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SMM: An R Package for Estimation and
Simulation of Discrete-time semi-Markov
Models
by Vlad Stefan Barbu, Caroline Bérard, Dominique Cellier, Mathilde Sautreuil and Nicolas Vergne

Abstract Semi-Markov models, independently introduced by Lévy (1954), Smith (1955) and Takacs
(1954), are a generalization of the well-known Markov models. For semi-Markov models, sojourn
times can be arbitrarily distributed, while sojourn times of Markov models are constrained to be
exponentially distributed (in continuous time) or geometrically distributed (in discrete time). The aim
of this paper is to present the R package SMM, devoted to the simulation and estimation of discrete-
time multi-state semi-Markov and Markov models. For the semi-Markov case we have considered:
parametric and non-parametric estimation; with and without censoring at the beginning and/or at the
end of sample paths; one or several independent sample paths. Several discrete-time distributions
are considered for the parametric estimation of sojourn time distributions of semi-Markov chains:
Uniform, Geometric, Poisson, Discrete Weibull and Binomial Negative.

Introduction

Semi-Markov models, independently introduced by Lévy (1954), Smith (1955) and Takacs (1954), are a
generalization of the well-known Markov models. For semi-Markov models, sojourn times can be
arbitrarily distributed, while sojourn times of Markov models are constrained to be exponentially
distributed (in continuous time) or geometrically distributed (in discrete time). For this reason, semi-
Markov processes are more general and more adapted for applications than the Markov processes.

Semi-Markov processes have become important tools in probability and statistical modeling with
applications in various domains like survival analysis, biology, reliability, DNA analysis, insurance
and finance, earthquake modeling, meteorology studies, etc.; see, e.g., Heutte and Huber-Carol
(2002), Ouhbi and Limnios (2003), Chryssaphinou et al. (2008), Janssen and Manca (2006), Votsi et al.
(2012), D’Amico et al. (2013), Votsi et al. (2014), D’Amico et al. (2016b), Barbu et al. (2016), D’Amico
et al. (2016a) for semi-Markov processes in continuous or discrete time with various applications
and Sansom and Thomson (2001), Bulla and Bulla (2006), Barbu and Limnios (2008), for hidden
semi-Markov models and applications in climatology, finance and DNA analysis.

Note that the semi-Markov theory is developed mainly in a continuous-time setting, while utterly
less works address the discrete-time case. We refer the reader to Limnios and Oprisan (2001) for
continuous-time framework and to Barbu and Limnios (2008) and references therein for discrete-time
framework. The R package SMM that we present in this paper is developed in discrete time. Note that
undertaking works also in discrete time (modeling stochastic tools, associated estimation procedures,
corresponding software, etc.) is an important issue for several reasons. In our opinion, the most
relevant of these reasons is that the time scale is intrinsically discrete in several applications. For
instance, in DNA studies, when modeling a nucleotide or protein sequence by means of a stochastic
process, the “time” of that process is in fact the position along the sequence, so it is discrete. Other
examples can be found in some reliability/survival analysis applications where the time represents
the number of cycles of a system or the counting of days/hours/etc. We can argue further for the
importance of developing works also in discrete time, in parallel to their analogous ones developed in
continuous time. For instance, we can mention the simplicity of computations in discrete time, the fact
that a discrete-time stochastic process does not explode, the potential use of discrete processes after
the discretization of continuous ones, etc.

Few R packages have been developed to handle semi-Markov models or hidden semi-Markov
models. For semi-Markov models we have the recent semiMarkov R package (Król and Saint-Pierre,
2015) that performs maximum likelihood estimation for parametric continuous-time semi-Markov
processes, where the distribution can be chosen between Exponential, Weibull or exponentiated
Weibull. That package computes associated hazard rates; covariates can also be taken into account
through the Cox proportional hazard model. Two R packages are also dedicated to hidden semi-
Markov models, implementing estimation and prediction methods: the hsmm R package (Bulla et al.,
2010) and the mhsmm R package (O’Connell and Højsgaard, 2011).

Note that there is no R package developed for discrete-time multi-state semi-Markov models. Thus
the purpose of this paper is to present an R package that we have developed, called SMM, which
performs parametric and non-parametric estimation and simulation for multi-state discrete-time
semi-Markov processes. For the parametric estimation, several discrete distributions are considered
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for the sojourn times: Uniform, Geometric, Poisson, Discrete Weibull and Negative Binomial. The
non-parametric estimation concerns the sojourn time distributions, where no assumptions are made
on the shape of distributions. Moreover, the estimation can be done on the basis of one or several
trajectories, with or without censoring. The aim of this paper is to describe the different possibilities of
this package. To summarize, the package SMM that we present deals with different problems:

• Parametric estimation for sojourn time distributions (Uniform, Geometric, Poisson, Discrete
Weibull and Negative Binomial) or non-parametric estimation;

• One or several sample paths;

• Four different types of sojourn times: a general one depending on the current state and on the
next state to be visited, one depending only on the next state, one depending only on the current
state, and one depending neither on the current state nor on the next state;

• Four different types of censoring: censoring at the beginning of sample paths, censoring at the
end of sample paths, censoring at the beginning and at the end of sample paths or no censoring
at all.

Let us make some remarks about these points.

First, concerning the censoring, the simplest situation is the one when all the sojourn times are
completely observed (non censored). A more complicated and realistic framework is when the last
sojourn time is not completely observed, thus being right censored; in most practical situations this
case occurs. An analogous situation is when the first sojourn time is not completely observed, thus
being also right censored. In practice, this last case occurs when one does not know the beginning
of a phenomenon modeled by a semi-Markov chain. Note that this censoring at the beginning of the
sample path is a right censoring (not a left censoring); indeed, when the first sojourn time is censored
as in our paper, the available information is that the real sojourn time (that is not observed) is greater
than this censored observed time. Thus we are clearly in a right censoring framework, although this
happens at the beginning (i.e., left) of the trajectory, which could seem confusing. The most complete
framework is when both the first and the last sojourn times are right censored.

Second, when considering estimation starting from several independent sample paths of a semi-
Markov chain, it is assumed that all the trajectories are censored in the same way; note that this is not
a real constraint, but we imposed this condition only in order to avoid useless technical notations that
would make the comprehension more difficult.

Third, note that it is important for the four types of models (of sojourn times) to be considered
separately because: (i) in practical situations, one model could be more adapted than some other; (ii)
different models will yield specific parameter estimators, so it is important to study them separately.

The paper is organized as follows. The next section Semi-Markov models describes the semi-
Markov models used in this package. Section The SMM package illustrates the different functions of
the SMM package. We end the paper by presenting some concluding remarks on this R package.

Semi-Markov models

Let us consider a random system with finite state space E = {1, . . . , s}, s < ∞. Let (Ω,A, P) be a
probability space and assume that the time evolution of the system is governed by a stochastic process
Y = (Yk)k∈N∗ , defined on (Ω,A, P) with values in E; that is to say that Yk gives the state of the system
at time k. Let T = (Tm)m∈N∗ , defined on (Ω,A, P) with values in N, be the successive time points
when state changes in (Yk)k∈N∗ occur (the jump times) and let also J = (Jm)m∈N∗ , defined on (Ω,A, P)
with values in E, be the successively visited states at these time points. The relation between the
process Y and the process J of the successively visited states is given by Yk = JN(k), or, equivalently,
Jm = YTm , m, k ∈ N, where N(k) := max{m ∈ N | Tm ≤ k} is the discrete-time counting process of
the number of jumps in [1, k] ⊂N.

In this paper we consider four different semi-Markov models corresponding to the following four
types of sojourn times.

• Sojourn times depending on the current state and on the next state:

fij(k) = P(Tm+1 − Tm = k|Jm = i, Jm+1 = j);

• Sojourn times depending only on the current state:

fi•(k) = P(Tm+1 − Tm = k|Jm = i);
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• Sojourn times depending only on the next state to be visited:

f•j(k) = P(Tm+1 − Tm = k|Jm+1 = j);

• Sojourn times depending neither on the current state nor on the next state:

f (k) = P(Tm+1 − Tm = k).

Note that the sojourn times of the type fi•(·), f•j(·) or f (·) are particular cases of the general type
fij(·). Nonetheless, in some specific applications, particular cases can be important because they are
adapted to the phenomenon under study; that is the reason why we investigate these cases separately.

General case: sojourn times of the type fij(.)

Definition 1 (semi-Markov chain SMC and Markov renewal chain MRC). If we have

P(Jm+1 = j, Tm+1 − Tm = k|Jm = i, Jm−1, . . . , J1, Tm, . . . , T1) = P(Jm+1 = j, Tm+1 − Tm = k|Jm = i),

(1)

then Y = (Yk)k is called a semi-Markov chain (SMC) and (J, T) = (Jm, Tm)m is called a Markov renewal
chain (MRC).

All along this paper we assume that the MRC or SMC are homogeneous with respect to the time
in the sense that Equation (1) is independent of m.

Note that if (J, T) is a MRC, then it can be proved that J = (Jm)m∈N∗ is a Markov chain with state
space E, called the embedded Markov chain of the MRC (J, T) (or of the SMC Y).

Definition 2. For a semi-Markov chain we define:

• the semi-Markov kernel (qij(k))i,j∈E,k∈N,

qij(k) = P(Jm+1 = j, Tm+1 − Tm = k|Jm = i);

• the initial distribution (µi)i∈E,

µi = P(J1 = i) = P(Y1 = i);

• the transition matrix (pij)i,j∈E of the embedded Markov chain J = (Jm)m,

pij = P(Jm+1 = j|Jm = i);

• the conditional sojourn time distributions ( fij(k))i,j∈E,k∈N,

fij(k) = P(Tm+1 − Tm = k|Jm = i, Jm+1 = j).

Note that

qij(k) = pij fij(k). (2)

Clearly, a semi-Markov chain is uniquely determined a.s. by an initial distribution (µi)i∈E and
a semi-Markov kernel (qij(k))i,j∈E,k∈N or, equivalently, by an initial distribution (µi)i∈E, a Markov
transition matrix (pij)i,j∈E and conditional sojourn time distributions ( fij(k))i,j∈E,k∈N.

Other assumptions we make are: (i) We do not allow transitions to the same state, i.e., pii = 0 for
all i ∈ E, or equivalently qii(k) = 0, for all i ∈ E, k ∈N; (ii) We assume that there are not instantaneous
transitions, that is qij(0) ≡ 0 or equivalently fij(0) ≡ 0 for all i, j ∈ E; note that this implies that T is a
strictly increasing sequence.

For the conditional sojourn time distributions, one can consider the associated cumulative distri-
bution function defined by

Fij(k) := P(Tm+1 − Tm ≤ k|Jm = i, Jm+1 = j) =
k

∑
t=1

fij(t).

For any distribution function F(·) we can consider the associated survival/reliability function defined
by

F(k) := 1− F(t).
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Consequently we have

Fij(k) := P(Tm+1 − Tm > k|Jm = i, Jm+1 = j) = 1−
k

∑
t=1

fij(t) =
∞

∑
t=k+1

fij(t).

Particular cases: sojourn times of the type fi.(.), f.j(.) and f (.)

We have considered up to here general semi-Markov models with the semi-Markov kernel of the type
given in (2). Particular types of this semi-Markov model can be taken into account, by considering
particular cases of holding time distributions fij(k), where these distributions depend only on the
current state i, or only on the next state j, or neither on i nor on j. For each case, let us define the
semi-Markov kernel and the distribution function associated to the sojourn time distribution.

• Sojourn times depending only on the current state:

qij(k) := pij fi•(k), where (3)

fi•(k) = P(Tm+1 − Tm = k|Jm = i) = ∑
v∈E

piv fiv(k),

Fi•(k) := P(Tm+1 − Tm ≤ k|Jm = i) =
k

∑
t=1

fi•(t) =
k

∑
t=1

∑
v∈E

piv fiv(t).

• Sojourn times depending only on the next state:

qij(k) := pij f•j(k), where (4)

f•j(k) = P(Tm+1 − Tm = k|Jm+1 = j),

F•j(k) := P(Tm+1 − Tm ≤ k|Jm+1 = j) =
k

∑
t=1

f•j(t).

• Sojourn times depending neither on the current state nor on the next state:

qij(k) := pij f (k), where (5)

f (k) = P(Tm+1 − Tm = k).

F(k) := P(Tm+1 − Tm ≤ k) =
k

∑
t=1

f (t).

We also denote the associated survival/reliability functions respectively by Fi•(k), F•j(k), F(k).

The SMM package

The SMM R package is mainly devoted to the simulation and estimation of discrete-time semi-Markov
models in different cases by the two following functions:

� simulSM() for the simulation of sequences from a semi-Markov model:

– One or several trajectories

– According to classical distributions for the sojourn times (Uniform, Geometric, Poisson,
Discrete Weibull and Negative Binomial) or according to distributions given by the user

– Four different types of censoring mechanisms: censoring at the beginning of sample paths,
censoring at the end, censoring at the beginning and at the end, no censoring

– Four different types of sojourn times: depending on the current state and on the next state,
depending only on the current state, depending only on the next state, depending neither
on the current state nor on the next state

� estimSM() for the estimation of model parameters:

– One or several trajectories

– Parametric (Uniform, Geometric, Poisson, Discrete Weibull and Negative Binomial) or
non-parametric distributions for the sojourn times

– Four different types of censoring mechanisms: censoring at the beginning of sample paths,
censoring at the end, censoring at the beginning and at the end, no censoring
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– Four different types of sojourn times: depending on the current state and on the next state,
depending only on the current state, depending only on the next state, depending neither
on the current state nor on the next state

As the Negative Binomial distribution and the Discrete Weibull distribution can have several
different parameterizations, note that we have considered the following ones in our package:

– Discrete Weibull of type I with the density f (x) = q(x−1)β − qxβ
for x = 1, 2, . . . , n with

n > 0, q is the first parameter, 0 < q < 1, and β is the second parameter, β > 0;

– Negative Binomial with the density f (x) =
Γ(x + α)

Γ(α)x!

(
α

α + µ

)α ( µ

α + µ

)x
for x =

0, 1, . . . , n with n > 0, Γ is the Gamma function, α is the parameter of overdispersion,
α > 0, and µ is the mean, µ ∈ R.

In order to avoid any confusion, note also that the expressions of the different densities consid-
ered in this package are also provided in the corresponding manual.

The SMM R package is also devoted to the simulation and estimation of discrete-time Markov models
by the two following functions:

� simulMk() for the simulation of sequences from a kth order Markov model;

� estimMk() for the estimation of the parameters of the model.

All the different possibilities of the package are illustrated in Figure 1.

  

R Package - SMM

Markov Models Semi-Markov Models

Estimation Simulation

fij, fi, fj, f

Parametric Non-parametric

Begin censored End censored Begin/End censored Uncensored

Estimation Simulation

Several trajectories
Several trajectories

Uniform Geometric Poisson Negative Binomial Weibull

Figure 1: Schema of the SMM package.

Simulation of semi-Markov models

Parametric simulation: according to classical distributions

In this part, we will consider the simulation according to classical distributions.

Parameters: This simulation is carried out by the function simulSM(). The different parameters of
the function are:

• E: Vector of state space of length S

• NbSeq: Number of simulated sequences
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• lengthSeq: Vector containing the lengths of each simulated sequence

• TypeSojournTime: Type of sojourn time; it can be "fij", "fi", "fj" or "f" according to the four
cases previously discussed

• init: Vector of initial distribution of length S

• Ptrans: Matrix of transition probabilities of the embedded Markov chain J = (Jm)m of size
S× S

• distr: Sojourn time distributions:

– is a matrix of distributions of size S× S if TypeSojournTime is equal to "fij",

– is a vector of distributions of size S if TypeSojournTime is equal to "fi" or "fj",

– is a distribution if TypeSojournTime is equal to "f",

where the distributions to be used can be one of "uniform", "geom", "pois", "weibull" or
"nbinom".

• param: Parameters of sojourn time distributions:

– is an array of parameters of size S× S× 2 if TypeSojournTime is equal to "fij"

– is a matrix of parameters of size S× 2 if TypeSojournTime is equal to "fi" or "fj"

– is a vector of parameters if TypeSojournTime is equal to "f"

• cens.beg: Type of censoring at the beginning of sample paths; 1 (if the first sojourn time is
censored) or 0 (if not). All the sequences must be censored in the same way.

• cens.end: Type of censoring at the end of sample paths; 1 (if the last sojourn time is censored)
or 0 (if not). All the sequences must be censored in the same way.

• File.out: Name of fasta file for saving the sequences; if File.out = NULL, no file is created.
A fasta file is a simple text file containing sequences only described by one description line
beginning by a ">": an example is given in Figure 2.

> sequence 1
aaacgtacgagtcgatcgatcgactcgatcgtacgtacggt
> sequence 2
acgtattacgatgctagctaggttggggactgcatgcatgaatgagcgatc

Figure 2: Example of a fasta file.

The R commands below generate three sequences of size 1000, 10000 and 2000 respectively with
the finite state space E = {a, c, g, t}, where the sojourn times depend on the current state and on the
next state.

## state space
E = c("a","c","g","t")
S = length(E)
## sequence sizes
lengthSeq3 = c(1000, 10000, 2000)
## creation of the initial distribution
vect.init = c(1/4,1/4,1/4,1/4)
## creation of transition matrix
Pij = matrix(c(0,0.2,0.3,0.4,0.2,0,0.5,0.2,0.5,0.3,0,0.4,0.3,0.5,0.2,0),

ncol=4)
## creation of the distribution matrix
distr.matrix = matrix(c("dweibull", "pois", "geom", "nbinom",

"geom", "nbinom", "pois", "dweibull",
"pois", "pois", "dweibull", "geom",
"pois","geom", "geom", "nbinom"),

nrow = S, ncol = S, byrow = TRUE)
## creation of an array containing the parameters
param1.matrix = matrix(c(0.6,2,0.4,4,0.7,2,5,0.6,

2,3,0.6,0.6,4,0.3,0.4,4),
nrow = S, ncol = S, byrow = TRUE)

param2.matrix = matrix(c(0.8,0,0,2,0,5,0,0.8,
0,0,0.8,0,4,0,0,4),
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nrow = S, ncol = S, byrow = TRUE)
param.array = array(c(param1.matrix, param2.matrix), c(S,S,2))
## for the reproducibility of the results
set.seed(1)
## simulation of 3 sequences
seq3 = simulSM(E = E, NbSeq = 3, lengthSeq = lengthSeq3,

TypeSojournTime = "fij", init = vect.init,
Ptrans = Pij, distr = distr.matrix, param = param.array,
File.out = "seq3.txt")

First, note that in this simulation, the parameters cens.beg and cens.end are equal to 0, that is to
say the simulated sequences are not censored.

Second, note also that the parameters of the distributions are given in the following way: for
example, f13(·) is Geometric distribution with parameter 0.4, while f14(·) is Negative Binomial with
parameters 4 and 2. In other words, the parameters of f13(·) are given in the vector param.array[1,3,]
that is equal to (0.4, 0) and the parameters of f14(·) are given in the vector param.array[1,4,] that
is equal to (4, 2); that means that if a distribution has only 1 parameter, the corresponding vector of
parameters will have 0 on the second position.

Values: The function simulSM() returns a list of simulated sequences. These sequences can be saved
in a fasta file by using the parameter File.out.

seq3[[1]][1:15]
[1] "g" "g" "g" "g" "c" "c" "c" "a" "a" "a" "c" "c" "c" "g" "g"

Non-parametric simulation: according to distributions given by the user

Now we will consider the simulation according to distributions given by the user.

Parameters: This simulation is carried out by the function simulSM(). The different parameters of
the function are:

• E: Vector of state space of length S

• NbSeq: Number of simulated sequences

• lengthSeq: Vector containing the lengths of each simulated sequence

• TypeSojournTime: Type of sojourn time; it can be "fij", "fi", "fj" or "f" according to the four
cases previously discussed

• init: Vector of initial distribution of length S

• Ptrans: Matrix of transition probabilities of the embedded Markov chain J = (Jm)m of size
S× S

• laws: Sojourn time distributions introduced by the user:

– is an array of size S× S× Kmax if TypeSojournTime is equal to "fij",

– is a matrix of size S× Kmax if TypeSojournTime is equal to "fi" or "fj",

– is a vector of length Kmax if TypeSojournTime is equal to "f",

where Kmax is the maximum length for the sojourn times.

• cens.beg: Type of censoring at the beginning of sample paths; 1 (if the first sojourn time is
censored) or 0 (if not). All the sequences must be censored in the same way.

• cens.end: Type of censoring at the end of sample paths; 1 (if the last sojourn time is censored)
or 0 (if not). All the sequences must be censored in the same way.

• File.out: Name of fasta file for saving the sequences; if File.out = NULL, no file is created.

The R commands below generate three sequences of size 1000, 10000 and 2000 respectively with
the finite state space E = {a, c, g, t}, where the sojourn times depend only on the next state.

## state space
E = c("a","c","g","t")
S = length(E)
## sequence sizes
lengthSeq3 = c(1000, 10000, 2000)
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## creation of the initial distribution
vect.init = c(1/4,1/4,1/4,1/4)
## creation of transition matrix
Pij = matrix(c(0,0.2,0.3,0.4,0.2,0,0.5,0.2,0.5,0.3,0,0.4,0.3,0.5,0.2,0),

ncol=4)
## creation of a matrix corresponding to the conditional
## sojourn time distributions
Kmax = 6
nparam.matrix = matrix(c(0.2,0.1,0.3,0.2,0.2,0,0.4,0.2,0.1,

0,0.2,0.1,0.5,0.3,0.15,0.05,0,0,
0.3,0.2,0.1,0.2,0.2,0),

nrow = S, ncol = Kmax, byrow = TRUE)
## for the reproducibility of the results
set.seed(2)
## simulation of 3 sequences with censoring at the beginning
seqNP3_begin = simulSM(E = E, NbSeq = 3, lengthSeq = lengthSeq3,
TypeSojournTime = "fj", init = vect.init, Ptrans = Pij,

laws = nparam.matrix, File.out = "seqNP3_begin.txt",
cens.beg = 1, cens.end = 0)

## simulation of 3 sequences with censoring at the end
seqNP3_end = simulSM(E = E, NbSeq = 3, lengthSeq = lengthSeq3,

TypeSojournTime = "fj", init = vect.init, Ptrans = Pij,
laws = nparam.matrix, File.out = "seqNP3_end.txt",
cens.beg = 0, cens.end = 1)

## simulation of 3 sequences censored at the beginning and at the end
seqNP3_begin_end = simulSM(E = E, NbSeq = 3, lengthSeq = lengthSeq3,

TypeSojournTime = "fj", init = vect.init, Ptrans = Pij,
laws = nparam.matrix, File.out = "seqNP3_begin_end.txt",
cens.beg = 1, cens.end = 1)

## simulation of 3 sequences without censoring
seqNP3_no = simulSM(E = E, NbSeq = 3, lengthSeq = lengthSeq3,

TypeSojournTime = "fj", init = vect.init, Ptrans = Pij,
laws = nparam.matrix, File.out = "seqNP3_no.txt")

## for the reproducibility of the results
seqNP3_begin = read.fasta("seqNP3_begin.txt")
seqNP3_end = read.fasta("seqNP3_end.txt")
seqNP3_begin_end = read.fasta("seqNP3_begin_end.txt")
seqNP3_no = read.fasta("seqNP3_no.txt")
seqNP3_begin[[1]][1:15]

Note that in this simulation all the different censoring mechanisms are considered.

Values: The function simulSM() returns a list of simulated sequences. These sequences can be saved
in a fasta file by using the parameter File.out.

seqNP3_begin[[1]][1:15]
[1] "c" "g" "g" "g" "g" "g" "g" "c" "c" "c" "a" "a" "a" "a" "a"

Estimation of semi-Markov models

In this subsection we explain and illustrate the estimation of a semi-Markov model in the parametric
and non-parametric cases.

Parametric estimation of semi-Markov models
We will consider the distributions fij(k) = fij(k; θij) depending on unknown parameters θij ∈ Rmij ,

where the dimension of parameters set mij is known; no assumptions are made on
(

pij

)
ij

. From the

data, we want to estimate pij and θij, i, j ∈ E. Let us assume that we have at our disposal several
independent sample paths of a semi-Markov chain, say L, each of them of length nl , l = 1, . . . , L,
censored at the beginning and at the end of the trajectory, i.e.,

yl
1, yl

2, . . . , yl
nl

,
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or, equivalently,
jl0, kl

0, jl1, kl
1, jl2, kl

2, . . . , jltl , kl
tl , jltl+1, kl

tl+1

with ∑tl+1
i=0 kl

i = nl , where jl0, . . . , jltl+1 are the successive distinct visited states, kl
0 is the first sojourn

time, assumed to be right censored, kl
tl+1 is the last sojourn time, assumed also to be right censored,

while kl
1, . . . , kl

tl are the other successive sojourn times, assumed to be complete (observed, non
censored).

To estimate the parameters of model, we use the maximum likelihood estimation:

argmax
puv ,θuv ;u,v∈E

(l(puv, θuv; u, v ∈ E)) (6)

=

(
argmax

puv ,θuv ;v∈E

(
∑
v∈E

Nuv(L, n1:L) log(puv) + ∑
v∈E

maxl(nl)

∑
k=1

Nuv(k; L, n1:L) log( fuv(k; θuv))

+ ∑
v∈E

maxl(nl)

∑
k=1

Nb
uv(k; L) log(Fuv(k; θuv))

+
maxl(nl)

∑
k=1

Ne
u•(k; L) log

(
1−

k

∑
m=1

∑
v∈E

puv fuv(m; θuv)

))
u∈E

)
,

where we introduced the following counting processes

Nij(L, n1:L) =
L

∑
l=1

Nl(nl)−1

∑
m=1

1{Jl
m=i;Jl

m+1=j},

Nij(k; L, n1:L) =
Nl(nl)−1

∑
m=1

1{Jl
m=i;Jl

m+1=j;Tl
m+1−Tl

m=k},

Nb
ij(k; L) =

L

∑
l=1

1{Jl
0=i;Jl

1=j;Tl
1−Tl

0>k},

Ne
i•(k; L) =

L

∑
l=1

1{Jl
Tl

Nl (nl )

=i,Xl
Tl

Nl (nl )+1

>k},

where
Nl(nl) = max{m ∈N | Tl

m ≤ nl}
is the counting process of jump number in [1; nl ] of the trajectory l.

Note that:

- Nij(L, n1:L) represents the number of transitions from state i to state j along the L sample paths;

- Nij(k; L, n1:L) represents the number of transitions from state i to state j along the L sample paths,
with sojourn time of length k in state i;

- Nb
ij(k; L) represents the number of trajectories starting in state i, with a next transition to state j

and censored sojourn time in state i greater than k;

- Ne
i•(k; L) represents the number of trajectories ending in state i with a censored sojourn time in

state i greater than k.

Note also that in the expression (6) of the log-likelihood, the first two terms correspond to the tran-
sition probabilities and the observed (non censored) sojourn times, the third term is the contribution
to the likelihood of the first sojourn times, assumed to be right censored, while the last term is the
contribution to the likelihood of the last sojourn times, assumed to be right censored.

Up to here we presented the estimation for the general case, taking into account the censoring
at the beginning and at the end and the sojourn times depending on the current state and on the
next state. Thus the maximization problem (6) is written with the sojourn times depending on the
current state and on the next state (the general model of the type qij(k) = pij fij(k) given in (2)), but the
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different cases of sojourn times are written and coded in the package. Note also that different types of
censoring are also written and coded in the package.

Parameters: The estimation is carried out by the function estimSM(). The different parameters of
the function are:

• file: Path of the fasta file which contains the sequences from which to estimate

• seq: List of the sequence(s) from which to estimate

• E: Vector of state space of length S

• TypeSojournTime: Type of sojourn time; it can be "fij", "fi", "fj" or "f" according to the four
cases previously discussed

• distr: Sojourn time distributions:

– is a matrix of distributions of size S× S if TypeSojournTime is equal to "fij",

– is a vector of distributions of size S if TypeSojournTime is equal to "fi" or "fj",

– is a distribution if TypeSojournTime is equal to "f",

where the distributions to be used can be one of "uniform", "geom", "pois", "weibull" or
"nbinom".

• cens.beg: Type of censoring at the beginning of sample paths; 1 (if the first sojourn time is
censored) or 0 (if not). All the sequences must be censored in the same way.

• cens.end: Type of censoring at the end of sample paths; 1 (if the last sojourn time is censored)
or 0 (if not). All the sequences must be censored in the same way.

Note that the sequences from which we estimate can be given either as an R list (seq argument) or as a
file in fasta format (file argument).

## data
seq3 = read.fasta("seq3.txt")
E = c("a","c","g","t")
## creation of the distribution matrix
distr.matrix = matrix(c("dweibull", "pois", "geom", "nbinom",

"geom", "nbinom", "pois", "dweibull",
"pois", "pois", "dweibull", "geom",
"pois","geom", "geom", "nbinom"),

nrow = S, ncol = S, byrow = TRUE)
## estimation of simulated sequences
estSeq3 = estimSM(seq = seq3, E = E, TypeSojournTime = "fij",
distr = distr.matrix, cens.end = 0, cens.beg = 0)

Here, we estimate simulated sequences with no censoring. The estimation performed will correspond
to the likelihood given in (6), without the third and forth terms.

Values: The function estimSM() returns a list containing:

• init: Vector of size S with estimated initial probabilities of the semi-Markov chain

estSeq3$init
[1] 0.0000000 0.0000000 0.3333333 0.6666667

• Ptrans: Matrix of size S× S with estimated transition probabilities of the embedded Markov
chain J = (Jm)m

estSeq3$Ptrans
[,1] [,2] [,3] [,4]

[1,] 0.0000000 0.2263948 0.4957082 0.2778970
[2,] 0.2134472 0.0000000 0.2892209 0.4973319
[3,] 0.2900627 0.4709042 0.0000000 0.2390331
[4,] 0.4108761 0.2024169 0.3867069 0.0000000

• param: Array with estimated parameters of the sojourn time distributions
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estSeq3$param
, , 1

[,1] [,2] [,3] [,4]
[1,] 0.0000000 1.7867299 0.411398 4.1358797
[2,] 0.6920415 0.0000000 4.745387 0.6131806
[3,] 2.0123457 3.0722433 0.000000 0.5729614
[4,] 3.8088235 0.3068702 0.392237 0.0000000

, , 2

[,1] [,2] [,3] [,4]
[1,] 0 0 0 2.1043710
[2,] 0 0 0 0.8425902
[3,] 0 0 0 0.0000000
[4,] 0 0 0 0.0000000

Note that, for example, estSeq3$param[1,3,] is the vector containing the parameters of the
distribution f13(·).

• q: Array of size S× S× Kmax with estimated semi-Markov kernel

estSeq3$q[,,1:3]
, , 1

[,1] [,2] [,3] [,4]
[1,] 0.00000000 0.03792273 0.20393336 0.05070777
[2,] 0.14771431 0.00000000 0.00251382 0.19237763
[3,] 0.03877405 0.02181093 0.00000000 0.13695675
[4,] 0.00911087 0.06211573 0.15168076 0.00000000

, , 2

[,1] [,2] [,3] [,4]
[1,] 0.00000000 0.06775768 0.12003558 0.07072333
[2,] 0.04548987 0.00000000 0.01192905 0.09806611
[3,] 0.07802680 0.06700849 0.00000000 0.05848582
[4,] 0.03470170 0.04305426 0.09218596 0.00000000

, , 3

[,1] [,2] [,3] [,4]
[1,] 0.00000000 0.06053233 0.07065318 0.06124460
[2,] 0.01400899 0.00000000 0.02830398 0.06214172
[3,] 0.07850845 0.10293320 0.00000000 0.02497570
[4,] 0.06608632 0.02984219 0.05602722 0.00000000

Note that, for example, q13(2) = P(Jm+1 = 3, Tm+1 − Tm = 2|Jm = 1) = 0.12192187.

Non-parametric estimation of semi-Markov models
Here we will consider two types of estimation for semi-Markov chains: a direct estimation, obtaining
thus empirical estimators (in fact, approached MLEs), cf. Barbu and Limnios (2006), Barbu and Limnios
(2008) and an estimation based on a couple Markov chain associated to the semi-Markov chain (see
Trevezas and Limnios, 2011).

No censoring: direct estimation
Let {Y1, Y2, . . . , Yn} be a trajectory of a semi-Markov chain Y = (Yn)n∈N, censored at an arbitrary
fixed time n.

• The case qij(k) = pij fij(k): The maximum likelihood estimators are

p̂ij(n) =
Nij(n)
Ni•(n)

, f̂ij(k; n) =
Nij(k; n)
Nij(n)

, q̂ij(k; n) =
Nij(k; n)
Ni•(n)

.
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where Nij(n) = ∑
N(n)−1
m=1 1{Jm=i;Jm+1=j}, Ni•(n) = ∑

N(n)−1
m=1 1{Jm=i},

Nij(k; n) = ∑
N(n)−1
m=1 1{Jm=i;Jm+1=j;Tm+1−Tm=k}.

• The case qij(k) = pij fi•(k): The maximum likelihood estimators are

p̂ij(n) =
Nij(n)
Ni•(n)

, f̂i•(k; n) =
Ni•(k; n)

Nij(n)
, q̂ij(k; n) =

Ni•(k; n)
Ni•(n)

,

where Ni•(k; n) = ∑
N(n)−1
m=1 1{Jm=i;Tm+1−Tm=k}.

• The case qij(k) = pij f•j(k): The maximum likelihood estimators are

p̂ij(n) =
Nij(n)
Ni•(n)

, f̂•j(k; n) =
N•j(k; n)

Nij(n)
, q̂ij(k; n) =

N•j(k; n)
Ni•(n)

,

where N•j(k; n) = ∑
N(n)−1
m=1 1{Jm+1=j;Tm+1−Tm=k}.

• The case qij(k) = pij f (k): The maximum likelihood estimators are

p̂ij(n) =
Nij(n)
Ni•(n)

, f̂ (k; n) =
N(k; n)
Nij(n)

, q̂ij(k; n) =
N(k; n)
Ni•(n)

,

where N(k; n) = ∑
N(n)−1
m=1 1{Tm+1−Tm=k}.

Censoring: couple Markov chain For a semi-Markov chain Y = (Yn)n∈N, let U = (Un)n∈N be the
backward recurrence time of the SMC, defined by

Un := n− TN(n). (7)

We can show (cf. Limnios and Oprisan, 2001) that the chain (Y, U) = (Yn, Un)n∈N is a Markov chain
with state space E×N. We will denote its transition matrix by p̃ := (p(i,t1)(j,t2))i,j∈E,t1,t2∈N.

The maximum likelihood estimators of qij(k) (Trevezas and Limnios, 2011) are given by

q̂ij(k; n) = p̂(i,k−1)(j,0)(n)
k−2

∏
t=0

p̂(i,t)(i,t+1)(n), (8)

where p̂(i,t1)(j,t2)(n) represents the classical MLE of the transition probability p(i,t1)(j,t2). Thus we obtain
the corresponding estimator of pij

p̂ij =
∞

∑
k=0

q̂ij(k). (9)

In order to compute the estimators of the sojourn times, we consider the four different types of
semi-Markov kernels defined in Equations (2), (3), (4) and (5).

Parameters: The estimation is carried out by the function estimSM() and several parameters must
be given.

• file: Path of the fasta file which contains the sequences from which to estimate

• seq: List of the sequence(s) from which to estimate

• E: Vector of state space of length S

• TypeSojournTime: Type of sojourn time; always equal to "NP" for the non-parametric estimation

• cens.beg: Type of censoring at the beginning of sample paths; 1 (if the first sojourn time is
censored) or 0 (if not). All the sequences must be censored in the same way.

• cens.end: Type of censoring at the end of sample paths; 1 (if the last sojourn time is censored)
or 0 (if not). All the sequences must be censored in the same way.

Note that the sequences from which we estimate can be given either as an R list (seq argument) or
as a file in fasta format (file argument). The parameter distr is always equal to "NP".

## data
seqNP3_no = read.fasta("seqNP3_no.txt")
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E = c("a","c","g","t")
## estimation of simulated sequences
estSeqNP3= estimSM(seq = seqNP3_no, E = E, TypeSojournTime = "fj",

distr = "NP", cens.end = 0, cens.beg = 0)

Here, we estimate simulated sequences with no censoring.

Values: The function estimSM() returns a list containing:

• init: Vector of size S with estimated initial probabilities of the semi-Markov chain

estSeqNP3$init
[1] 0.0000000 0.6666667 0.3333333 0.0000000

• Ptrans: Matrix of size S× S with estimated transition probabilities of the embedded Markov
chain J = (Jm)m

estSeqNP3$Ptrans
[,1] [,2] [,3] [,4]

[1,] 0.0000000 0.2051948 0.5090909 0.2857143
[2,] 0.1938179 0.0000000 0.3107769 0.4954052
[3,] 0.3010169 0.4874576 0.0000000 0.2115254
[4,] 0.3881686 0.1936791 0.4181524 0.0000000

• laws: Array of size S× S× Kmax with estimated values of the sojourn time distributions

estSeqNP3$laws[,,1:2]
, , 1

[,1] [,2] [,3] [,4]
[1,] 0.0000000 0.3941423 0.4728997 0.2939271
[2,] 0.1896104 0.0000000 0.4728997 0.2939271
[3,] 0.1896104 0.3941423 0.0000000 0.2939271
[4,] 0.1896104 0.3941423 0.4728997 0.0000000

, , 2

[,1] [,2] [,3] [,4]
[1,] 0.0000000 0.1949791 0.3089431 0.1959514
[2,] 0.1073593 0.0000000 0.3089431 0.1959514
[3,] 0.1073593 0.1949791 0.0000000 0.1959514
[4,] 0.1073593 0.1949791 0.3089431 0.0000000

• q: Array of size S× S× Kmax with estimated semi-Markov kernel

estSeqNP3$q[,,1:3]
, , 1

[,1] [,2] [,3] [,4]
[1,] 0.00000000 0.07792208 0.2562771 0.06753247
[2,] 0.03508772 0.00000000 0.1378446 0.15956558
[3,] 0.05559322 0.18576271 0.0000000 0.06372881
[4,] 0.07698541 0.08670989 0.1920583 0.00000000

, , 2

[,1] [,2] [,3] [,4]
[1,] 0.00000000 0.04329004 0.1411255 0.05627706
[2,] 0.01670844 0.00000000 0.1019215 0.10025063
[3,] 0.03796610 0.09762712 0.0000000 0.03864407
[4,] 0.03889789 0.03160454 0.1385737 0.00000000

, , 3

[,1] [,2] [,3] [,4]
[1,] 0.00000000 0.02770563 0.07965368 0.04069264
[2,] 0.07101086 0.00000000 0.05179616 0.03926483
[3,] 0.09152542 0.05423729 0.00000000 0.02440678
[4,] 0.10940032 0.01782820 0.05591572 0.00000000
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Supplementary functions

In this package, others functions are available. These functions enable to compute the initial distribu-
tion for a semi-Markov model, the log-likelihood of a semi-Markov model and the AIC and BIC of a
semi-Markov model.

� InitialLawSM(): Estimation of initial distribution for a semi-Markov model

Parameters:

• q: Array of size S× S× Kmax with estimated semi-Markov kernel

seq = list(c("a","c","c","g","t","a","a","a","a",
"g","c","t","t","t","g"))

res = estimSM(seq = seq, E = c("a","c","g","t"), distr = "NP")
Warning message:
In .comptage(J, L, S, Kmax): Warning: missing transitions
q = res$q
p = res$Ptrans

InitialLawSM(E = c("a","c","g","t"), seq = seq, q = q)
$init
[1] 0.2205882 0.2205882 0.2058824 0.3529412

Values: The function InitialLawSM() returns a list containing a vector of the initial distribution.

� LoglikelihoodSM (): Computation of the log-likelihood

Parameters:

• E: Vector of state space of length S

• seq: List of the sequence(s) from which to estimate

• mu: Vector of initial distribution of length S

• Ptrans: Matrix of transition probabilities of the embedded Markov chain J = (Jm)m of size
S× S

• TypeSojournTime: Type of sojourn time; it can be "fij", "fi", "fj" or "f" according to the four
cases previously discussed

• distr: Sojourn time distributions:

– is a matrix of distributions of size S× S if TypeSojournTime is equal to "fij",

– is a vector of distributions of size S if TypeSojournTime is equal to "fi" or "fj",

– is a distribution if TypeSojournTime is equal to "f",

where the distributions to be used can be one of "uniform", "geom", "pois", "weibull" or
"nbinom".

• param: Parameters of sojourn time distributions:

– is an array of parameters of size S× S× 2 if TypeSojournTime is equal to "fij"

– is a matrix of parameters of size S× 2 if TypeSojournTime is equal to "fi" or "fj"

– is a vector of parameters if TypeSojournTime is equal to "f"

• laws: Sojourn time distributions introduced by the user:

– is an array of size S× S× Kmax if TypeSojournTime is equal to "fij",

– is a matrix of size S× Kmax if TypeSojournTime is equal to "fi" or "fj",

– is a vector of length Kmax if TypeSojournTime is equal to "f",

where Kmax is the maximum length for the sojourn times.

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 240

## state space
E = c("a","c","g","t")
S = length(E)
## creation of transition matrix
Pij = matrix( c(0,0.2,0.3,0.4,0.2,0,0.5,0.2,0.5,0.3,0,0.4,0.3,0.5,0.2,0),ncol=4)
## for the reproducibility of the results
set.seed(3)
## simulation
seq5000 = simulSM(E = E, NbSeq = 1, lengthSeq = 5000,

TypeSojournTime = "f", init = c(1/4,1/4,1/4,1/4),
Ptrans = Pij, distr = "pois", param = 2, File.out =

"seq5000.txt")
## computation of the log-likelihood
LoglikelihoodSM(seq = seq5000, E = E, mu = rep(1/4,4),

Ptrans = Pij, distr = "pois", param = 2,
TypeSojournTime = "f")

$L
$L[[1]]
[1] -1748.431

$Kmax
[1] 10

Values: The function likelihoodSM() returns a list containing:

• L: List with the value of the likelihood for each sequence

• Kmax: Maximal sojourn time

We also consider model selection criteria in order to evaluate and choose among candidate models;
the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) are considered.

� AIC_SM(): computation of the AIC

AIC(M) = −2 logL+ 2M,

where L is the log-likelihood, M is the number of parameters involved in the model

Parameters:

• E: Vector of state space of length S

• seq: List of the sequence(s) from which to estimate

• mu: Vector of initial distribution of length S

• Ptrans: Matrix of transition probabilities of the embedded Markov chain J = (Jm)m of size
S× S

• TypeSojournTime: Type of sojourn time; it can be "fij", "fi", "fj" or "f" according to the four
cases previously discussed

• distr: Sojourn time distributions:

– is a matrix of distributions of size S× S if TypeSojournTime is equal to "fij",

– is a vector of distributions of size S if TypeSojournTime is equal to "fi" or "fj",

– is a distribution if TypeSojournTime is equal to "f",

where the distributions to be used can be one of "uniform", "geom", "pois", "weibull" or
"nbinom".

• param: Parameters of sojourn time distributions:

– is an array of parameters of size S× S× 2 if TypeSojournTime is equal to "fij"

– is a matrix of parameters of size S× 2 if TypeSojournTime is equal to "fi" or "fj"

– is a vector of parameters if TypeSojournTime is equal to "f"

• laws: Sojourn time distributions introduced by the user:

– is an array of size S× S× Kmax if TypeSojournTime is equal to "fij",

– is a matrix of size S× Kmax if TypeSojournTime is equal to "fi" or "fj",
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– is a vector of length Kmax if TypeSojournTime is equal to "f",

where Kmax is the maximum length for the sojourn times.

## state space
E = c("a","c","g","t")
S = length(E)
lengthSeq3 = c(1000, 10000, 2000)
## creation of the initial distribution
vect.init = c(1/4,1/4,1/4,1/4)
## creation of transition matrix
Pij = matrix( c(0,0.2,0.3,0.4,0.2,0,0.5,0.2,0.5,0.3,0,0.4,0.3,0.5,0.2,0),ncol=4)
## creation of the distribution matrix
distr.matrix = matrix(c("dweibull", "pois", "geom", "nbinom",

"geom", "nbinom", "pois", "dweibull",
"pois", "pois", "dweibull", "geom",
"pois","geom", "geom", "nbinom"),
nrow = S, ncol = S, byrow = TRUE)

## creation of an array containing the parameters
param1.matrix = matrix(c(0.6,2,0.4,4,0.7,2,5,0.6,2,3,0.6,

0.6,4,0.3,0.4,4), nrow = S,
ncol = S, byrow = TRUE)

param2.matrix = matrix(c(0.8,0,0,2,0,5,0,0.8,0,0,0.8,
0,4,0,0,4), nrow = S, ncol = S,

byrow = TRUE)
param.array = array(c(param1.matrix, param2.matrix), c(S,S,2))
## for the reproducibility of the results
set.seed(4)
## simulation of 3 sequences
seq.crit = simulSM(E = E, NbSeq = 3, lengthSeq = lengthSeq3,

TypeSojournTime = "fij", init = vect.init,
Ptrans = Pij, distr = distr.matrix,
param = param.array, File.out = "seq.crit.txt")

## computation of the AIC
AIC_SM(seq = seq.crit, E = E, mu = rep(1/4,4), Ptrans = Pij,

distr = distr.matrix, param = param.array,
TypeSojournTime = "fij")

[[1]]
[1] 1692.061

[[2]]
[1] 16826.28

[[3]]
[1] 3334.314

Values: The function AIC_SM() returns a list with the value of AIC for each sequence.

� BIC_SM(): computation of the BIC

BIC(M) = −2 logL+ log(n)M

where L is the log-likelihood, M is the number of parameters involved in the model and n is the
sample size.

Parameters:

• E: Vector of state space of length S
• seq: List of the sequence(s) from which to estimate

• mu: Vector of initial distribution of length S
• Ptrans: Matrix of transition probabilities of the embedded Markov chain J = (Jm)m of size

S× S
• TypeSojournTime: Type of sojourn time; it can be "fij", "fi", "fj" or "f" according to the four

cases previously discussed
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• distr: Sojourn time distributions:

– is a matrix of distributions of size S× S if TypeSojournTime is equal to "fij",

– is a vector of distributions of size S if TypeSojournTime is equal to "fi" or "fj",

– is a distribution if TypeSojournTime is equal to "f",

where the distributions to be used can be one of "uniform", "geom", "pois", "weibull" or
"nbinom".

• param: Parameters of sojourn time distributions:

– is an array of parameters of size S× S× 2 if TypeSojournTime is equal to "fij"

– is a matrix of parameters of size S× 2 if TypeSojournTime is equal to "fi" or "fj"

– is a vector of parameters if TypeSojournTime is equal to "f"

• laws: Sojourn time distributions introduced by the user:

– is an array of size S× S× Kmax if TypeSojournTime is equal to "fij",

– is a matrix of size S× Kmax if TypeSojournTime is equal to "fi" or "fj",

– is a vector of length Kmax if TypeSojournTime is equal to "f",

where Kmax is the maximum length for the sojourn times.

## computation of the BIC
BIC_SM(seq = seq3, E = E, mu = rep(1/4,4), Ptrans = Pij,

distr = distr.matrix, param = param.array,
TypeSojournTime = "fij")

[[1]]
[1] 1760.811

[[2]]
[1] 16927.22

[[3]]
[1] 3412.733

Values: The function BIC_SM() returns a list with the value of BIC for each sequence.

The Markov case

In the SMM R package, we have also implemented the estimation and the simulation of discrete-time
multi-state Markov models. As in the semi-Markov case, other functions are available, enabling to
estimate the initial distribution, to compute the log-likelihood and also the AIC and BIC of a Markov
model.

� simulMk(): Simulation of a Markov chain of order k

## state space
E <- c("a","c","g","t")
S = length(E)
vect.init <- c(1/4,1/4,1/4,1/4)
k<-2
p <- matrix(0.25, nrow = S^k, ncol = S)
## for the reproducibility of the results
set.seed(5)
## simulation of 3 sequences with the simulMk function
seq.markov = simulMk(E = E, nbSeq = 3, lengthSeq = c(1000, 10000, 2000),

Ptrans = p, init = vect.init, k = 2, File.out= "seq.markov.txt")

seq.markov[[1]][1:25]
[1] "g" "g" "g" "g" "c" "c" "c" "a" "a" "a" "c" "c" "c" "g" "g" "c" "c" "c" "c"
"c" "g" "g" "g" "a" "a"

� estimMk(): Estimation of a Markov chain of order k
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## state space
E <- c("a","c","g","t")
## for the reproducibility of the results
seq.markov = read.fasta("seq.markov.txt")
## estimation of simulated sequences
res.markov = estimMk(seq = seq.markov, E = E, k = 2)

Values: The function estimMk() returns a list containing:

• init: Vector of initial probabilities of the Markov chain

res.markov$init
[1] 0.2513810 0.2491905 0.2519048 0.2475238

• Ptrans: Matrix of transition probabilities of the Markov chain

res.markov$Ptrans
[,1] [,2] [,3] [,4]

[1,] 0.2845283 0.2498113 0.2188679 0.2467925
[2,] 0.2479645 0.2361214 0.2709104 0.2450037
[3,] 0.2640625 0.2507813 0.2515625 0.2335937
[4,] 0.2577475 0.2448980 0.2433862 0.2539683
[5,] 0.2371988 0.2454819 0.2402108 0.2771084
[6,] 0.2458629 0.2584712 0.2450749 0.2513790
[7,] 0.2435897 0.2533937 0.2624434 0.2420814
[8,] 0.2457887 0.2258806 0.2710567 0.2572741
[9,] 0.2300296 0.2692308 0.2684911 0.2322485

[10,] 0.2767584 0.2194190 0.2484709 0.2553517
[11,] 0.2542248 0.2578986 0.2549596 0.2329170
[12,] 0.2377567 0.2535545 0.2440758 0.2646130
[13,] 0.2527473 0.2590267 0.2417582 0.2464678
[14,] 0.2448196 0.2578665 0.2509593 0.2463546
[15,] 0.2617602 0.2276176 0.2594841 0.2511381
[16,] 0.2390469 0.2790161 0.2559570 0.2259800

� InitialLawMk(): Estimation of the initial distribution of a Markov chain of order k

seq = list(c("a","c","c","g","t","a","a","a","a","g","c","t","t","t","g"))
res = estimMk(seq = seq, E = c("a","c","g","t"), k = 1)
Warning message:
In estimMk(seq = seq, E = c("a", "c", "g", "t"), k = 1):
missing transitions

p = res$Ptrans

InitialLawMk(E = c("a","c","g","t"), seq = seq, Ptrans = p, k = 1)
$init
[1] 0.2205882 0.2205882 0.2058824 0.3529412

� LoglikelihoodMk(): Computation of the log-likelihood

Parameters:

• mu: Initial distribution

• Ptrans: Probability transition matrix

• k: Order of the Markov chain

## state space
E = c("a","c","g","t")
S = length(E)
## creation of transition matrix
p = matrix(rep(1/4,S*S),ncol=4)
## for the reproducibility of the results
set.seed(6)
## simulation of two sequences of length 20 and 50 respectively
seq.markov2 = simulMk(E = E, nbSeq = 2, lengthSeq = c(20,50),
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Ptrans = p, init = rep(1/4,4), k = 1,
File.out = "seq.markov2.txt")

## computation of the log-likelihood
LoglikelihoodMk(seq = seq.markov2, E = E, mu = rep(1/4,4), Ptrans = p, k = 1)
$L
$L[[1]]
[1] -27.72589

$L[[2]]
[1] -69.31472

Values: The function likelihoodSM() returns a list containing the value of the likelihood for each
sequence.

� AIC_Mk(): Computation of the AIC for a Markov chain of order k

Parameters:

• mu: Initial distribution

• Ptrans: Probability transition matrix

• k: Order of the Markov chain

## for the reproducibility of the results
seq.markov2 = read.fasta("seq.markov2.txt")

## computation of the AIC
AIC_Mk(seq = seq.markov2, E = E, mu = rep(1/4,4), Ptrans = p, k = 1)
[[1]]
[1] 79.45177

[[2]]
[1] 162.6294

Values: The function AIC_Mk() returns a list containing the value of the AIC for each sequence.

� BIC_Mk(): Computation of the BIC for a Markov chain of order k

Parameters:

• mu: Initial distribution

• Ptrans: Probability transition matrix

• k: Order of the Markov chain

## for the reproducibility of the results
seq.markov2 = read.fasta("seq.markov2.txt")

## computation of the AIC
BIC_Mk(seq = seq.markov2, E = E, mu = rep(1/4,4), Ptrans = p, k = 1)
[[1]]
[1] 91.40056

[[2]]
[1] 185.5737

Values: The function BIC_Mk() returns a list containing the value of the BIC for each sequence.

Concluding remarks

In this paper we have presented the SMM, an R package for the simulation and the estimation of
discrete-time multi-state semi-Markov models.The conditional sojourn time can be modeled by an
arbitrary distribution for a semi-Markov model, which enables a generalization with respect to Markov
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models, where the sojourn time is only modelled by a Geometric distribution (in discrete time) or
an Exponential distribution (in continuous time). The SMM package offers a variety of conditional
sojourn time distributions (Poisson, Uniform, Negative Binomial, Geometric and Discrete Weibull).
This package provides also non-parametric estimation and simulation and takes into account censored
data of several types.

To summarize, the importance and interest of the R package SMM that we have developed come
from:

- considering versatile tools, namely discrete-time multi-state semi-Markov processes, that are of
use in a variety of applied fields, like survival analysis, biology, reliability, DNA analysis, insurance
and finance, earthquake modeling, meteorology studies, etc. An example of application can be the
description of DNA sequences by using a 2-state process to distinguish between coding and non-
coding regions in DNA sequences. It is well known that the length of such regions generally does not
follow a Geometric distribution. Thus semi-Markov chains can represent adapted tools for this type of
modeling.

- implementing parametric and non-parametric estimation/simulation;

- considering several censoring schemes, that important in various applications;

- taking into account one or several independent sample paths;

- considering different types of semi-Markov kernels: either of the general type qij(k) = pij fij(k)
with the holding time distributions fij(k) depending on the current state and on the next state to be vis-
ited, or with the holding time distributions depending only on the current state, qij(k) := pij fi•(k), or
with the holding time distributions depending only on the next state to be visited, qij(k) := pij f•j(k),
or with the holding time distributions depending neither on the current, nor on the future state,
qij(k) := pij f (k). As already mentioned, it is important that these four types of models be considered
separately.

In conclusion, the R package SMM that we have developed deals with an important and versatile
tool, useful for researchers, practitioners and engineers in various fields.
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