available and no finished bacterial chromosome.
Those genomes might present several gaps, no or uncom-
plete annotations, and no error correction steps during as-
sembly process. The use of draft genomes in comparative
genomics is questionable, even not recommended, par-
ticularly for synteny studies, and we favored stringency in
this study. Every gap in draft sequences may split, truncate
or completely mask a gene which may add bias to the
EDGAR software platform analyses [58, 59].

Whole genome sequence analysis and comparative
genomics.
Identification of the core genome and pan-genome was per-
formed using the EDGAR software platform [59]. Several
tools have been made available recently as stand-alone,
open source, or web-based tools [60]. EDAGR 2.2 is a
powerful tool that uses several publicly available genomes
but also accommodates customized projects and genomes.
The orthology analyses for pan-genome and core genome
calculations in EDGAR are performed using BLAST score
ratio values (SRV) with an orthology threshold calculated
from the analyzed data rather than a fixed cut-off [61]. All
calculations are made starting with 1 reference genome.
The software allows calculation of pan genome and core
genome subsets, as well as statistical extrapolation of core-
and pan-genome sizes for a larger number of genomes.
For the statistical extrapolation, it uses non-linear least-

squares curve fitting of the observed core and pan genome
sizes as function of the number of analyzed genomes.
For the core genome extrapolation an exponential
decay function is used as described by Tettelin et al.,
where c is the amplitude of the function, n is the genome
number, Ω is the extrapolated size of the core genome for
n→∞, and τ is the decay constant indicating the speed at
which f converges to Ω [62].

f nð Þ ¼ c � exp −nτð Þ þΩ

For the pan genome, a Heaps’ power law function is
used, where n is the number of compared genomes, c is a
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proportionality constant and γ the growth exponent that
indicates at which speed the pan genome is growing [63].

f nð Þ ¼ c � nγ

Results were compared among S. lugdunensis, S. aureus,
and S. epidermidis.
For EDGAR phylogeny analyses, the pipeline uses the

complete core genome. Every set of orthologous genes
found in all genomes are separately aligned using the
multiple alignment tool MUSCLE phylogenetic tree using
the maximum likelihood approach as implemented in
Fasttree 2 [64]. The trees calculated by Fasttree provide
local support values calculated using the Shimodaira-
Hasegawa test [65]. The phylogenetic trees were produced
from newick file by using Phylogenetic Tree Viewer
from ETE Toolkit [66]. Synteny and rearrangements in
S. lugdunensis genomes were explored by using EDGAR.
S. ludgunensis strain HKU0901 were chosen as a reference
to create synteny plots. ANI and AAI matrices were calcu-
lated for the 3 species using the EDGAR interface. For
AAI matrix calculation, all needed sequence similarity
information is available from the BLAST step underlying
the EDGAR orthology estimation method. Average nucleo-
tide identity values are computed as described by and as
implemented in the popular JSpecies package [67, 68].

Functional analyses
Functional categories of the putative proteins encoded
by S. lugdunensis, S. aureus, and S. epidermidis were
compared using the clusters of orthologous groups of
proteins (COG) database. COG categories were retrieved
using the WebMGA software platform, with an e-value
cut-off of 0.001 for prediction [69, 70]. We compared
the putative functions of the proteins encoded by the
core genome of these three species as issued by EDGAR.

Identification of MGEs
MGEs from S. lugdunensis were searched to identify
elements potentially controlling genome stability (such as
CRISPR/Cas and T/AT systems). From previous studies,
we had characterized several MGEs (prophages and plas-
mids) in S. lugdunensis strains coming from the VISLISI
clinical trial [3, 5], and these were retrieved first. The ana-
lysis was extended to all complete S. lugdunensis genomes
available in the GenBank database with the same method-
ology [5]. Briefly, prophage searches and annotations were
performed using PHASTER (Phage Search Tool Enhanced
Release) [71]. Plasmids were retrieved from GenBank
database. Pathogenicity islands were identified through
IslandViewer4 [72].

Identification of CRISPR/Cas systems in S. lugdunensis
Several tools exist for CRISPR/Cas identification in whole
genome sequences [73]. CRISPRFinder is a web server that
offers a regularly updated database of CRISPR sequences
that may be searched within an entire genome [74]. It does
not focus on the genetic environment of the CRISPR
sequences, and thus it does not identify the cas genes. To
do this, we loaded the annotations from the GenBank
database and the PROKKA de novo annotated genomes
into Artemis software (v.16.0.0) to retrieve the CRISPR
sequences identified with CRISPRFinder, and to analyze
their genetic context [75]. All open reading frames
surrounding the CRISPR sequences were also manually
verified using the Uniprot and BLAST databases. We
set the limits to 15 kb upstream and downstream of the
CRISPR sequences, since cas genes were expected to be
found in very close proximity, and because CRISPR/Cas
system operons are not expected to be larger than
15 kb, particularly type IIIA and II [26, 28, 29]. All
CRISPR/Cas sequences identified were aligned using
Easyfig (v.2.2.2) to generate a BLAST alignment figure,
with a minimum length of 100 bp, maximum e-value of
0.001, and minimum identity value of 90 [76]. CRISPR
spacer origins were analyzed using the BLAST and Uniprot
databases to search for known homologies.

Identification of T/AT systems in S. lugdunensis
To identify T/AT systems in S. lugdunensis, we loaded the
GenBank annotated genomes and the PROKKA de novo
annotated genomes into the Artemis software (v.16.0.0)
and searched all gene names, qualifier values, and keys
that comprised the term “toxin.” To ensure that new
candidate T/AT systems were not missed, we searched for
VapBC and MazEF systems with BLASTP (E-value < 0.01,
against previously identified PIN-like sequences belonging
to potential toxin families) and HMMER (E-value < 0.01,
against PF04014 and PF02452 models), respectively [77].

Identification of RM systems in S. lugdunensis
Several tools have been developed to identify such coding
sequences, the most complete being the REBASE database
that provides an extensive in silico analysis of several
bacterial genomes available in GenBank and allows identifi-
cation and localization of RM systems [23]. Methylase
specificity, nucleotide specificity, and closest neighbors
were analyzed for each S. lugdunensis RM system.
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Additional file 1: Pan-genome and core genome development
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