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Abstract. Using recent results on the occurrence times of a string of symbols in a stochas-
tic process with mixing properties, we present a new method for the search of rare words in
biological sequences modelled by a Markov chain. We obtain abound on the error between
the distribution of the number of occurrences of a word in a sequence and its Poisson ap-
proximation. A global bound is already given by a Chen-Steinmethod. Our approach, the
ψ-mixing method, gives local bounds. Since we only need the error in the tails of distribu-
tion, the global uniform bound of Chen-Stein is too large andit is a better way to consider
local bounds. It is the first time that local bounds are devised for Poisson approximation.
We search for two thresholds on the number of occurrences from which we can regard a
studied word as an over-represented or an under-represented one. A biological role is sug-
gested for these over- or under-represented words. Our method gives such thresholds for a
panel of words much broader than the Chen-Stein method whichcannot give any result in a
great number of cases where our method works. Comparing the methods, we observe a bet-
ter accuracy for theψ-mixing method for the bound of the tails of distribution. Our method
can obviously be used in domains other than biology. We also present the softwarePANOW
(available athttp://stat.genopole.cnrs.fr/sg/software/panow/) dedi-
cated to the computation of the error term and the thresholdsfor a studied word.

1. Introduction

Modelling DNA sequences with stochastic models and developing statistical methods to
analyse the enormous set of data that results from the multiple projects of DNA sequencing
are challenging questions for statisticians and biologists. Many DNA sequence analysis
are based on the distribution of the occurrences of patternshaving some special biological
function. The most popular model in this domain is the Markovchain model that gives a
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description of the local behaviour of the sequence (see Almagor (1983); Blaisdell (1985);
Philips et al. (1987); Gelfand et al. (1992)). An important problem is to determine the
statistical significance of a word frequency in a DNA sequence. Nicodème et al. (2002)
discuss about this relevance of finding over- or under-represented words. The naive idea is
the following: a word may have a significant low frequency in aDNA sequence because
it disrupts replication or gene expression, whereas a significantly frequent word may have
a fundamental activity with regard to genome stability. Well-known examples of words
with exceptional frequencies in DNA sequences are biological palindromes corresponding
to restriction sites avoided for instance inE. coli (Karlin et al. (1992)), the Cross-over
Hotspot Instigator sites in several bacteria (Smith et al. (1981); El Karoui et al. (1999)),
and uptake sequences (Smith et al. (1999)) or polyadenylation signals (van Helden et al.
(2000)).

The exact distribution of the number of a word occurrences under the Markovian model
is known and some softwares are available (Robin and Daudin (1999); Régnier (2000))
but, because of numerical complexity, they are often used tocompute expectation and
variance of a given count (and thus use, in fact, Gaussian approximations for the dis-
tribution). In fact these methods are not efficient for long sequences or if the Markov
model order is larger than2 or 3. For such cases, several approximations are possible:
Gaussian approximations (Prum et al. (1995)), Binomial or Poisson approximations (van
Helden et al. (1998); Godbole (1991)), compound Poisson approximations (Reinert and
Schbath (1998)), or large deviations approach (Nuel (2004)). In this paper we only focus
on the Poisson approximation. For the first time, we give a local bound for the Poisson
approximation. We approximateP(N(A) = k) by exp(−tP(A))[tP(A)]k(k!)−1 where
P(N(A) = k) is the stationary probability under the Markov model that the number of
occurrencesN(A) of wordA is equal tok, P(A) is the probability that wordA occurs at
a given position, andt is the length of the sequence. Intuitively, a binomial distribution
could be used to approximate the distribution of occurrences of a particular word. Length
t of the sequence is large,P(A) is small ifA is large. Thus, we use the more numerically
convenient Poisson approximation. Our aim is to bound the error between the distribution
of the number of occurrences of wordA and its Poisson approximation. In Reinert and
Schbath (1998), the authors prove an upper bound for a compound Poisson approximation.
They use a Chen-Stein method, which is the usual method in this purpose. This method has
been developed by Chen on Poisson approximations (Chen (1975)) after a work of Stein on
normal approximations (Stein (1972)). Its principle is to bound the difference between the
two distributions in total variation distance for all subsets of the definition domain. Since
we are interested in under- or over-represented words, we are only interested in this differ-
ence for the tails of the distributions. Then, the uniform bound given by the Chen-Stein
method is too large for our purpose. We present here a new method, based on the property
of mixing processes. Our method has the useful particularity to give a bound on the error
at each point of the distribution. More precisely, it offersan error termǫ, for the number
of occurrencesk, of wordA:

∣

∣

∣

∣

∣

P(N(A) = k) −
e−tP(A)(tP(A))

k

k!

∣

∣

∣

∣

∣

≤ ǫ(A, k).

Moreover,ǫ(A, k) decays factorially fast with respect tok.
Abadi (2001a, 2004) presents lower and upper bounds for the exponential approxima-

tion of the first occurrence time of a rare event, also calledhitting time, in a stationary
stochastic process on a finite alphabet withα- orφ-mixing property. (Abadi and Vergne, in
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preparation) describe the statistics ofreturn timesof a string of symbols in such a process.
In (Abadi and Vergne, in preparation), the authors prove a Poisson approximation for the
distribution of occurrence times of a string of symbols in aφ-mixing process. The first part
of our present work is to determine some constants not explicitly computed in the results of
the above mentioned articles but necessary for the proof of our theorem and moreover for
its practical use. Theoritical constants are useless in theway of numerical tests, that is why
we have to determine these constants. Our work is complementary to all these articles, in
the sense that it relies on them for preliminary results and it adapts them toψ-mixing pro-
cesses. Since Markov chains are mixing processes, all theseresults established for mixing
processes also apply to Markov chains which model biological sequences.

This paper is organised in the following way. In section 2, weintroduce the Chen-Stein
method. In section 3, we define aψ-mixing process and state some preliminary notations,
mostly on the properties of a word. We also present in this section the principal result of our
work: the Poisson approximation (Theorem 3.3). In section 4, we state preliminary results.
Mainly, we recall results of Abadi (2004), but computing allthe necessary constants and
we present lemmas and propositions necessary for the proof of Theorem 3.3. In section 5,
we establish the proof of our main result: Theorem 3.3 on Poisson approximation. Using
ψ-mixing properties and preliminary results, we prove an upper bound for the difference
between the exact distribution of the number of occurrence of word A and the Poisson
distribution of parametertP(A). Section 6 is dedicated to numerical results. For the search
of over-represented words, we show how our method is better than the Chen-Stein method
on both synthetic and biological data. In this section, we also present results obtained by
a similar method, theφ-mixing method. We end the paper presenting some examples of
biological applications, and some conclusions and perspectives of future works.

2. The Chen-Stein method

2.1. Total variation distance.

Definition 2.1. For any two random variablesX andY with values in the same discrete
spaceE, the total variation distance between their probability distributions is defined by

dTV(L(X),L(Y )) =
1

2

∑

i∈E

|P(X = i) − P(Y = i)| .

We remark that for any subsetS of E

|P(X ∈ S) − P(Y ∈ S)| ≤ dTV(L(X),L(Y )).

2.2. The Chen-Stein method.The Chen-Stein method is used to bound the error between
the distribution of the number of occurrences of a wordA in a sequenceX and the Poisson
distribution with parametertP(A) wheret is the length of the sequence andP(A) the
stationary measure ofA. The Chen-Stein method for Poisson approximation has been
developed by Chen (1975); a friendly exposition is in Arratia et al. (1989) and a description
with many examples can be found in Arratia et al. (1990) and Bardour et al. (1992). We
will use Theorem1 in Arratia et al. (1990) with an improved bound by Bardour et al.
(1992) (Theorem1.A and Theorem10.A).

First, we will fix a few notations. LetA be a finite set (for example, in the DNA case
A = {a, c, g, t}). PutΩ = AZ. For eachx = (xm)m∈Z

∈ Ω, we denote byXm them-th
coordinate of the sequencex: Xm(x) = xm. We denote byT : Ω → Ω the one-step-left
shift operator: so we will have(T (x))m = xm+1. We denote byF theσ-algebra overΩ
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generated by strings and byFI theσ-algebra generated by strings with coordinates inI
with I ⊆ Z. We consider an invariant probability measureP overF . Consider a stationary
Markov chainX = (Xi)i∈Z

on the finite alphabetA. Let us fix a wordA = (a1, . . . , an).
For i ∈ {1, 2, · · · , t− n+ 1}, letYi be the following random variable

Yi = Yi(A) = 1{wordA appears at positioni in the sequence}

= 1{(Xi, . . . , Xi+n−1) = (a1, . . . , an)},

where1{F} denotes the indicator function of setF . We putY =
∑t−n+1

i=1 Yi, the ran-
dom variable corresponding to the number of occurrences of aword, E(Yi) = mi and
∑t−n+1
i=1 mi = m. Then,E(Y ) = m. LetZ be a Poisson random variable with parameter

m: Z ∼ P(m). For eachi, we arbitrarily define a setV (i) ⊂ {1, 2, · · · , t − n + 1}
containing the pointi. The setV (i) will play the role of a neighbourhood ofi.

Theorem 2.2(Arratia et al. (1990); Bardour et al. (1992)). Let I be an index set. For each
i ∈ I, let Yi be a Bernoulli random variable withpi = P(Yi = 1) > 0. Suppose that, for
eachi ∈ I, we have chosenV (i) ⊂ I with i ∈ V (i). LetZi, i ∈ I, be independent Poisson
variables with meanpi. The total variation distance between the dependent Bernoulli
processY = {Yi, i ∈ I} and the Poisson processZ = {Zi, i ∈ I} satisfies

dTV(L(Y ),L(Z)) ≤ b1 + b2 + b3

where

b1 =
∑

i

∑

j∈V (i)

E(Yi)E(Yj),

b2 =
∑

i

∑

j∈V (i),j 6=i

E(YiYj),

b3 =
∑

i

E |E(Yi − pi|Yj , j /∈ V (i))| .

Moreover, ifW =
∑

i∈I Yi andλ =
∑

i∈I pi <∞, then

dTV (L(W ),P(λ)) ≤
1 − e−λ

λ
(b1 + b2) + min

(

1,

√

2

λe

)

b3.

We think ofV (i) as a neighbourhood of strong dependence ofYi. Intuitively, b1 de-
scribes the contribution related to the size of the neighbourhood and the weights of the
random variables in that neighbourhood; if allYi had the same probability of success,
thenb1 would be directly proportional to the neighbourhood size. The termb2 accounts
for the strength of the dependence inside the neighbourhood; as it depends on the second
moments, it can be viewed as a “second order interaction” term. Finally, b3 is related
to the strength of dependence ofYi with random variables outside its neighbourhood. In
particular, note thatb3 = 0 if Yi is independent of{Yj |j /∈ V (i)}.

One consequence of this theorem is that for any indicator function of an event, i.e. for
any measurable functionalh from Ω to [0, 1], there is an error bound of the form|Eh(Y )−
Eh(Z)| ≤ dTV (L(Y ),L(Z)). Thus, ifS(Y ) is a test statistic then, for allt ∈ R,

P(S(Y ) ≥ t) − P(S(Z) ≥ t) ≤ b1 + b2 + b3,

which can be used to construct confidence intervals and to findp-values for tests based on
this statistic.
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3. Preliminary notations and Poisson Approximation

3.1. Preliminary notations.We focus on Markov processes in our biological applications
(see 6) but the theorem given in the following subsection is established for more general
mixing processes: the so calledψ-mixing processes.

Definition 3.1. Letψ = (ψ(ℓ))ℓ≥0 be a sequence of real numbers decreasing to zero. We
say that(Xm)m∈Z

is aψ-mixing process if for all integersℓ ≥ 0, the following holds

sup
n∈N,B∈F{0,.,n},C∈F{n≥0}

|P(B ∩ T−(n+ℓ+1)(C)) − P(B)P(C)|

P(B)P(C)
= ψ(ℓ),

where the supremum is taken over the setsB andC, such thatP(B)P(C) > 0.

For a wordA of Ω, that is to say a measurable subset ofΩ, we say thatA ∈ Cn if and
only if

A = {X0 = a0, . . . , Xn−1 = an−1},

with ai ∈ A, i = 1, . . . , n. Then, the integern is the length of wordA. ForA ∈ Cn,
we define the hitting timeτA : Ω → N ∪ {∞}, as the random variable defined on the
probability space (Ω,F ,P):

∀x ∈ Ω, τA(x) = inf{k ≥ 1 : T k(x) ∈ A}.

τA is the first time that the process hits a given measurableA. We also use the classical
probabilistic shorthand notations. We write{τA = m} instead of{x ∈ Ω : τA(x) = m},
T−k(A) instead of{x ∈ Ω : T k(x) ∈ A} and{Xs

r = xsr} instead of{Xr = xr, ..., Xs =
xs}. Also we write for two measurable subsetsA andB of Ω, the conditional probability of
B givenA asP(B|A) = PA(B) = P(B ∩A)/P(A) and the probability of the intersection
of A andB by P(A ∩ B) or P(A;B). ForA = {Xn−1

0 = xn−1
0 } and1 ≤ w ≤ n, we

writeA(w) = {Xn−1
n−w = xn−1

n−w} for the event consisting of thelastw symbols ofA. We
also writea ∨ b for the supremum of two real numbersa andb. We define the periodicity
pA of A ∈ Cn as follows:

pA = inf {k ∈ N
∗|A ∩ T−k(A) 6= ∅}.

pA is called the principal period of wordA. Then, we denote byRp = Rp(n) the set of
wordsA ∈ Cn with periodicityp and we also defineBn as the set of wordsA ∈ Cn with
periodicity less than[n/2], where[.] defines the integer part of a real number:

Rp = {A ∈ Cn|pA = p},Bn =

[n2 ]
⋃

p=1

Rp.

Bn is the set of words which are self-overlapping before half their length (see Example 3.2).
We defineR(A) the set of return times ofA which are not a multiple of its periodicitypA:

R(A) =
{

k ∈ {[n/pA]pA + 1, . . . , n− 1}|A ∩ T−k(A) 6= ∅
}

.

Let us denoterA = #R(A), the cardinality of the setR(A). Define alsonA = minR(A)
if R(A) 6= ∅ andnA = n otherwise.R(A) is called the set of secondary periods ofA and
nA is the smallest secondary period ofA. Finally, we introduce the following notation.
For an integers ∈ {0, . . . , t − 1}, letN t

s =
∑t

i=s 1{T−i(A)}. The random variableN t
s

counts the number of occurrences ofA betweens andt (we omit the dependence onA).
For the sake of simplicity, we also putN t = N t

0.
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TABLE 3.1. Periods and overlapping inaaataaataaa

0 1 2 3 4 5 6 7 8 9 10

a a a t a a a t a a a
a a a t a a a t a a a

a a a t a a a t a a a
a a a t a a a t a a a

a a a t a a a t a a a

Example3.2. Consider the wordA = aaataaataaa. SincepA = 4, we haveA ∈ Bn
wheren = 11. See TABLE 3.1 to note thatR(A) = {9; 10}, rA = 2 andnA = 9.

3.2. The mixing method.We present a theorem that gives an error bound for the Poisson
approximation. Compared to the Chen-Stein method, it has the advantage to present non
uniform bounds that strongly control the decay of the tail distribution ofN t.

Theorem 3.3 (ψ-mixing approximation). Let (Xm)m∈Z
be aψ-mixing process. There

exists a constantCψ = 254, such that for allA ∈ Cn \ Bn and all non negative integersk
andt, the following inequality holds:

∣

∣

∣

∣

∣

P(N t = k) −
e−tP(A)(tP(A))k

k!

∣

∣

∣

∣

∣

≤ Cψeψ(A)e−(t−(3k+1)n)P(A)gψ(A, k)

wheregψ(A, k) =























(2λ)k−1

(k − 1)!
k /∈ { λ

eψ(A) , ...,
2t
n }

(2λ)
k−1

(

λ
eψ(A)

)

!
(

1
eψ(A)

)k− λ
eψ(A)

−1
k ∈ { λ

eψ(A) , ...,
2t
n }

,

eψ(A) = inf
1≤w≤nA

[

(rA + n)P
(

A(w)
)

(1 + ψ (nA − w))
]

,

andλ = tP(A)(1 + ψ(n)).

This result is at the core of our study. It shows an upper boundfor the difference between
the distribution of the number of occurrences of wordA in a sequence of lengtht and the
Poisson distribution of parametertP(A). Proof is postponed in Section 5.

4. Calculation of the constants

Our goal is to compute a bound as small as possible to control the error between the
Poisson distribution and the distribution of the number of occurrences of a word. Thus,
we determine the global constantCψ appearing in Theorem 3.3 by means of intermediary
bounds appearing in the proof. General bounds are interesting asymptotically inn, but for
biological applications,n is approximately between10 or 20, which is too small. Then
along the proof, we will indicate the intermediary bounds that we compute. Before estab-
lishing the proof of that Theorem 3.3, we point out here, for easy references, some results
of Abadi (2004), and some other useful results. In Abadi (2004), these results are given
only in theφ-mixing context. Moreover exact values of the constants arenot given, while
these are necessary for practical use of these methods. We provide the values of all the
constants appearing in the proofs of these results.
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Proposition 4.1(Proposition 11 in Abadi (2004)). Let (Xm)m∈Z
be aψ-mixing process.

There exist two finite constantsCa > 0 andCb > 0, such that for anyn, any wordA ∈ Cn,

and anyc ∈
[

4n, 1
2P(A)

]

satisfying

ψ (c/4) ≤ P

(

{τA ≤ c/4} ∩ {τA ◦ T c/4 > c/2}
)

,

there exists∆, with n < ∆ ≤ c/4, such that for all positive integersk, the following
inequalities hold:

∣

∣

∣
P (τA > kc) − P (τA > c− 2∆)k

∣

∣

∣
≤ Caε (A) kP (τA > c− 2∆)k , (4.1)

∣

∣

∣P (τA > kc) − P (τA > c)
k
∣

∣

∣ ≤ Cbε (A) kP (τA > c− 2∆)
k
, (4.2)

with ε(A) = inf
n≤ℓ≤ 1

P(A)

[ℓP(A) + ψ(ℓ)].

Both inequalities provide an approximation of the hitting time distribution by a geo-
metric distribution at any pointt of the formt = kc. The difference between these dis-
tributions is that in 4.1, the geometric term inside the modulus is the same as in the upper
bound, while in 4.2, the geometric term inside the modulus islarger than the one in the
upper bound. That is, the second bound gives a larger error. We will use both in the proof
of Theorem 4.3.

Proposition 4.2. We haveCa = 24 andCb = 25.

Proof. For the details of the proof of Proposition 4.1, we refer to Proposition11 in Abadi
(2004).

For anyc ∈
[

4n, 1
2P(A)

]

and∆ ∈ [n, c/4], we denoteN i
j =

{

τA ◦ T ic+j∆ > c− j∆
}

andN = {τA > c− 2∆} for the sake of simplicity. Abadi (2004) obtains the following
bound:

∀k ≥ 2,
∣

∣

∣P (τA > kc) − P (N )
k
∣

∣

∣ ≤ (a) + (b) + (c), with

(a) =
k−2
∑

j=0

P (N )j
∣

∣

∣
P (τA > (k − j) c) − P

(

τA > (k − j − 1) c;N k−j−1
2

)∣

∣

∣
,

(b) =

k−2
∑

j=0

P (N )
j
∣

∣

∣P

(

τA > (k − j − 1) c;N k−j−1
2

)

− P (τA > (k − j − 1) c) P
(

N 0
2

)

∣

∣

∣,

(c) = P (N )
(k−1) |P (τA > c) − P (N )|.

First, for any measurableB ∈ F{(ℓ+1)c,(ℓ+2)c+n−1}, we haveP (B)+ψ (∆) ≤ 3ψ (∆) ≤
3
2ε (A). We can also remark thatP (N ) ≥ P(τA > c) ≥ PτA > 1/(2P(A)) ≥ 1/2. Then,
by iteration of the mixing property, we have the following inequality for allℓ ∈ N:

P

(

ℓ
⋂

i=0

N i
1 ;B

)

≤ 6P (N )
ℓ+1

ε (A) .

We apply this bound in the inequalities (14) and (15) of Abadi(2004) to get

(a) ≤
k−2
∑

j=0

P (N )
j
(

6P (N )
k−j−2+1

ε (A)
)

= 6(k − 1)ε (A) P (N )
(k−1),

(b) ≤
k−2
∑

j=0

P (N )
j
(

6P (N )
k−j−2+1

ε (A)
)

= 6(k − 1)ε (A) P (N )
(k−1).
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We also have(c) ≤ P (N )
k−1

P
(

N ; τA ◦ T c−2∆ ≤ 2∆
)

≤ ε (A) P (N )
k−1.

We obtain (4.1):
∣

∣

∣P (τA > kc) − P (N )
k
∣

∣

∣ ≤ 24kε (A) P (N )
k.

We deduce (4.2):
∣

∣

∣P (τA > kc) − P (τA > c)
k
∣

∣

∣ ≤ 25kε (A) P (N )
k.

Then,Ca = 24 andCb = 25. �

Theorem 4.3(Theorem 1 in Abadi (2004)). Let (Xm)m∈Z
be aψ-mixing process. Then,

there exist constantsCh > 0 and0 < Ξ1 < 1 ≤ Ξ2 <∞, such that for alln ∈ N and any
A ∈ Cn, there existsξA ∈ [Ξ1,Ξ2], for which the following inequality holds for allt > 0:

∣

∣

∣

∣

P

(

τA >
t

ξA

)

− e−tP(A)

∣

∣

∣

∣

≤ Chε(A)f1(A, t),

with ε(A) = inf
n≤ℓ≤ 1

P(A)

[ℓP(A) + ψ(ℓ)] andf1(A, t) = (tP(A) ∨ 1)e−tP(A).

We prove an upper bound for the distance between the rescaledhitting time and the
exponential law of expectation equal to one. The factorε(A) in the upper bound shows
that the rate of convergence to the exponential law is given by a trade off between the
length of this time and the velocity of loosing memory of the process.

Proposition 4.4. We haveCh = 105.

Proof. We fix c = 1
2P(A) and∆ given by Proposition 4.1. We define

ξA =
− log P(τA > c− 2∆)

cP(A)
.

There are three steps in the proof of the theorem. First, we considert of the formt = kc
with k a positive integer. Secondly, we prove the theorem for anyt of the form t =

(k + p/q)c with k, p positive integers and1 ≤ p ≤ q with q =
[

1
2ε(A)

]

, where[.] defines

the integer part of a real number. Finally, we consider the remaining cases. Here, for the
sake of simplicity , we do not detail the two first steps (for that, see Abadi (2004)), but
only the last one. Lett be any positive real number. We writet = kc+ r, with k a positive
integer andr such that0 ≤ r < c. We can choose āt such that̄t < t andt̄ = (k + p/q)c
with p, q as before. Abadi (2004) obtains the following bound:
∣

∣

∣P (τA > t) − e−ξAP(A)t
∣

∣

∣ ≤ |P (τA > t) − P (τA > t̄)| +
∣

∣

∣P (τA > t̄) − e−ξAP(A)t̄
∣

∣

∣

+
∣

∣

∣e−ξAP(A)t̄ − e−ξAP(A)t
∣

∣

∣ .

The first term in the triangular inequality is bounded in the following way:

|P (τA > t) − P (τA > t̄)| = P

(

τA > t̄; τA ◦ T t̄ ≤ t− t̄
)

≤ P

(

τA > kc; τA ◦ T t̄ ≤ ∆
)

≤ P (N )k−2 (∆P(A) + ψ(∆)))

≤ 4P (N )kε(A)

≤ 4ε(A)e−ξAP(A)t.

The second term is bounded like in the two first steps of the proof in Abadi (2004). We
apply inequalities (4.1) and (4.2) to obtain

∣

∣

∣P (τA > t̄) − e−ξAP(A)t̄
∣

∣

∣ ≤ (3 + CatP(A) + Ca + 2Cb)ε(A)e−ξAP(A)t.
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Finally, with the definition ofξA and knowing thaht0 ≤ r < c, the third term is bounded
using the Mean Value Theorem (see for example Douglass (1996))

∣

∣

∣e−ξAP(A)t̄ − e−ξAP(A)t
∣

∣

∣ ≤ ξAP(A)

(

r −
p

q
c

)

e−ξAP(A)t̄ ≤ ε(A)e−ξAP(A)t.

Thus we have
∣

∣P (τA > t) − e−ξAP(A)t
∣

∣ ≤ 105ε(A)f1(A, ξAt) and the theorem follows
by the change of variables̃t = ξAt. ThenCh = 105. �

Lemma 4.5. (Xm)m∈Z
be aψ-mixing process. Suppose thatB ⊆ A ∈ F{0,...,b}, C ∈

F{b+g,...,∞} with b, g ∈ N. The following inequality holds:

PA(B ∩ C) ≤ PA(B)P(C)(1 + ψ(g)).

Proof. SinceB ⊆ A, obviouslyP(A ∩ B ∩ C) = P(B ∩ C). By theψ-mixing property
P(B∩C) ≤ P(B)(P(C)+ψ(g)). We divide the above inequality byP(A) and the lemma
follows. �

For all the following propositions and lemmas, we recall that

eψ(A) = inf
1≤w≤nA

[

(rA + n)P
(

A(w)
)

(1 + ψ (nA − w))
]

.

Proposition 4.6. Let(Xm)m∈Z
be aψ-mixing process. LetA ∈ Rp(n). We recall thatpA

is the principal period of wordA. Then the following holds:

(a) For all M,M ′ ≥ g ≥ n,

|PA (τA > M +M ′) − PA (τA > M) P (τA > M ′)|

≤ PA (τA > M − g) 2gP(A) [1 + ψ(g)] ,

and similarly

|PA (τA > M +M ′) − PA (τA > M) P (τA > M ′ − g)|

≤ PA (τA > M − g) [gP(A) + 2ψ(g)] .

(b) For all t ≥ pA ∈ N, with ζA = PA(τA > pA),

|PA (τA > t) − ζAP (τA > t)| ≤ 2eψ(A).

The above proposition establishes a relation between hitting and return times with an
error bound uniform with respect tot. In particular,(b) says that these times coincide if
and only ifζA = 1, namely, the stringA is non-self-overlapping.

Proof. In order to simplify notation, fort ∈ Z, τ [t]
A stands forτA ◦T t. We introduce a gap

of lengthg after coordinateM to construct the following triangular inequality

|PA (τA > M +M ′) − PA (τA > M)P (τA > M ′)|

≤
∣

∣

∣PA (τA > M +M ′) − PA

(

τA > M ; τ
[M+g]
A > M ′ − g

)∣

∣

∣ (4.3)

+
∣

∣

∣PA

(

τA > M ; τ
[M+g]
A > M ′ − g

)

− PA (τA > M) P (τA > M ′ − g)
∣

∣

∣ (4.4)

+ PA (τA > M) |P (τA > M ′ − g) − P (τA > M ′)| . (4.5)

Term (4.3) is bounded with Lemma 4.5 by

PA

(

τA > M ; τ
[M ]
A ≤ g

)

≤ PA (τA > M − g) gP(A) [1 + ψ(g)] .

Term (4.4) is bounded using theψ-mixing property byPA (τA > M)ψ(g). The modulus
in (4.5) is bounded using stationarity byP (τA ≤ g) ≤ gP(A). This ends the proof of both
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inequalities of item(a).
Item(b) for t ≥ 2n is proven similarly to item(a) with t = M +M ′,M = pA, andg = w
with 1 ≤ w ≤ nA. Consider nowpA ≤ t < 2n.

ζA − PA (τA > t) = PA (p < τA ≤ t) = PA (τA ∈ R(A) ∪ (n ≤ τA ≤ t)) ≤ eψ(A).

The first equality follows directly by definition ofpA. The second one follows by definition
of R(A) and the commentaries previous to Example 3.2. The inequality follows by an
application of Lemma 4.5 withB = A, C = ∪i∈R(A)∩{n,...,t}T

−iA(w) andg = nA −
w. �

Let ζA = PA(τA > pA) andh = 1/(2P(A)) − 2∆, thenξA = −2 log P(τA > h).

Lemma 4.7. Let (Xm)m∈Z
be aψ-mixing process. Then the following inequality holds:

|ξA − ζA| ≤ 11eψ(A).

Hence, we have

ζA − 11eψ(A) ≤ ξA ≤ ζA + 11eψ(A).

Proof.

P (τA > h) =

h
∏

i=1

P (τA > i|τA > i− 1) =

h
∏

i=1

(1 − P
(

T−i(A)|τA > i− 1
)

)

=

h
∏

i=1

(1 − ρiP(A)) ,

whereρi
def
=

PA (τA > i− 1)

P (τA > i− 1)
. Therefore

∣

∣

∣

∣

∣

∣

ξA + 2

pA
∑

i=1

log(1 − ρiP(A)) − 2

h
∑

i=pA+1

ζAP(A)

∣

∣

∣

∣

∣

∣

≤ 2
h
∑

i=pA+1

|− log(1 − ρiP(A)) − ζAP(A)| .

The above modulus is bounded by

|− log(1 − ρiP(A)) − ρiP(A)| + |ρi − ζA|P(A).

Now note that|y − (1 − e−y)| ≤ (1 − e−y)2 for y > 0 small enough. Apply it with
y = − log(1− ρiP(A)) to bound the most left term of the above expression by(ρiP(A))2.
Further by Proposition 4.6(b) and the fact thatP (τA > h) ≥ 1/2 (see in Proposition 4.2
thatP (N ) ≥ 1/2) we have

|ρi − ζA| ≤
2eψ(A)

P (τA > h)
≤ 4eψ(A).

for all i = pA + 1, . . . , h. Yet as before

−

pA
∑

i=1

log(1 − ρiP(A)) ≤ pA
(

ρiP(A) + (ρiP(A))2
)

≤ eψ(A).
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Finally, by definition ofh
∣

∣

∣

∣

∣

∣

2

h
∑

i=pA+1

ζAP(A) − ζA

∣

∣

∣

∣

∣

∣

≤ 4∆P(A) + 2pAP(A) ≤ 6eψ(A).

This ends the proof of the lemma. �

Proposition 4.8. Let (Xm)m∈Z
be aψ-mixing process. Then the following inequality

holds:

|P(τA > t) − e−tP(A)| ≤ Cpeψ(A)(tP(A) ∨ 1)e−(ζA−11eψ(A))tP(A).

Proof. We bound the first term with Theorem 4.3 and the second with Lemma 4.7 :

|P(τA > t) − e−tP(A)| ≤ |P(τA > t) − e−ξAtP(A)| + |e−ξAtP(A) − e−tP(A)|
|P(τA > t) − e−ξAtP(A)| ≤ Chε(A)e−ξAtP(A) ≤ Cheψ(A)e−(ζA−11eψ(A))tP(A)

|e−ξAtP(A) − e−tP(A)| ≤ tP(A)|ξA − 1|e−min {1,ξA}tP(A)

≤ 11tP(A)eψ(A)e−(ζA−11eψ(A))tP(A).

This ends the proof of the proposition withCp = Ch + 11. �

Definition 4.9. GivenA ∈ Cn, we define forj ∈ N, the j-th occurrence time ofA as
the random variableτ (j)

A : Ω → N ∪ {∞}, defined on the probability space(Ω,F ,P) as

follows: for anyx ∈ Ω, τ (1)
A (x) = τA(x) and forj ≥ 2,

τ
(j)
A (x) = inf {k > τ

(j−1)
A (ω) : T k(x) ∈ A}.

Proposition 4.10. Let (Xm)m∈Z
be aψ-mixing process. Then, for allA /∈ Bn, all k ∈ N,

and all 0 ≤ t1 < t2 < ... < tk ≤ t for which min
2≤j≤k

{tj − tj−1} > 2n, there exists a

positive constantC1 independent ofA, n, t andk such that
∣

∣

∣

∣

∣

∣

P





k
⋂

j=1

(

τ
(j)
A = tj

)

; τ
(k+1)
A > t



− P(A)k
k+1
∏

j=1

Pj

∣

∣

∣

∣

∣

∣

≤ C1k(P(A)(1 + ψ(n)))keψ(A)e−(t−(3k+1)n)P(A)

wherePj = P(τA > (tj − tj−1) − 2n).

Proof. We will show this proposition by induction onk. We put∆j = tj − tj−1 for
j = 2, ..., k, ∆1 = t1 and∆k+1 = t− tk. Firstly, we note that by stationarity

P(τA = t) = P(A; τA > t− 1).

Fork = 1, by a triangular inequality we obtain
∣

∣

∣

∣

∣

∣

P

(

τA = t1; τ
(2)
A > t

)

− P(A)

2
∏

j=1

Pj

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣P

(

τA = t1; τ
(2)
A > t

)

− P
(

τA = t1;N
t
t1+2n = 0

)

∣

∣

∣ (4.6)

+
∣

∣P
(

τA = t1;N
t
t1+2n = 0

)

− P (τA = t1)P2

∣

∣ (4.7)

+
∣

∣P(A; τ > t1 − 1) − P
(

A;N t1−1
2n = 0

)∣

∣P2 (4.8)

+

∣

∣

∣

∣

∣

∣

P
(

A;N t1−1
2n = 0

)

P2 − P(A)

2
∏

j=1

Pj

∣

∣

∣

∣

∣

∣

. (4.9)
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Term (4.6) is equal toP
(

τA = t1;
⋃t1+2n
i=t1+1 T

−i(A);N t
t1+2n = 0

)

and then

(4.6) = P



A;

2n
⋃

i∈R(A)∪i=1

T−i(A);N t
2n = 0



 .

SinceA /∈ Bn, for 1 ≤ i < pA, the above probability is zero. Thus, using mixing property

(4.6) ≤ P



A;
2n
⋃

i∈R(A)∪i=pA

T−i(A);N t
2n = 0





≤ 2P(A)P(A)(rA + n)(1 + ψ(n))P
(

N t
2n = 0

)

≤ 2P(A)eψ(A)e−(t−(3k+1)n)P(A).

Term (4.7) is bounded usingψ-mixing property

(4.7) ≤ ψ(n)(1 + ψ(n))P(A)P1P2

≤ ψ(n)P(A)eψ(A)e−(t−(3k+1)n)P(A).

Analogous computations are used to bound terms (4.8) and (4.9).
Now, let us suppose that the proposition holds fork−1 and let us prove it fork. We put

Si = {τ
(i)
A = ti}. We use a triangular inequality again to bound the term in theleft hand

side of the inequality of the proposition by a sum of five terms:
∣

∣

∣

∣

∣

∣

P





k
⋂

j=1

(

τ
(j)
A = tj

)

; τ
(k+1)
A > t



− P(A)
k
k+1
∏

j=1

Pj

∣

∣

∣

∣

∣

∣

≤ I + II + III + IV + V.

I =

∣

∣

∣

∣

∣

∣

P





k
⋂

j=1

Sj ; τ
(k+1)
A > t



 − P





k−1
⋂

j=1

Sj ;N
tk−2n
tk−1+1 = 0;T−tk(A);N t

tk+1 = 0





∣

∣

∣

∣

∣

∣

= P





k−1
⋂

j=1

Sj ;N
tk−2n
tk−1+1 = 0;

tk−1
⋃

i=tk−2n+1

T−i(A);T−tk(A);N t
tk+1 = 0





≤ (P(A)(1 + ψ(n)))
k
(1 − ψ(n))

(

npA + (rA + n)P(A(w))
)

e−(t−(3k+1)n)P(A),

II =

∣

∣

∣

∣

∣

∣

P





k−1
⋂

j=1

Sj ;N
tk−2n
tk−1+1 = 0;T−tk(A);N t

tk+1 = 0





− P





k−1
⋂

j=1

Sj ;N
tk−2n
tk−1+1 = 0



P
(

A;N t−tk
1 = 0

)

∣

∣

∣

∣

∣

∣

≤ P





k−1
⋂

j=1

;N tk−2n
tk−1+1 = 0



P
(

A;N t−tk
1 = 0

)

ψ(n)

≤ (P(A)(1 + ψ(n)))
k
ψ(n)e−(t−(3k+1)n)P(A),

III =

∣

∣

∣

∣

∣

∣

P





k−1
⋂

j=1

Sj ;N
tk−2n
tk−1+1 = 0



 − P





k−1
⋂

j=1

Sj ;N
tk−1
tk−1+1 = 0





∣

∣

∣

∣

∣

∣

P
(

A;N t−tk
1 = 0

)

≤ P





k−1
⋂

j=1

Sj ;N
tk−2n
tk−1+1 = 0;

tk−1
⋃

tk−2n+1

T−i(A)



P(A)

≤ 2P(A)(P(A)(1 + ψ(n)))
k
e−(t−(3k+1)n)P(A).
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We use the inductive hypothesis for the termIV and the case withk = 1 for the termV .

IV =

∣

∣

∣

∣

∣

∣

P





k−1
⋂

j=1

Sj ;N
tk−1
tk−1+1 = 0



− P(A)k−1
k
∏

j=1

Pj

∣

∣

∣

∣

∣

∣

P
(

A;N t−tk
1 = 0

)

≤ C1(k − 1)(P(A)(1 + ψ(n)))keψ(A)e−(t−(3k+1)n)P(A),

V = P(A)
k−1

k
∏

j=1

Pj
∣

∣P
(

A;N t−tk
1 = 0

)

− P(A)Pk+1

∣

∣

≤ 2(P(A)(1 + ψ(n)))
k
eψ(A)e−(t−(3k+1)n)P(A).

Finally, we obtain

I + II + III + IV + V ≤ (3 + C1(k − 1) + 2)(P(A) + ψ(n))keψ(A).

To conclude the proof, it is sufficient thatC1k = 3 + C1(k − 1) + 2, thereforeC1 = 5.
This ends the proof of the proposition. �

5. Proof of Theorem 3.3

In this section, we prove the main result of our work (see Section 3.2): an upper bound
for the difference between the exact distribution of the number of occurrences of wordA
and the Poisson distribution of parametertP(A). Throughout the proof, we will note in
italic the terms computed by our softwarePANOW (see Section 6.1).

Proof. Fork = 0, the result comes from Proposition 4.8 (P(N t = 0) = P(τA > t)).
Fork > 2t/n, sinceA /∈ Bn, we haveP(N t = k) = 0. Hence,

∣

∣

∣

∣

∣

P(N t = k) −
e−tP(A)(tP(A))

k

k!

∣

∣

∣

∣

∣

=
e−tP(A)(tP(A))

k

k!

≤
(tP(A))k−1

(k − 1)!

tP(A)

k

≤
1

2

(tP(A))k−1

(k − 1)!
eψ(A).

Indeed, sincetk <
n
2 then tP(A)

k < nP(A)
2 ≤

eψ(A)
2 .

Now, let us consider1 ≤ k ≤ 2t/n. We consider a sequence which contains exactlyk
occurrences ofA. These occurrences can be isolated or can be in clumps. We define the
following set:

T = T (t1, t2, ..., tk) =







k
⋂

j=1

(τ
(j)
A = tj); τ

(k+1)
A > t







.

We recall that we putPj = P(τA > (tj − tj−1) − 2n), ∆j = tj − tj−1 for j = 2, ..., k,
∆1 = t1 and∆k+1 = t− tk. DefineI(T ) = min

2≤j≤k
{∆j}. We say that the occurrences of

A are isolated ifI(T ) ≥ 2n and we say that there exists at least one clump ifI(T ) < 2n.
We also denote

Bk = {T |I(T ) < 2n} and Gk = {T |I(T ) ≥ 2n} .

The set{N t = k} is the disjoint union betweenBk andGk, then

P(N t = k) = P(Bk) + P(Gk),
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∣

∣

∣

∣

∣

P(N t = k) −
e−tP(A)(tP(A))

k

k!

∣

∣

∣

∣

∣

≤ P(Bk) +

∣

∣

∣

∣

∣

P(Gk) −
e−tP(A)(tP(A))

k

k!

∣

∣

∣

∣

∣

.

We will prove an upper bound for the two quantities on the right hand side of the above
inequality to conclude the proof of the theorem.

We prove an upper bound for P(Bk). DefineC(T ) =
∑k

j=2 1{∆j>2n} + 1. C(T )

computes how many clusters there are in a givenT . Suppose thatT is such thatC(T ) = 1
and fix the positiont1 of the first occurrence ofA. Further, each occurrence inside the
cluster (with the exception of the most left one which is fixedat t1) can appear at distance
d of the previous one, withpA ≤ d ≤ 2n. Therefore, theψ-mixing property leads to the
bound

P

(

⋃

t2,...,tk

T (t1, t2, . . . , tk)

)

≤ P















k
⋂

j=1

⋃

n/2≤ti+1−ti≤2n;

i=2,...,k

T−tj(A)















(5.1)

≤ P(A)eψ(A)k−1eψ(A)e−(t−(3k+1)n)P(A).

Suppose now thatT is such thatC(T ) = i. Assume also that the most left occurrence of
thei clusters ofT occurs att(1), . . . , t(i), with 1 ≤ t(1) < · · · < t(i) ≤ t fixed. By the
same argument used above, we have the inequalities

P





⋃

{t1,...,tk}\{t(1),...,t(i)}

T (t1, . . . , tk)





≤ (P(A)(1 + ψ(n)))
i−1

eψ(A)k−ie−(t−(3k+1)n)P(A).

To obtain an upper bound forP (Bk) we must sum the above bound over allT such that
C(T ) = i with i running from1 to k − 1. FixedC(T ) = i, the locations of the most left
occurrences ofA of each one of thei clusters can be chosen in at mostCit many ways.
The cardinality of each one of thei clusters can be arranged inCi−1

k−1 many ways. (This
corresponds to breaking the interval(1/2, k + 1/2) in i intervals at points chosen from
{1 + 1/2, . . . , k − 1/2}.) Collecting these informations, we have thatP (Bk) is bounded
by

k−1
∑

i=1

CitC
i−1
k−1(P(A)(1 + ψ(n)))ieψ(A)k−ie−(t−(3k+1)n)P(A)

≤ e−(t−(3k+1)n)P(A)eψ(A)k max
1≤i≤k−1

(λ/eψ(A))
i

i!

k−1
∑

i=1

Ci−1
k−1

≤ e−(t−(3k+1)n)P(A)eψ(A)























(2λ)k−1

(k − 1)!
k < λ

eψ(A)

(2λ)k−1

(

λ
eψ(A)

)

!
(

λ
eψ(A)

)k−1− λ
eψ(A)

k ≥ λ
eψ(A)

.

This ends the proof of the bound forP (Bk).

We computeP(Bk) ≤
k−1
∑

i=1

CitC
i−1
k−1(P(A)(1 + ψ(n)))ieψ(A)k−ie−(t−(3k+1)n)P(A).
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We prove an upper bound for

∣

∣

∣

∣

∣

P(Gk) −
e−tP(A)(tP(A))

k

k!

∣

∣

∣

∣

∣

. It is bounded by four

terms by the triangular inequality

∑

T∈Gk

∣

∣

∣

∣

∣

∣

P





k
⋂

j=1

(

τ
(j)
A = tj

)

; τ
(k+1)
A > t



− P(A)k
k+1
∏

j=1

Pj

∣

∣

∣

∣

∣

∣

(5.2)

+
∑

T∈Gk

P(A)k

∣

∣

∣

∣

∣

∣

k+1
∏

j=1

Pj −
k+1
∏

j=1

e−(∆j−2n)P(A)

∣

∣

∣

∣

∣

∣

(5.3)

+
∑

T∈Gk

P(A)
k
∣

∣

∣e−(t−2(k+1)n)P(A) − e−tP(A)
∣

∣

∣ (5.4)

+

∣

∣

∣

∣

∣

#Gkk!

tk
e−tP(A)(tP(A))k

k!
−
e−tP(A)(tP(A))k

k!

∣

∣

∣

∣

∣

. (5.5)

We will bound these terms to obtain Theorem 3.3.
First, we bound the cardinal ofGk

#Gk ≤ Ckt ≤
tk

k!
.

Term (5.2) is bounded with Proposition 4.10

(5.2) ≤ C1
tk

(k − 1)!
(P(A)(1 + ψ(n)))

k
eψ(A)e−(t−(3k+1)n)P(A).

Term (5.3) is bounded with Proposition 4.8

(5.3) ≤
tk

k!
P(A)

k
k+1
∑

j=1

j−1
∏

i=1

Pi

∣

∣

∣Pj − e−(∆j−2n)P(A)
∣

∣

∣

k+1
∏

i=j+1

e−(∆i−2n)P(A)

≤
tk

k!
P(A)k(k + 1)Cpeψ(A)e−(ζA−11eψ(A))tP(A)

≤ 2Cp
(tP(A))

k

(k − 1)!
eψ(A)e−(ζA−11eψ(A))tP(A)

whereCp is defined in Proposition 4.8.
We compute

(5.3) ≤
(tP(A))

k

(k − 1)!

k + 1

k

[(8 + CatP(A) + Ca + 2Cb)ε(A) + 11tP(A)eψ(A)] e−(ζA−11eψ(A))tP(A).

Term (5.4) is bounded by

(5.4) ≤
tk

k!
P(A)

k
(k + 1)2nP(A)e−tP(A)e2(k+1)nP(A).

To bound term (5.5), we bound the following difference
∣

∣

∣

∣

#Gkk!

tk
− 1

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

(t− k(4n))
k

tk
− 1

∣

∣

∣

∣

∣

≤
k (k + 4n)

t
.
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Then, we have

(5.5) ≤
k (k + 4n)

t

e−tP(A)(tP(A))
k

k!
.

Now, we just have to add the five bounds to obtain the theorem with the constantCψ =
1 + C1 + 2Cp + 8 + 8. Proposition 4.10 shows thatC1 = 5 and Proposition 4.8 with
Theorem 4.3 thatCp = 116 . Then, we prove the theorem withCψ = 254. �

6. Biological applications

With the explicit value of the constantCψ of Theorem 3.3, and more particularly thanks
to all the intermediary bounds given in the proof of this theorem, we can develop an al-
gorithm to apply this formula to the study of rare words in biological sequences. In order
to compare different methods, we also compute the bounds corresponding to aφ-mixing,
process for which a proof of Poisson approximation is given in (Abadi and Vergne, in
preparation). Let us recall the definition of such a mixing process.

Definition 6.1. Letφ = (φ(ℓ))ℓ≥0 be a sequence decreasing to zero. We say that(Xm)m∈Z

is aφ-mixing process if for all integersℓ ≥ 0, the following holds

sup
n∈N,B∈F{0,.,n},C∈F{n≥0}

|P(B ∩ T−(n+ℓ+1)(C)) − P(B)P(C)|

P(B)
= φ(ℓ),

where the supremum is taken over the setsB andC, such thatP(B) > 0.

Note that obviously,ψ-mixing impliesφ-mixing. Then, we obtain two new methods for
the detection of over- or under-represented words in biological sequences and we compare
them to the Chen-Stein method.

We recall that Markov models areψ-mixing processes and then alsoφ-mixing pro-
cesses. Then, we first need to know the functionsψ andφ for a Markov model. It turns out
that we can use

ψ(ℓ) = φ(ℓ) = Kνℓ with K > 0 and0 < ν < 1,

whereK andν have to be estimated (see Meyn and Tweedie (1993)). There areseveral
estimations ofK andν. We chooseν equal to the second eigenvalue of the transition

matrix of the model andK =
(

infj∈{1,...,|A|k} µj

)−1

where|A| is the alphabet size,k the

order of the Markov model andµ the stationary distribution of the Markov model.
We recall that we aim at guessing a relevant biological role of a word in a sequence

using its number of occurrences. Thus we compare the number of occurrences expected
in the Markov chain that models the sequence and the observednumber of occurrences.
It is recommended to choose a degree of significances to quantify this relevance. We
fix arbitrarily a degree of significance and we want to calculate the smallest number of
occurrencesu necessary forP(N > u) < s, whereN is the number of occurrences of the
studied word. If the number of occurrences counted in the sequence is larger than thisu,
we can consider the word to be relevant with a degree of significances. We have

P(N > u) ≤
+∞
∑

k=u

(PP(N = k) + Error(k))

wherePP(N = k) is the probability under the Poisson model thatN is equal tok
andError(k) is the error between the exact distribution and its Poisson approximation,
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bounded using Theorem 3.3. Then, we search the smallest thresholdu such that
+∞
∑

k=u

(PP(N = k) + Error(k)) < s. (6.1)

Then, we haveP(N > u) < s and we consider the word relevant with a degree of signifi-
cances if it appears more thanu times in the sequence.

In order to compare the different methods, we compare the thresholds that they give.
Obviously, the smaller the degree of significance, the more relevant the studied word is.
But for a fixed degree of significance, the best method is the one which gives the smallest
thresholdu. Indeed, to give the smallestu is equivalent to give the smallest error in the tail
of the distribution between the exact distribution of the number of occurrences of wordA
and the Poisson distribution with parametertP(A).

6.1. Software availability.We developedPANOW, dedicated to the determination of thresh-
old u for given words. This software is written in ANSIC++ and developed on x86
GNU/Linux systems with GCC 3.4, and successfully tested with GCC latest versions on
Sun and Apple Mac OSX systems. It relies onseq++ library (Miele et al. (2005)).

Compilation and installation are compliant with the GNU standard procedure. It is
available athttp://stat.genopole.cnrs.fr/sg/software/panow/. On-
line documentation is also available.PANOW is licensed under the GNU General Public
License (http://www.gnu.org).

6.2. Comparisons between the three different methods.

6.2.1. Comparisons using synthetic data.We can compare the mixing methods and the
Chen-Stein method through the values of thresholdu obtained withPANOW using (Abadi
and Vergne, in preparation) in the first case and Reinert and Schbath (1998) in the second
one. We recall that the method which gives the smallest threshold u is the best method
for a fixed degree of significance. Table 6.2 offers a good outline of the possibilities and
limits of each method. It displays some results on differentwords randomly selected (no
biological meaning for any of these words). Table 6.2 has been obtained with an order one

TABLE 6.2. Table of thresholdsu obtained by the three methods (se-
quence lengtht equal to106). For each one of the three methods and for
each word, we compute the threshold which permits to consider the word as an
over-represented word or not, for degree of significances equal to0.1 or 0.01.
IMP means that the method can not return a result.

t = 106

Words s = 0.1 s = 0.01
CS φ ψ CS φ ψ

cccg IMP IMP IMP IMP IMP IMP
aagcgc IMP 1301 378 IMP 1304 392
cgagcttc 18 38 18 IMP 40 22
ttgggctg 14 27 14 18 29 17
gtgcggag 16 32 16 22 34 20
agcaaata 19 39 19 IMP 41 23
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Markov model using a random transition matrix and for a degree of significance of0.1 and
0.01. IMP means that the method can not return a result. There are several reasons for that
and we explain them in the following paragraph. Analysing many results, we notice some
differences between the methods.

Firstly, none of the methods gives us a result in all the cases. We recall that the Chen
Stein method gives a bound (CS) using the total variation distance. If the degree of signif-
icances that we choose is smaller than the bound of Chen-Stein, we never find a threshold
u such that

CS +

+∞
∑

k=u

PP(N = k) < s.

Then, each time that the given bound is higher than the significance degree, use of the Chen
Stein method is impossible. Therefore there are many examples that we can not study with
this method. Obviously, it is interesting to have a small degree of significances and that
may be impossible by this restriction of the Chen-Stein method. For example, this problem
appears for the wordsaagcgc andcgagcttc in Table 6.2. For this second word, the
Chen-Stein bound is equal to0.0107954. Hence, we can use this method for a significance
degrees equal to0.1 but not for a significance degree of0.01. The same phenomena
appears for the wordagcaaata (the Chen-Stein bound is equal to0.0120193).

The φ- andψ-mixing methods are not based on the total variation distance. Then,
whatever the degree of significances and if the studied word satisfies the three following
weak properties, we always give a thresholdu, contrary to the Chen Stein method. In spite
of these three conditions, our methods enable us to study a much broader panel of words
than the Chen-Stein method. Indeed, for these two methods, the only problematic cases
arise either when functioneψ (see Theorem 3.3) is larger than1 or for a “high” parameter
of the Poisson distribution (“high” means larger than500) or when the word periodicity is
smaller than half its length (see assumptions in Theorem 3.3: A /∈ Bn). In fact, the first
case does not occur very frequently (in any case in Table 6.2). The reason why the function
eψ (or a similar function in theφ-mixing case) has to be smaller than1 is that, for numerical
reasons, the error term has to be decreasing with the number of occurrencesk and without
this condition oneψ we can not ensure this decrease. We have to compute error terms for a
finite number of values ofk but in order to reduce the computation time, when error term
becomes smaller than a certain value (we choose10−300), we suppose all the following
error terms equals to this value. That is why error term has tobe decreasing. The second
problem, a “high” parameter of the Poisson distribution, isjust a computational difficulty
and once again it does not occur very frequently (only for thewordcccg in Table 6.2 for
instance). We would like to insist on the main advantage of our methods: we can fix any
significance degrees and, except in the very rare cases mentioned above, we will find a
thresholdu, contrary to the Chen-Stein method.

Also, we can use our methods for any Markov chain order. Indeed, PANOW runs fast
enough contrary to the R program used to compute the Chen-Stein bound of Reinert and
Schbath (1998). Note that, in programPANOW, we give another method to compute the
Chen-Stein bound (see Abadi (2001b)) and this method gives approximately the same
Chen-Stein bound.

The second main observation we can make is that, when it works, the Chen-Stein
method gives either a similar thresholdu than theψ-mixing method, or a smaller one.
This means that theψ-mixing method out-performs the Chen-Stein method.

Thirdly we notice that theψ-mixing method is always better than theφ-mixing one.
Obviously, this result was expected by the definitions of these mixing processes and also by
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the theorems because of the extra factore−(t−(3k+1)n)P(A) (see Theorem 3.3 and Theorem
2 in (Abadi and Vergne, in preparation). We are interested bythe real impact of this factor
on the thresholdu: it is significantly better in the case of aψ-mixing process.

Finally, let us remember you that Chen-Stein method give anyresult in a great number
of cases where our method works. And it is more the case when our model of interest is
a Markov model of order greater than2. Indeed, Chen-Stein bounds for Markov model of
order greater than2 are very high and then cannot give any result whereas our local method
works easily.

6.2.2. Biological comparisons.Now, we present a few results obtained on real biological
examples with order one Markov models. There are many categories of words which have
relevant biological functions (promoters, terminators, repeat sequences, chi sites, uptake
sequences, bend sites, signal peptides, binding sites, restriction sites, . . . ). Some of them
are highly present in the sequence, some others are almost absent. Then, it turns out
to be interesting to consider the over or the under-representation of words to find words
biologically relevant.

In this section, we test our methods on words already known tobe relevant. We focus
our study on Chi sites or uptake sequences. Chi sites of bacterias protect the genome by
stopping its degradation performed by a particular enzyme.The function of this enzyme
is to destroy viruses which could appear into the bacteria. Viruses do not contain Chi sites
and then are exterminated. It turns out that Chi sites are highly present in the bacterial
genome. Uptake sequences are abundant sequence motifs, often located downstream of
ORFs, that are used to facilitate the within-species horizontal transfer of DNA.

Example 1
First, we consider the Chi ofEscherichia coli, gctggtgg, (see Table 6.3), for different
degrees of significance. We use complete sequence ofEscherichia coli K12(Blattner et al.
(1997)). Sequence length is equal to4639221. We recall that for a fixed significance

TABLE 6.3. Table of thresholdsu obtained by the three methods for
the Chi of Escherichia coli: gctggtgg (sequence lengtht equal to
4639221). For each one of the three methods we compute the threshold which
permits to consider the word as an over-represented word or not, for degree of
significances. IMP means that the method can not return a result. “counts”
correspond to the number of occurrences observed in the sequence.

s Chen-Stein φ-mixing ψ-mixing counts
0.1 87 193 83 499
0.01 IMP 195 92 499

0.0001 IMP 197 99 499

10−239 IMP 549 498 499

degree, the smaller the thresholdu, the best the method is. Then, we can conclude that
theψ-mixing method gives the most interesting results. Chi ofE. coli could be considered
as an over-represented one from99 occurrences for a significance degrees of 0.0001.
Because Chen-Stein bound is equal to0.067726, Chen-Stein method does not permit to
conclude for significance degrees of0.01 and 0.001. Moreover, it is well known that
Chi of E. coli is a very relevant word in this bacteria. Then, we expect a very small
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significance degree for this word. Unfortunately, the minimal significance degree which
could be obtained by Chen-Stein method is, in fact, the Chen-Stein bound:0.067726. Our
method allows to obtain very small significance degree and the minimal significance degree
for which Chi ofE. coli is considered as an over-represented word by theψ-mixing method,
is given at the last line of Table 6.3: it is equal to10−239. Note also that the thresholdsu
increase with the significance degreess. To understand this fact, it is sufficient to look at
inequality (6.1). But they increase slowly while significance degreess decreases. It could
be surprising but it is due to the error term which decreases very fast from a certain number
of occurrences.

Example 2
Second, we consider the Chi ofHaemophilus influenzaeand its uptake sequence (see Table
6.4), for a significance degrees equal to0.01. We use complete sequence ofHaemophilus
influenzae(Fleishmann et al. (1995)). Sequence length is equal to1830138. We observe

TABLE 6.4. Table of thresholdsu obtained by the three methods for
the Chi and the uptake sequence ofHaemophilus influenzae(sequence
lengtht equal to1830138). For each one of the three methods and for each
word, we compute the threshold which permits to consider theword as an over-
represented word or not, for degree of significance equal to0.01. IMP means
that the method can not return a result. “counts” correspondto the number of
occurrences observed in the sequence.

Words Chen-Stein φ-mixing ψ-mixing counts
gatggtgg (chi) 23 36 22 20
gctggtgg (chi) 21 32 20 44
ggtggtgg (chi) 16 IMP IMP 57
gttggtgg (chi) 30 45 26 37

aagtgcggt (uptake) 13 17 13 737

that in all the cases theψ-mixing method is the best one because it gives the smallestu,
except for the wordggtggtgg which has a periodicity less than

[

n
2

]

(and then we can
not study it: see assumptions in Theorem 3.3). We can not assume the good significance of
the first Chi (gatggtgg) because we count only20 occurrences in the sequence, whereas
23 occurrences are necessary to consider this word as exceptional. On the other hand,
the uptake sequence is very significant (and then very relevant). Indeed, we could fix
a significance degree equal to10−224 and consider it as an over-represented word from
736 occurrences with theψ-mixing method. Asaagtgcggt is counted737 times in the
sequence, we obtain the well-known fact that this word is biologically relevant.

7. Conclusions and perspectives

To conclude this paper, we recall the advantages of our new methods. We give an
error valid for all the valuesk of the random variableN t corresponding to the number of
occurrences of wordA in a sequence of lengtht. Then, we can find a minimal number of
occurrences to consider a word as biologically relevant fora very large number of words
and for all degrees of significance. That is the main advantage of our methods on the
Chen-Stein one which is based on the total variation distance and for which small degrees
of significance can not be obtained. Results of ourψ-mixing method and the Chen-Stein
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method remain similar but our method has less limitations. Note that our methods provide
performing results for general modelling processes such asMarkov chains as well as every
φ- andψ-mixing processes.

In terms of perspectives, as we expect more significant results, we hope to improve these
methods adapting them directly to Markov chains instead ofψ- or φ-mixing. Moreover, it
is well-known that a compound Poisson approximation is better for self-overlapping words
(see Reinert et al. (2000) and Reinert and Schbath (1998)). An error term for the compound
Poisson approximation for self-overlapping words can be easily derived from our results.
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