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Sharp errors for point-wise Poisson

approximations in mixing processes

Miguel Abadi ∗ Nicolas Vergne †

Abstract

We describe the statistics of the number of occurrences of a string
of symbols in a stochastic process: Chosen a string A of length n, we
prove that the number of visits to A up to time t, denoted by Nt, has
approximately a Poisson distribution. We provide a sharp error for this
approximation. Contrarily to previous works who present uniform error
terms based on the total variation distance, our error is point-wise. As
a byproduct we obtain that all the moments of Nt are finite. Moreover,
we obtain explicit approximations for all of them. Our result holds for
processes that verify the φ-mixing condition. The error term is explicitly
expressed as function of the rate function φ and then easily computable.

AMS Subject class. Primary: 60F05; Secondary: 60G10, 60G55, 37A50.
Keyword: Mixing, recurrence, rare event, number of visits, Poisson distribu-
tion.

1 Introduction

This paper describes the statistics of occurrence times of a string of symbols in
a mixing stochastic process with a finite alphabet. For n ∈ IN , we consider a
fixed string of n symbols. We prove an upper bound for the difference between
the law of the number of occurrences of the string in a long sequence and a
Poisson law. Our result stands for φ-mixing processes (see definition below),
with its corresponding error.

The first result about the number of visits to a fixed set is obviously the
convergence of the binomial distribution to the Poisson distribution. Recently,
motivated by the statistical analysis of data sources coming from different areas
such as physics, biology, computer science, linguistics among other there was a
major interest to generalize this convergence in various sense:

(a) dependent process;
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(b) explicit rate of convergence;

(c) different kind of observables.

There is abundant literature considering on the subject considering (a) in
the dynamical systems and markovian contexts. See for instance Galves and
Schmitt ([14]) and the references there in.

Probably the most used tool to attack (b) is the Chen-Stein method intro-
duced by Chen ([11]). There is also abundant literature on this subject (see e.g.
[6], [7], [8].) The principal feature of this method is that it provides only uni-
form bounds for the rate of convergence based on the total variation distance.
As far as we know, this method was only implemented in processes that verify
the Markov property. Whether it is useful in other context is an open question
for us. We are aware of only one work which provides point-wise rate of conver-
gence. Haydn and Vaienti ([15]) prove a rate of convergence using the method
of factorial moments. The result holds for (ψ−f)-mixing processes. The bound
decreases factorially fast on k but contrary to our, it holds only for values of k
that do not exceed the inverse of some (positive) power of the measure of the
n-string.

Our result tends to give bring some light over (a), (b), and (c).
With respect to (b), we prove an upper bound for the rate of convergence of

the number of occurrences of a fixed string to the Poisson law, namely,

lim
IP (A)→0

IP
(
Nt/IP (A) = k

)
=
e−ttk

k!
,

where Nt is the number of visits of the process to the string A up to time t.
The striking point of our work tends to be the following. The error bound

we obtain decreases factorially fast as a function of k for all values of k. This
control on the tail of distribution of Nt allows us to obtain an approximation for
all the moments of Nt by those of a Poisson random variable which are finite.

Our approach relies on a sharp result proved by Abadi ([1]) that states that
for any string that does not overlap itself,

IP (Nt/IP (A) = 0) ≈ e−t .

A crucial point is that, ifA is any string, Nt/IP (A) could not be well approximated
by a Poisson law. An example of this fact is shown in Hirata ([16]), where it is
proved that for periodic points, the asymptotic limit law of

{
Nt/IP (A) = 1

}
(as

function of t) differs of the one-level Poisson law. When this happens, Abadi
and Vergne ([5], Theorem 2) show that the law of τA is different from the
exponential. Moreover, Theorem 24 in the same paper shows that A occurs in
clumps with geometric size, which says that Nt is not Poisson distributed.

Our result is established with its own error term. This error is explicitly
expressed as function of the mixing rate. As we said, it turns out that the error
term depends on the overlapping properties of A. We state some basic facts
about overlapping useful to prove our theorem. More on that topic can be find
in [5].
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With respect to (a), we establish our result under the mixing conditions.
Mixing is a large family of processes. For instance, irreducible and aperiodic
finite state Markov chain are known to be ψ-mixing (and then φ-mixing ) with
exponential decay. Moreover, Gibbs states which have summable variations are
ψ-mixing (see [18]). They have exponential decay if they have Hölder continu-
ous potential (see [9]). However, the ψ-mixing condition is sometimes a very
condition, difficult to test. We establish our result under the more general φ-
mixing condition. Further examples of φ-mixing processes can be found in [17].
The error term is explicitly expressed as a function of the mixing rate φ. We
refer the reader to [13] and [10] for a source of examples and definitions of the
several kinds of mixing processes. Those include φ-mixing and α-mixing with
functions φ and α decreasing at any rate.

With respect to (c), since any observable can be constructed as a union of
strings, we focus our work on them.

Our result is applied in a forthcoming paper: In [5] the authors applied
the Poisson approximation to develop a method for testing hypothesis to detect
strings of high or low frequency in DNA and protein sequences. This method can
not work with approximation in total variation distance or any other uniform
distributions distance.

This paper is organized as follows. In section 2 we establish our framework.
In section 3 we collect some definitions and properties of overlapping of strings.
In section 4 we state and prove the convergence of the number of occurrences
to a Poisson law. This is Theorem 4.1.

2 Framework and notations

Let C be a finite set. Put Ω = CZZ . For each x = (xm)m∈ZZ ∈ Ω and m ∈ ZZ,
let Xm : Ω → C be the m-th coordinate projection, that is Xm(x) = xm. We
denote by T : Ω → Ω the one-step-left shift operator, namely (T (x))m = xm+1.

We denote by F the σ-algebra over Ω generated by strings. Moreover we
denote by FI the σ-algebra generated by strings with coordinates in I, I ⊆ ZZ.

For a subset A ⊆ Ω we say that A ∈ Cn if and only if

A = {X0 = a0; . . . ;Xn−1 = an−1} ,

with ai ∈ C, i = 0, . . . , n− 1.
We consider an invariant probability measure IP over F . We shall assume

without loss of generality that there is no singleton of probability 0.
For two measurables V and W , we denote as usual IPW (V ) = IP (V |W ) =

IP (V ;W ) /IP (W ) the conditional measure of V given W .
We say that the process (Xm)m∈ZZ is φ-mixing if the sequence

φ(l) = sup |IP (C | B)− IP (C)| ,

converges to zero. The supremum is taken over B and C such that B ∈
F{0,.,n}, n ∈ IN, IP (B) > 0, C ∈ F{m | m≥n+l+1}.
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We write IP (V ;W ) = IP (V ∩W ). We also write V c = Ω\V , for the com-
plement of V .

We use the probabilistic notation: {Xm
n = xm

n } = {Xn = xn, . . . , Xm =
xm}. For a n-string A = {Xn−1

0 = xn−1
0 } and 1 ≤ w ≤ n, we define the w-string

A(w) = {Xn−1
n−w = xn−1

n−w} .

It belongs to the σ-algebra F{n−w,...,n−1} and consisting of the last w symbols
of A.

The mean of a r.v. X is denoted by IE(X). Wherever it is not ambiguous
we will write C and c for different positive constants even in the same sequence
of equalities/inequalities. For brevity we put (a ∨ b) = max{a, b} and (a ∧ b) =
min{a, b}.

3 Overlapping

In this section we describe some basic facts about overlapping of a string that
are needed to establish our main result.

Definition 3.1 Let A ∈ Cn. We define the periodicity of A (with respect to T )
as the number τ(A) defined as follows:

τ(A) = min
{
k ∈ {1, . . . , n} | A ∩ T−k(A) 6= ∅

}
.

Let us write n = q p+ r, with τ(A) = p, q = [n/p] and 0 ≤ r < p. Thus

A =
{
Xp−1

0 = X2p−1
p = . . . = Xqp−1

(q−1)p = ap−1
0 ; Xn−1

qp = ar−1
0

}
.

For instance

A = (

period︷ ︸︸ ︷
aaaabb

period︷ ︸︸ ︷
aaaabb

rest︷︸︸︷
aaa) .

Thus, consider the set of overlapping positions of A:

O(A) =
{
k ∈ {1, . . . , n− 1} | A ∩ T−k(A) 6= ∅

}
.

Split O(A) in a disjoint union of {τ(A), . . . , [n/τ(A)]τ(A)} and R(A) where

R(A) =
{
k ∈ {[n/τ(A)]τ(A) + 1, . . . , n− 1} | A ∩ T−k(A) 6= ∅

}
.

Put rA = #R(A). The cardinal of O(A) is then σ(A) = [n/τ(A)] + rA ≤ n.

4 Poisson approximation

4.1 Main result

For 1 ≤ t′ < t integers, let

N t
t′ =

t∑
i=t′

11T−iA .
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So that, N t
t′ counts the number of occurrences of A between t′ and t. For the

sake of simplicity we write Nt = N t
1. With some abuse of notation we also put

(−1)! = 1.

Theorem 4.1 Let (Xm)m∈ZZ be a φ-mixing process. There exists a constant
C > 0, such that for all A ∈ Cn, and all non negative integer k, the following
inequality holds: ∣∣∣∣IP (Nt/IP (A) = k

)
− e−ttk

k!

∣∣∣∣ ≤ Ce(A)g(A, k) ,

with e(A) = e1(A) + e2(A),

e1(A)
def
= inf

1≤w≤τ(A)

[
(σ(A) + n)IP (A(w)) + φ ((τ(A))− w)

]
,

e2(A)
def
= φ(n) + inf

n≤`≤1/IP (A)

[
`IP (A) +

φ (`)
IP (A)

]
,

and

g(A, k)
def
=


(2λ)k−1

(k−1)! k 6∈
{

λ
e(A) , . . . ,

t
IP (A)

}
(2λ)k−1

( λ
e(A) )! ( 1

e(A) )
k− 1

e(A)−1
k ∈

{
λ

e(A) , . . . ,
t

IP (A)

} ,

where λ
def
= t

[
1 + φ(`A)

IP (A)

]
and `A is the ` that defines e2(A).

We state several remarks to better understand the error term of the theorem
below the next corollaries.

In the next corollary we show how the point-wise error term given in Theorem
4.1 allows us to estimate the moments of Nt/IP (A) by those of a r.v. with Poisson
distribution.

Corollary 4.1 Let (Xm)m∈ZZ be a φ-mixing process with summable sequence
φ. Let β > 0. Let Z be a r.v. with Poisson distribution of parameter t > 0.
Then ∣∣∣IE (Nβ

t/IP (A)

)
− IE(Zβ)

∣∣∣ ≤ Ct,β e(A) ,

where Ct,β is a constant that just depends on t and β.

Corollary 4.2 Let (Xm)m∈ZZ be a φ-mixing process with summable sequence
φ. Let Z be a r.v. with Poisson distribution of parameter t > 0. Then

sup
K⊆IN

∣∣IP (Nt/IP (A) ∈ K)− IP (Z ∈ K)
∣∣ ≤ Ct e(A) ,

where Ct is a constant that just depends on t.
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Remark 4.1 Clearly e(A) is the uniform error term and g(A, k) is the error
factor that provides the control on the tail of distribution.

Remark 4.2 e1(A) is the error that arises from the short correlations of the
process while e2(A) is the error that arises from long ones.

Remark 4.3 IP (An) ≤ Ce−cn (see [1]). φ(n) goes to zero by hypothesis.
Therefore e1(A) is small if τ(A) is large enough to chose a w between 1 and
τ(A) such that Ce−cw and φ(τ(A)− w) are small.

Remark 4.4 Take a sequence of n-strings An with n diverging. e1(A) → 0 if
τ(An) also diverges with n faster than lnn (since IP (An) decays exponentially
fast).

Remark 4.5 e2(A) → 0 as n→∞ if the sequence φ(`) is summable.

Remark 4.6 Collet et al. ([12]) proved that for exponentially ψ-mixing pro-
cesses there exist positive constants C and c such that

IP (A ∈ Cn ; τ(A) ≤ n/3) ≤ Ce−cn .

Abadi ([1]) extended the above inequality to φ-mixing processes when n/3 is
replaced with some s ∈ (0, 1). Abadi and Vaienti ([3]) proved the above inequality
for ψ-mixing processes for any value of s (with c = c(s).) This shows that
Theorem 4.1 holds for typical (in the sense of τ(A)) strings. Taking limit on
the length of the strings along infinite sequences, we get that the Poisson limit
law holds almost everywhere.

Remark 4.7 When τ(A) is not large enough, the return time is better approx-
imated by a mixture of a Dirac measure at the origin and an exponential law
as shown by Abadi and Vergne ([5], Theorem 2). Therefore, the numbers of
occurrences of the string can not be Poisson distributed.

Remark 4.8 When e2(A) is small, so is φ(`)/IP (A). Therefore λ is just the
parameter of the Poisson law with a small correction factor 1 + φ(`)/IP (A).
Thus λ/e(A) is a large number (smaller or equal to t/IP (A).)

For k ≤ λ/e(A) or k ≥ t/IP (A) we get that g(A, k) decays factorially fast.
For k in the strip λ/e(A) to t/IP (A) we do not get k! but something that we
could call ”truncated factorial”: just get (1/e(A))! times k − (1/e(A)) factors
1/e(A).

4.2 Examples

Example 4.1 Suppose that (Xm)m∈ZZ are i.i.d. r.v. Then the process is φ-
mixing with sequence φ(l) = 0 for all l ∈ IN . Then `A = n and e2(A) = nIP (A).
Further, take w = τA. Thus e1(A) ≤ 2nIP (A(τA)). Thus e(A) ≤ 3nIP (A(τA)).
Here IP (A(τA)) is the probability of the part of the string A that does not overlap
A. In particular, if A does not overlap itself, then e(A) ≤ 3nIP (A).
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Example 4.2 Suppose that (Xm)m∈ZZ is an irreducible and aperiodic finite
state Markov chain. Then a classical theorem of Markov chains said that the
process is φ-mixing and there are positive constants C and M such that

φ(l) ≤ Ce−Ml for all l ∈ IN .

We recall that the measure of n-cylinders decays exponentially fast on n. Thus,
take for instance `A = K1n with K1 a positive constant large enough to make
φ(K1n)/IP (A) small. Assume that τ(A) = K2n. Take w = τ(A)/2. Thus e1(A)
and e2(A) decay exponentially fast on n. In particular, if A does not overlap
itself, (as is typically the case, see Remark 4.6) then σ(A) = 0. Thus

e1(A) = inf
1≤w≤n

{nIP (A(w)) + φ(n− w)} ,

and

e2(A) = K1nIP (A) +
φ(K1n)
IP (A)

+ φ(n) .

Example 4.3 Suppose that (Xm)m∈ZZ is φ-mixing with polynomial sequence
φ such that φ(l) = l−κ for some κ > 1. Then l = IP (A)−2/(κ+1). Thus, the
first term in e2(A) is IP (A)(κ−1)/(κ+1) which decays exponentially fast on n.
So, e2(A) is of order n−κ. Assume A does not overlap itself, namely τ(A) = n.
Take w = K1n. Thus the first term of e1(A) is exponential and e1(A) is of
order (K2n)−κ given by the second term.

4.3 Preparatory results

The next lemma says that the occurrence of two copies of A very close have
small probability.

Lemma 4.1 Let (Xm)m∈ZZ be a φ-mixing process. Then, for all A ∈ Cn the
following inequalities hold:

•

IPA

2n−1⋃
j=1

T−jA

 ≤ e1(A) ,

• for all ` ≥ 2n

IPA

 ⋃̀
j=2n

T−jA

 ≤ `IP (A) + φ(n) .

Proof By the overlapping properties of A one has

A ∩
2n−1⋃
j=1

T−jA = A ∩

 ⋃
j∈O(A)

2n−1⋃
j=n

T−jA

 .
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Now since T−jA ⊆ T−jA(w) for any 1 ≤ w ≤ τ(A), the first part of the lemma
follows using the φ-mixing property with B = A and

C =
⋃

j∈O(A)

2n−1⋃
j=n

T−jA(w) .

Namely

IPA

2n−1⋃
j=1

T−jA

 ≤ IP

 ⋃
j∈O(A)

2n−1⋃
j=n

T−jA(w)

+ φ(τ(A)− w) .

The first statement of the lemma follows since the cardinal of the union is
σ(A) + n. The cardinal of the union in the second statement of the lemma is
` − n + 1. The second part of the lemma follows using the φ-mixing property
as in the previous case. �

Definition 4.1 Given A ∈ Cn, and j ∈ IN , we define the j-occurrence time of
A as the r.v. τ (j)

A : Ω → IN ∪ {∞}, defined as follows: For any x ∈ Ω, define
τ

(1)
A (x) = inf{k ≥ 1 : T k(x) ∈ A} and for j ≥ 2

τ
(j)
A (x) = inf{k > τ

(j−1)
A (x) : T k(x) ∈ A} .

The next proposition says that the measure of all the configurations where
there are no two occurrences of A very close, is close to the product measure.

Proposition 4.1 Let (Xm)m∈ZZ be a φ-mixing process. Then, for all A ∈ Cn,
all 0 ≤ t1 < t2 < . . . < tk ≤ t, and all k ∈ IN for which

min
2≤j≤k

{tj − tj−1} > 2(`A + n) ,

(`A defined in Theorem 4.1) the following inequality holds:∣∣∣∣∣∣IP
 k⋂

j=1

τ
(j)
A = tj ; τ

(k+1)
A > t

− IP (A)k
k+1∏
j=1

IP (tj − tj−1 − 2(`A + n))

∣∣∣∣∣∣
≤ 5k (IP (A) + φ(`A))k

e(A) .

Proof We prove the proposition by induction on k. For shorthand notation
put `A = 2(`A + n), ∆1 = t1, ∆k+1 = t − tk, ∆i = ti − ti−1 and Pi =
IP
(
τA > ∆i − `A

)
; i = 1, . . . , k + 1.

For k = 1, the triangle inequality gives∣∣∣∣∣∣IP
(
τA = t1 ; τ (2)

A > t
)
− IP (A)

2∏
j=1

Pj

∣∣∣∣∣∣ (4.1)
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≤
∣∣∣IP (τA = t1 ; τ (2)

A > t
)
− IP

(
τA = t1 ; N t

t1+`A+n = 0
)∣∣∣ (4.2)

+
∣∣IP (τA = t1 ; N t

t1+`A+n = 0
)
− IP (τA = t1)P2

∣∣ (4.3)

+
∣∣IP (A ; τA > t1 − 1)− IP

(
A ; N t1−1

n+`A
= 0
)∣∣ P2 (4.4)

+

∣∣∣∣∣∣IP (A ; N t1−1
n+`A

= 0
)
P2 − IP (A)

2∏
j=1

Pj

∣∣∣∣∣∣ . (4.5)

In (4.4) we used that by stationarity IP (τA = t) = IP (A; τA > t− 1). Term
(4.2) is equal to

IP

(
τA = t1;

t1+`A+n−1⋃
i=t1+1

T−iA;N t
t1+`A+n = 0

)

≤ IP

(
T−t1A;

t1+`A+n−1⋃
i=t1+1

T−iA

)

= IP

(
A;

`A+n−1⋃
i=1

T−iA

)
. (4.6)

We divide the above union in those sets with 1 ≤ i < 2n, and 2n ≤ i ≤ `A + n.
Lemma 4.1 implies

IP

(
A;

2n−1⋃
i=1

T−iA

)
≤ IP (A)e1(A) .

and,

IP

(
A;

`A+n⋃
i=2n+1

T−iA

)
≤ IP (A) (`AIP (A) + φ(n)) .

Term (4.3) is bounded using the mixing property by φ(`A)IP (A). Analogous
computations are used to bound terms (4.4) and (4.5). This shows that (4.1) is
bounded by 2e(A)IP (A).

Now let us suppose that the proposition holds for k − 1 and let us prove it
for k. We use a triangle inequality where the terms involved are defined below.
We briefly comment the idea behind each term. For brevity denote for each non
negative i, Si =

{
τ

(i)
A = ti

}
. Thus we have∣∣∣∣∣∣IP

 k⋂
j=1

Sj ; τ (k+1)
A > t

− IP (A)k
k+1∏
j=1

Pj

∣∣∣∣∣∣ ≤ I + II + III + IV + V .
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In I we open a gap of length `A + n at the left of the k-th occurrence of A,
namely, between coordinates tk − (`A + n) and tk − 1.

I
def
=

∣∣∣∣∣∣IP
 k⋂

j=1

Sj ; τ
(k+1)
A > t

− IP

k−1⋂
j=1

Sj ;N
tk−(`A+n)
tk−1+1 = 0;T−tkA;N t

tk+1 = 0

∣∣∣∣∣∣
= IP

k−1⋂
j=1

Sj ;N
tk−(`A+n)
tk−1+1 = 0;

tk−1⋃
i=tk−(`A+n)+1

T−iA;T−tkA;N t
tk+1 = 0

 (4.7)

≤ IP

k−1⋂
j=1

T−tjA ;
tk−1⋃

i=tk−(`A+n)+1

T−iA ; T−tkA

 .

As with (4.6) we split the above union in sets with tk−(`A+n)+1 ≤ i ≤ tk−2n,
tk−2n+1 ≤ i ≤ tk−1. We recall that by hypothesis ∆i > `A for all i = 1, . . . , k.
As in Lemma 4.1 we have for tk − (`A + n) + 1 ≤ i ≤ tk − 2n

IP

k−1⋂
j=1

T−tjA;
tk−2n⋃

i=tk−(`A+n)+1

T−iA;T−tkA


≤ IP

k−1⋂
j=1

T−tjA;
tk−2n⋃

i=tk−(`A+n)+1

T−iA

 (IP (A) + φ(n)) .

By the φ-mixing property over the left most factor in the right hand side of the
above inequality, we get that it is bounded by

IP

k−1⋂
j=1

T−tjA

 (`AIP (A) + φ(`A)) .

Iterating this procedure we get

IP

k−1⋂
j=1

T−tjA

 ≤ (IP (A) + φ(`A))k−1
.

Similarly, for tk − 2n+ 1 ≤ i ≤ tk − 1

IP

k−1⋂
j=1

T−tjA;
tk−1⋃

i=tk−2n+1

T−iA;T−tkA

 ≤ (IP (A) + φ(`A))k
e1(A) .

In II we apply the φ-mixing property to factorize the probability in the
right hand side of the modulus in I. Then we iterated the φ-mixing property
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to obtain the last inequality.

II
def
=

∣∣∣∣∣∣ IP
(

k−1⋂
j=1

Sj ;N
tk−(`A+n)
tk−1+1 = 0);

(
T−tkA;N t

tk+1 = 0
)−

− IP

 k−1⋂
j=1

Sj ; N tk−(`A+n)
tk−1+1 = 0

 IP
(
A ; N t−tk

1 = 0
) ∣∣∣∣∣∣

≤ IP

k−1⋂
j=1

Sj ; N tk−(`A+n)
tk−1+1 = 0

φ(`A)

≤ IP

k−1⋂
j=1

T−tjA

φ(`A)

≤ (IP (A) + φ(`A))k φ(`A)
IP (A)

.

In III we “fill-up” the gap we opened in I

III
def
=

∣∣∣∣∣∣IP
k−1⋂

j=1

Sj ;N
tk−(`A+n)
tk−1+1 = 0

− IP

k−1⋂
j=1

Sj ;N tk−1
tk−1+1 = 0

∣∣∣∣∣∣×
×IP

(
A;N t−tk

1 = 0
)

≤ IP

k−1⋂
j=1

Sj ; N tk−(`A+n)
tk−1+1 = 0 ;

tk−1⋃
tk−(`A+n)+1

T−iA

 IP (A)

≤ IP

k−1⋂
j=1

T−tjA;
tk−1⋃

i=tk−(`A+n)+1

T−iA

 IP (A)

≤ (IP (A) + φ(`A))k 2`AIP (A) .

In IV we use the inductive hypothesis

IV
def
=

∣∣∣∣∣∣IP
k−1⋂

j=1

Sj ;N tk−1
tk−1+1 = 0

− IP (A)k−1
k∏

j=1

Pj

∣∣∣∣∣∣ IP (A;N t−tk
1 = 0

)
≤ C(k − 1) (IP (A) + φ(`A))k−1

e(A)IP (A) .

In V we use that the proposition is already proved for k = 1 to get

V
def
= IP (A)k−1

k∏
j=1

Pj

∣∣IP (A ; N t−tk
1 = 0

)
− IP (A)Pk+1

∣∣
11



≤ IP (A)k 2e(A) .

Summing the bounds above we end the proof of the proposition. �

4.4 Proof of Theorem 4.1 and Corollary 4.1.

Proof of Theorem 4.1. Take t ∈ IN . Let us write for the sake of simplicity
N = Nt. For k = 0 note that IP (N = 0) = IP

(
τ

(1)
A > t

)
. By Theorem 1 in

Abadi ([2]) one has

|IP
(
τ

(1)
A > t

)
− e−ξAIP (A)t| ≤ e(A)(IP (A)t ∨ 1)e−ξAIP (A)t , (4.8)

with a certain ξA > 0. Moreover, it follows in the proof of Theorem 2 in Abadi
and Vergne ([4]) that |ξA − ζA| ≤ e1(A) where ζA = IPA(τ (1)

A > τ(A)). Finally
|ζA − 1| = IPA(ζA = τ(A)) ≤ e1(A) by Lemma 4.1. This concludes the proof
for k = 0.

For k > t we have that IP (N = k) = 0. Then∣∣∣∣IP (N = k)− e−tIP (A)(tIP (A))k

k!

∣∣∣∣ =
e−tIP (A)(tIP (A))k

k!

≤ (tIP (A))k−1

(k − 1)!
IP (A) .

To conclude just note that IP (A) ≤ e(A).
Let us consider now k with 1 ≤ k ≤ t. The idea of the proof is the following:

Consider a realization x = (xm)m∈ZZ of the process (Xm)m∈ZZ such that the
sequence (x1, . . . , xt) contains exactly k occurrences of A. These occurrences can
appear in clusters or isolated one from each other. We prove that realizations
with isolated A’s give the approximation to the Poisson law and realizations
with clustered A’s have small measure. We now formalize this idea. Given
1 ≤ t1 < . . . < tk ≤ t, let us define the following measurable set:

T (t1, . . . , tk) =
k⋂

j=1

{
τ

(j)
A = tj

} ⋂ {
τ

(k+1)
A > t

}
.

As in Proposition 4.1 we put ∆j = tj − tj−1, for j = 2, . . . , k. Put also ∆1 = t1
and ∆k+1 = t − tk. Define the minimum distance between two consecutive
occurrences of A by

I(T (t1, . . . , tk)) = min {∆j | 2 ≤ j ≤ k} .

As before put ¯̀
A = 2(`A + n). Let us divide {N = k} in two sets

Bk =
⋃

I(T (t1,...,tk))<`A

T (t1, . . . , tk) and Gk =
⋃

I(T (t1,...,tk))≥`A

T (t1, . . . , tk) .

12



Since {N = k} = Bk ∪Gk, disjoint union, we have∣∣∣∣IP (N = k)− e−tIP (A)tkIP (A)k

k!

∣∣∣∣
≤ IP (Bk) +

∣∣∣∣IP (Gk)− e−tIP (A)tkIP (A)k

k!

∣∣∣∣ . (4.9)

We will prove that both quantities in the right hand side of (4.9) are small.

Proof: configurations with clusters have small measure.

We will prove an upper bound for IP (Bk). Let us start computing how many
clusters there are in a given T (t1, . . . , tk) with

C(T (t1, . . . , tk)) =
k∑

j=2

11{∆j>`A} + 1 .

Suppose that C(T (t1, . . . , tk)) = 1 and fix the position t1. Each occurrence
inside the unique cluster (with the exception of the most left one which is fixed
at t1) can appear at distance d of the previous one, with d ∈ O(A) or n ≤ d ≤ `A.
Firstly note that

T (t1, t2, . . . , tk) ⊆
k⋂

j=1

T−tjA .

Then ⋃
i=2,...,k

ti=ti−1,...,ti−1+`A

T (t1, t2, . . . , tk) ⊆
⋃

i=2,...,k

ti=ti−1,...,ti−1+`A

k⋂
j=1

T−tjA .

Therefore, the iterative argument of the φ-mixing property used to bound (4.7)
leads to the bound

IP

 ⋃
i=2,...,k

ti=ti−1,...,ti−1+`A

k⋂
j=1

T−tjA

 (4.10)

≤ IP (A)
(
e1(A) + `AIP (A) + φ(n)

)k−1

≤ IP (A)e(A)k−1 .

Suppose now that C(T (t1, . . . , tk)) = i. Assume also that the most left
occurrence of these i clusters occurs at 1 ≤ t(1) < . . . < t(i) ≤ t fixed. By the
same argument used in (4.10), we have the inequalities

IP

 ⋃
{t1,...,tk}\{t(1),...,t(i)}

T (t1, . . . , tk)


13



≤ IP (A) (IP (A) + φ(`A))i−1
e(A)k−i

≤ (IP (A) + φ(`A))i
e(A)k−i . (4.11)

To obtain an upper bound for IP (Bk) we must sum the above bound over
all T (t1, . . . , tk) such that C(T (t1, . . . , tk)) = i with i that runs from 1 to k− 1.

Fixed C(T (t1, . . . , tk)) = i, the locations of the most left occurrences of A
of each one of the i clusters can be chosen at most in

(
t
i

)
many ways.

The cardinality of each one of the i clusters can be arranged in
(
k−1
i−1

)
many

ways. (This corresponds to break the interval (1/2, k + 1/2) in i intervals at
points chosen from {1 + 1/2, . . . , k − 1/2}.)

Collecting these information and (4.11) we have that IP (Bk) is bounded by

k−1∑
i=1

(
t

i

)(
k − 1
i− 1

)
(IP (A) + φ(`A))i

e(A)k−i ≤ e(A)k max
1≤i≤k−1

{
γi

i!

} k−1∑
i=1

(
k − 1
i− 1

)
,

where γ = tIP (A) [1 + φ(`A)/IP (A)] /e(A). The maximum in the above expres-
sion is reached at (k−1∧γ). The most right sum is bounded by 2k−1. Therefore
we have

IP (Bk) ≤ e(A).


(2γe(A))k−1

(k−1)! k − 1 < γ

2k−1(γe(A))γ

γ!( 1
e(A) )

k−γ−1 k ≥ γ

.

This ends the proof of the bound for IP (Bk).

Proof: A’s isolated provide the Poisson limit law.

We can bound the most right term on the right-hand side of (4.9) by the
following triangular inequality:

∑
T (t1,...,tk)∈Gk

∣∣∣∣∣∣IP
 k⋂

j=1

τ
(j)
A = tj ; τ (k+1)

A > t

− IP (A)k
k+1∏
j=1

Pj

∣∣∣∣∣∣(4.12)

+ IP (A)k
∑

T (t1,...,tk)∈Gk

∣∣∣∣∣∣
k+1∏
j=1

Pj −
k+1∏
j=1

e−(∆j−`A)IP (A)

∣∣∣∣∣∣ (4.13)

+ IP (A)k#Gk

∣∣∣e−(t−(k+1)`A)IP (A) − e−tIP (A)
∣∣∣ (4.14)

+
∣∣∣∣#Gk k!

tk
− 1
∣∣∣∣ e−tIP (A)tkIP (A)k

k!
. (4.15)

By a simple combinatorial argument we get the bounds

(t− k(n+ `A))k

k!
≤
(
t− k(n+ `A − 1)− 1

k

)
≤ #Gk ≤

(
t

k

)
≤ tk/k! . (4.16)
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Moreover, the leading term in (4.12) is bounded using Proposition 4.1. Thus
(4.12) is bounded by

5
tk

(k − 1)!
(IP (A) + φ(`A))k e(A) .

The difference between the leading factors in (4.13) is bounded as follows: again
by (4.8)

|Pj − e−ξAIP (A)(∆j−`A)| ≤ Ce1(A) .

As stated at the beginning of the proof one has |ξA − 1| ≤ e1(A). Therefore
(4.13) is bounded by

tk

k!
IP (A)k(k + 1) max

1≤j≤k+1

∣∣∣Pj − e−(∆j−¯̀
A)IP (A)

∣∣∣ ≤ k + 1
k

(tIP (A))k

(k − 1)!
Ce1(A) .

(4.14) is bounded using the Mean Value Theorem by

tkIP (A)k

k!
(k + 1)`AIP (A) ≤ k + 1

k

(tIP (A))k

(k − 1)!
4`AIP (A) .

The left hand side of (4.16) and the Mean Value Theorem provide a bound
for the difference below∣∣∣∣#Gk k!

tk
− 1
∣∣∣∣ ≤ ∣∣∣∣ (t− k(n+ `A))k

tk
− 1
∣∣∣∣ ≤ k k(n+ `A)

t
≤ k .

So, (4.15) is bounded by

(tIP (A))k

(k − 1)!
4`AIP (A) .

Summing the bounds obtained for (4.12), (4.13), (4.14) and (4.15) we get
the desired bound for the difference in the right hand term of inequality (4.9).
The exchange of variables t̃ = tIP (A) ends the proof of the theorem. �

Proof of Corollary 4.1. By definition

∣∣∣IE (Nβ
t/IP (A)

)
− IE(Zβ)

∣∣∣ =

∣∣∣∣∣∣
∑
k≥0

kβIP
(
Nt/IP (A) = k

)
−
∑
k≥0

kβ e
−ttk

k!

∣∣∣∣∣∣
≤

∑
k≥0

kβ

∣∣∣∣IP (Nt/IP (A) = k
)
− e−t tk

k!

∣∣∣∣ .
Since for φ summable

∞∑
k=0

kβ g(A, k) ≤ Ct,β <∞ ,
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the corollary follows. �

Proof of Corollary 4.2. This follows by the above corollary with β = 1. �
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