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Abstract. The interaction of heavy ions with astrophysical ices was studied at different 

beamlines of GANIL by infrared absorption spectroscopy. This allowed simulating in the 

laboratory the physico-chemical modifications induced in icy objects in space, exposed to 

radiation fields such as the solar wind, magnetospheric particles and interstellar cosmic rays. 

We briefly discuss sputtering, destruction and formation of molecules, amorphization and 

compaction, implantation, and finally the formation of organic molecules. This latter topic is 

related to the question of the initial conditions for the emergence of life.  

1.  Introduction 

Ices are ubiquitous in space: in the dense phases of the interstellar medium (dense molecular clouds 

and proto-stellar cores, shown in figure 1) and in the solar system. The molecules can be formed or 

freeze onto surfaces of dust grains and form thin icy mantles. In the Oort cloud and the Kuiper belt of 

the solar system, together with dust (carbon based materials, silicates), they can form icy bodies, some 

of them being the progenitors of comets. They can cover the surfaces of the giant planets' satellites. 

Simple molecules such as H2O, CO, CO2, NH3, CH4 etc. are the dominant species, but more complex, 

organic molecules (alcohols etc.) have been detected. The ices are continuously exposed to ionizing 

irradiation (UV photons, electrons, ions); this may induce several physico-chemical processes. Among 
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them are fragmentation/radiolysis, followed by chemical reactions and formation of new molecules; 

structural/phase changes; and desorption/sputtering of molecules from the surface [1]. In astrophysical 

studies on interaction of radiation with ices, effects induced by weakly ionizing radiation such as UV 

photons and keV-MeV light ions (H, He) was extensively studied in the laboratory. This was driven by 

the use of keV to MeV proton accelerators, that are relatively small and more common than heavy ion 

accelerators such as GANIL, which are indeed large scale installations of which only a few exist in the 

world. Here, we therefore focus on the contribution of heavier ions (C, O, S, Fe), which are also 

present in space. 

 

 

 

Figure 1. Herschel’s infrared view of part of the Taurus Molecular Cloud, which is about 450 light-

years from Earth and is the nearest large region of star formation. Image credits: 

ESA/Herschel/SPIRE (reproduced with permission). 

 

From a collaboration between PUC-Rio and CIMAP-CIRIL with the goal to study sputtering of LiF 

by MeV ion beams, a subject under intense research in both laboratories (see [3] and references 

therein), emerged a new research topic at GANIL: heavy ion induced radiation effects in astrophysical 

ices. Indeed, at PUC, the investigation of sputtering of secondary ions from ices by MeV heavy ions 

started a decade ago [4, 5]. It was observed that the dependence of the ion desorption yield on the 

projectile stopping power was strong enough that it can compensate for the low abundance of heavy 

ion constituents of cosmic rays and, therefore, produce effects in solids comparable to those induced 

by protons and alpha particles. The sputtering occurs basically through neutrals, whose yields are 

orders of magnitude higher than that of secondary ions.  

It was then realized that a new method could be coupled for sputtering yield measurement of ices: 

Fourier Transform Infrared Spectroscopy (FTIR) was able not only to identify formed molecules in the 

target and measure their formation and destruction cross sections, but also to measure total sputtering 

yields. Indeed, following the decrease of peak areas of infrared bands during ion beam bombardment 

and compensating for the newly created species, the removal rate of material could be determined. 

Consequently, in close collaboration between CIMAP/Caen, IAS/Orsay and PUC/Rio de Janeiro, the 

radiolysis and sputtering of ices such as CO and CO2 by swift heavy ions (cosmic ray analogs) at 

about 15K was studied. The research was strongly supported by the French-Brazilian CAPES-

COFECUB exchange program. Since 2010, INAF/Catania joined, and, supported by the COST Action 

“The Chemical Cosmos”, the studies were extended to effects induced by slow heavy ions (solar wind 

and giant planet’s magnetospheres). 
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2.  Cosmic rays  

The first laboratory simulations of the interaction of heavy cosmic ray ions with ices were performed 

within a joint-doctorate program between the PUC-Rio de Janeiro and the University of “Caen-Basse 

Normandie”. E. Seperuelo Duarte, graduate from Astronomy, was able to apply the new approach in 

the study of CO2 ice sputtering by 46 MeV Ni at the IRRSUD beam line of GANIL [6]. The 

experiment was repeated for CO ice sputtering induced by 50 MeV Ni (again at IRRSUD) and by 537 

MeV Ni (at the SME beamline) [7]. A strong non-linear increase of sputtering yields Y with deposited 

energy in CO ice due to electronic sputtering was observed as shown in figure 2. The quadratic 

dependence with the electronic stopping power, Y ~ Se
2
, is in excellent agreement with previous 

results obtained with light ions, at lower energies, by Brown et al. [8]. The stopping power Se = -dE/dx 

of a material is equal to the energy E deposited per unit path length x by the projectile.  

Therefore, even taking into account the low abundance, the total number of heavy ion 

desorbed/sputtered molecules is higher than that desorbed by protons. This observation now needs to 

be taken into account for understanding the evolution of astronomical objects such as dense molecular 

clouds (figure 1). The heavy ion induced desorption contribute to explain for the observed presence of 

gas phase molecules in such clouds. In the absence of these processes, it is expected that all CO 

molecules should condense on small grains in cold (10 K) dense clouds within timescales shorter than 

these clouds ages, and form an icy mantle. Processes discussed to explain the gas phase molecules 

include photodesorption of ices by secondary UV photons from cosmic ray interaction with hydrogen 

or “spot heating” of grains, not to be confused with our observation related to electronic sputtering [7]. 

Deep inside dense clouds, each of the three processes (electronic desorption by the heavy ion fraction 

of cosmic rays, and “spot heating” of grains by cosmic rays, photodesorption) yield comparable 

contributions to the total desorption yields [7].  

 

  

Figure 2. Sputtering yield Y of CO and CO2 as 

a function of electronic stopping power Se. A 

quadratic dependence Y ~ Se
2  

is observed [6-9].  

Figure 3. Destruction cross sections d of ice 

molecules (as indicated) as a function of electronic 

stopping power (see text); they essentially follow a 

power law d ~ Se
n
 with n ≈ 1.5 ± 0.3 [14, 17, 21].  

 

 

Furthermore, heavy ions are an order of magnitude more efficient in destroying the initial 

molecules and corresponding radiochemical yields than protons. A quadratic dependence of the 

sputtering yield on stopping power is not only observed for CO ices [7, 8], but also for CO2 ices [7, 9] 

(figure 2) and for high electronic stopping also for O2, N2 and H2O [9] thus supporting the conclusions 

concerning the importance of heavy ions in modification of interstellar ices. 
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Since then, cosmic ray effects in many other ices have been analyzed at CIMAP-GANIL: H2O [10-

12], NH3 [13, 14], CH4 [15, 16], CH3OH [17, 18], HCOOH [19-20], H2CO [21], C6H12 [22] and 

acetone [23]. Chemical reactions follow the fragmentation of initial molecules. This leads to formation 

of new species, a finding particularly interesting with ice mixtures containing the ingredients of 

organic molecules (H,C,N,O) [13, 22, 24, 25]. The determination of destruction and formation cross 

sections is one of the most important goals of this research. Considering the obtained results with low 

energy data, we proposed that – at least for ice targets – such cross sections depend basically only on a 

power (≈ 1.5 ± 0.3) of the electronic stopping [14, 17, 18, 21]. As a consequence, it is possible to 

estimate molecular destruction rates for all cosmic ray constituents over a very large energy range. 

Figure 3 illustrates this “law” for methanol ice. Moreover, it turns out from these calculations that - in 

interstellar medium – chemical evolution induced by iron ions of cosmic rays is surprisingly faster 

than that induced by protons and alpha particles: for instance, the methanol half live due to iron 

bombardment is 3×10
14

 s (approx. 10
7
 years), 700 times shorter than that induced by protons.  

Often neglected compared to radiolysis induced chemical modification, the physical state of the ice 

(amorphous, crystalline, metastable) is also extremely important in many aspects for astrophysicists. 

At low temperature (about 10 K), a porous amorphous ice phase is obtained by accretion of water 

molecules, which is getting compacted under ion irradiation. Finally, it evolves towards a compact 

non-porous, but disordered amorphous phase [26]. Irradiation of crystalline water ice annealed at 

“high” temperature (140 K) and cooled down to approximately 10 K leads to amorphization towards 

this same intermediate amorphous phase [27].  

The compaction, i.e. the loss of open porosity of amorphous ice films was studied at the high 

energy beam line LISE of GANIL as well as at SME and IRRSUD in the MeV to GeV range [10]. 

FTIR allows to study the number of “OH dangling bonds” (i.e. pending water molecule OH bonds not 

engaged in a hydrogen bond in the initially porous ice structure). Combined with previous experiments 

using lower energy light ions from other facilities, we evaluated a cross section for the disappearance 

of porosity as a function of electronic stopping power over three orders of magnitude. The relevant 

phase structuring time scale for the ice network on icy mantles covering interstellar dust grains are 

present in the molecular clouds of our galaxy was compared to interstellar chemical time scales using 

an astrophysical model including the expected galactic cosmic ray distribution of abundances. The 

galactic cosmic ray distribution of ion abundances reproduces the ionization rate observed and 

provides ice compaction time scales in the range from 1.4×10
5
 to 2×10

6
 years. Ice mantle porosity or 

pending bonds as monitored by the OH dangling bonds, are removed efficiently by cosmic rays. 

Studies on the compaction and amorphization of water ice are ongoing. Similar observations have also 

been made for e.g. H2O-NH3 and other ices made of mixtures of molecules [13, 14]. 

3.  Ion Implantation 

When the penetration depth of an energetic ion that travels through a material is shorter than the 

thickness of the target, the ion finally is stopped and remains implanted. Implantation experiments are 

particularly relevant to understand the effects of different ion populations such as solar wind ions and 

magnetospheric particles, interacting with icy objects in the Solar System (for a review see [28]).  

Experiments with reactive ions (e.g., H
+
, C

+
, N

+
, O

+
, S

+
) are particularly relevant because they induce 

all of the effects of any other ion, but in addition have a chance, by implantation in the target, to form 

new species containing the projectile. In recent years several implantation experiments have been 

conducted at the low energy facility ARIBE of GANIL.  The experiments were performed with carbon 

and sulfur ions of energies between 10 keV and 180 keV. They are able to break 10
3
-10

4
 bonds per ion 

and thus a large number of new molecules can be formed by recombination of fragments of the 

irradiated species. In addition, implanted carbon and sulfur, being reactive, have a chance to form 

species that include the projectile with a maximum yield of one molecule per incoming ion. Recently, 

several experiments ([29-31], listed in table 1) have been conducted at ARIBE. 
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Table 1. Summary of the implantation experiments conducted so far at ARIBE. 

ION 

(E in keV) 

TARGET 

T= 15-150 K 

MAJOR PRODUCED 

SPECIES (in bold those 

containing the projectile) 

REF 

C
q+

 (10, 30) q=2-3 H2O H2O2, CO2 [29] 

S
q+

 (35-180) 

q= 7, 9, 11 

 

 

H2O H2O2 

H2SO4 dissolved in  H2O 

[30] 

CO SO2 [31] 

CO2 SO2 [31] 

  

Figure 4. Artist's impression of JUICE, the 

JUpiter ICy moons Explorer mission, in the 

Jovian system. Image credits: ESA/AOES 

(reproduced with permission). 

 
 

 

The results have mostly been applied to the icy moons of the giant planets in the outer Solar 

System, where in fact water ice is by far the dominant species. Prominent examples are the Jovian 

moons  Europa, Callisto and Ganymede, which have been visited by the Galileo spacecraft and which 

are the focus of Europe’s ESA next large science mission, the Jupiter Icy moons Explorer JUICE 

(figure 4). On these objects, several absorption features have been observed and have been attributed 

to C-H, H2O2, S-H (and/or H2CO3), SO2, CO2, and CN [32, 33]. 
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In addition abundant surface constituents of the Galilean moons are darker, non-ice materials [34], 

and in the case of Europa, hydrated sulfuric acid [35]. The dark materials are thought to be 

carbonaceous compounds present at the time of the satellite formation or later delivered by cometary 

and meteoritic bombardment [36]. Results based on space observations have shown that most of the 

CO2 detected on the surfaces of Callisto and Ganymede is contained in the non-ice materials [33, 34]. 

SO2 is believed to be present on the surface of the icy moons as a molecule trapped in the dark 

material and/or the water ice [32]. Many of the icy moons orbit within their planet’s magnetosphere 

and their surfaces are subjected to intense bombardment. The major components of the Jovian 

magnetosphere are protons and ions such as S
q+

 and O
q+

, and also energetic electrons [39].  

The high fluxes of those ions justify the need of implantation experiments that are conducted to 

contribute to the debate on the origin of the observed minor molecular species: are they native of the 

given satellite (endogenic source) or are they due to external effects such as ion implantation 

(exogenic source)? The experiments conducted at ARIBE [29-31] have given an important 

contribution to the discussion. As an example, in figure 5 we show the IR spectra of water ice before 

and after implantation of 3×10
15

 30 keV 
13

C
3+

/cm
2
 (left panel) and  4.8×10

16
 105 keV S

7+
/cm

2
 (right 

panel). A band appearing at about 2275 cm
-1

 upon implantation can easily be attributed to 
13

CO2 (left 

panel of figure 5).  The corresponding measured yields for ions with energies from 10 keV to 30 keV 

do neither depend on the charge state (q = 1-3) nor on the temperature (15 K and 80 K). They range 

between 0.32 and 0.57 molecules/ion, i.e. they are constant within the experimental error. The time 

scale necessary to accumulate the observed quantity of carbon dioxide on the surface of Europa by 

implantation of magnetospheric carbon ions has been evaluated to be on the order of (1.0-1.3) × 10
4
 

years. This time is higher than that evaluated for the production of carbon dioxide by other relevant 

processes, in particular by the ion bombardment stimulated formation of CO2 at the interface between 

solid carbon and water ice [40]. We therefore conclude that although a relevant quantity of CO2 can be 

formed by carbon ion implantation, this is not the dominant formation mechanism on the surfaces of 

icy satellites [29]. 

 

Figure 5. IR spectra of water ice before and after implantation of carbon ions (left panel) and sulfur 

(right panel) ions. 
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The right panel of figure 5 shows that a new, multi-peaked band is formed around 1150 cm
-1

, 

indicating the formation of hydrated sulfuric acid upon sulfur implantation. We have performed 

experiments with sulfur ions having different charges (q = 7, 9, 11) and energies (35 keV - 176 keV), 

implanted in water ice at 80 K. The results of our experiments indicate that the formation yields 

increase with ion energy, from 0.12 molecules/ion for 35 keV ions to 0.64 molecules/ion for 200 keV 

ions (this latter value is from [41]). From the high sulfur ion fluxes of  (2×10
6
-1x10

8
) ions cm

-2
 s

-1
) 

evaluated in different regions of the surface of Europa [42], Ding et al. [30] conclude that sulfur ion 

implantation is the dominant formation mechanism of hydrated sulfuric acid. The suggestion that the 

observed distribution of sulfuric acid on the surface is well correlated with the local flux of sulfur ions 

[42] finds a full explanation by our experimental data.    

Nevertheless, the question about the origin of SO2 remains open. We were not able to find any 

evidence of synthesis upon sulfur ion implantation into water ice. In fact, SO2 has been observed on 

some of the icy moons by ultraviolet observations, via its band peaked at 280 nm. To explain its origin 

several mechanisms have been proposed, among which S implantation in water ice [43, 44], which is 

not supported by our experimental results. Further experimental efforts are thus necessary to clarify 

the question. 

4.  Outlook: formation of organic pre-biotic molecules 

The matter in our galaxy evolves within a life cycle of stars, which depends on numerous 

astrophysical processes including processing by radiation fields and astrochemical processes: radiation 

effects, reactions at gas-grain surfaces, ice photochemistry and so on. Interstellar dust grains, after the 

collapse of dense molecular clouds are incorporated in protoplanetary systems. Thus, interstellar 

matter can contribute to the so-called primitive matter. Later on, comets (orbiting in the Oort cloud, 

the Kuiper belt or Jupiter family ones, made out of ices and dust) and asteroids, can feed this matter to 

planets such as the early Earth. Laboratory astrochemistry has shown that complex molecules 

(including amino acids and nucleobases) can be formed under interstellar/circumstellar conditions by 

vacuum UV irradiation, electron and ion bombardment of interstellar ice analogs containing small 

molecules (H2O, CO, CO2, CH3OH, NH3, HCOOH), that is, the basic building blocks of organic 

matter (H, C, N, O, and others). Therefore, irradiation processing of ice mixtures [13, 22, 24, 25, 45] 

may be related to the question of the origin of organic matter on Earth, bringing potential building 

blocks for the emergence of life on earth, and possibly on other bodies in the solar system. 

At IRRSUD, ammonia-containing ices made of mixtures of small molecules such as H2O:NH3  and 

H2O:NH3:CO were irradiated by 46 MeV Ni ions in an attempt to simulate the physical chemistry 

induced by heavy-ion cosmic rays inside dense astrophysical environments. The infrared spectra of the 

irradiated ice samples exhibit lines of several new species including HNCO, N2O, OCN
−
, and NH4

+
. 

After FTIR measurements as a function of the projectile fluence in order to determine destruction- and 

formation cross sections, the irradiated samples were slowly warmed up to room temperature. In the 

case of the irradiated H2O:NH3:CO ice, the infrared spectrum at room temperature contains five bands 

that can be tentatively assigned to vibration modes of zwitterionic glycine, an amino acid, and 

possibly, another can be attributed to hexamethylenetetramine (HMT) [13]. If such organic molecules 

exist in space, it is also pertinent to study their stability when exposed to radiation [46]. 

Furthermore, ices containing methanol and ammonia CH3OH:NH3 were irradiated at IRRSUD. The 

main goal here was to make the first proper comparison between the formation of products in an ice 

mixture of interstellar type both by irradiation of the ice using swift heavy ions and by vacuum UV 

photons using a similar energy dose (in eV/molecule). It was shown that both UV photon and swift 

heavy ion irradiation yield similar residues formed after warm-up to room temperature of the 

irradiated ices [45]. In order to confirm and quantify the possible formation of even more complex 

organic molecules, in the near future, new irradiation experiments with ex-situ chromatographic 

analysis of thick residues from swift ion processing are in preparation. This could lead to the detection 

of new molecular components in the organic residues. These species could thus be present in 

circumstellar regions and comets, and were likely delivered to the primitive Earth. 
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Studies on radiation effects in astrophysical ices will benefit in the near future from a new ultrahigh 

vacuum setup IGLIAS financed by ANR (partners: CIMAP and IAS) allowing to work under 

improved experimental conditions. In view of the increasing amount of data arising from ever 

improved observation tools including earth and satellite based telescopes, and space probes such as 

JUICE, dedicated laboratory experiments are needed to interpret the observations. Well established 

and emerging experimental techniques [47] will help to understand formation of dust grains, icy 

mantles and their processing dust grain formation and processing (ice mantle chemistry, space 

weathering  [48]) under astronomical conditions. 
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