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THE LOCAL DISCONTINUOUS GALERKIN METHOD FOR

CONVECTION-DIFFUSION-FRACTIONAL ANTI-DIFFUSION

EQUATIONS

AFAF BOUHARGUANE ∗ AND NOUR SELOULA &

Abstract. In this paper, we consider the discontinuous Galerkin method for
solving time dependent partial differential equations with convection-diffusion

terms and anti-diffusive fractional operator of order α ∈ (1, 2). These equa-

tions are motivated by two distinct applications: a dune morphodynamics
model and a signal filtering model. The key to study these numerical schemes

is to split the anti-diffusive operators into a singular and non-singular inte-

gral representations. The problem is then expressed as a system of low order
differential equations and a local discontinuous Galerkin method is proposed

for these equations. We prove nonlinear stability estimates and optimal order

of convergence O(∆xk+1) for linear equations and an order of convergence

of O(∆xk+
1
2 ) for the nonlinear problem. Finally numerical experiments are

given to illustrate qualitative behaviors of solutions for both applications and
to confirme our convergence results.

1. Introduction

In this paper, we are concerned with the numerical solutions for one-dimensional
nonlocal scalar conservation law of the form:

(1.1)

{
ut + (f(u)− ux + J [ux])x = 0, x ∈ R, t > 0,

u(0, x) = u0(x), x ∈ R,

where the unknown u depends on the space variable x and the time variable t. In
(1.1), f : R→ R is a continuous function, J is the anti-diffusive nonlocal operator
and u0 : R→ R is the initial datum.
This kind of equation appears in the formation and dynamics of sand structures
[17, 18] and they are also used as a filtering model [4]. They are given as follows.
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Dune morphodynamics model. In this case, we have f(u) = u2/2 and the equation
is given by

(1.2) ut +

(
u2

2
− ux + J d[ux]

)
x

= 0, x ∈ R, t > 0,

where the nonlocal operator is defined as follows: for any Schwartz function ϕ ∈
S(R) and any x ∈ R,

J d[ϕ](x) :=

∫ x

−∞
|x− ξ|− 1

3ϕ(ξ) dξ.(1.3)

The operator ∂xJ d[ux] can be seen as a fractional Laplacian of order 4/3 since it
has been proved that [3]

F(∂xJ d[ux])(ξ) = −4π2Γ(
2

3
)

(
1

2
− isgn(ξ)

√
3

2

)
|ξ|4/3F(u)(ξ),

where Γ is the gamma function and F denotes the Fourier transform.
This model appears in the work of Fowler [17] and describes the evolution of sand
dunes in a river flow.

Signal filtering model. For this application f = 0 and the equation is given by

(1.4) ut − uxx + ∂xJ s[ux] = 0, x ∈ R, t > 0,

where the nonlocal operator is a fractional Laplacian of order α ∈ (1, 2). Thanks
to a Taylor-Poisson’s formula and Fubini’s theorem we can rewrite the nonlocal
term as follows:

(1.5) J s[ϕ](x) = C(λ)

∫
R
|z|−λϕ(x− z)dz with λ = α− 1 ∈ (0, 1)

This kind of equation has been proposed for signal filtering: it performs at the same
time noise reduction (diffusion operator) and contrast enhancement (anti-diffusion
operator) [4].

Note that in what follows, J refers both to the operators J s and J d.

Equation (1.1) consists of three different terms: nonlinear convection f(u), linear
diffusion −∂2

xu and fractional anti-diffusive operator ∂xJ [ux] .The main character-
istic of these equations is the nonlocal operator which has a deregularizing effect
on the initial data. Fortunately, these instabilities are controlled by the diffusion
operator −∂2

xu which ensures the existence and the uniqueness of a smooth solution
[3, 4]. We then always assume that there exists a sufficiently regular solution u(t, x).

Besides the above cited, partial differential equations with nonlocal or fractional
operators are widely used to model scientific problems in finance, mechanics, crow
dynamics, traffic flow model ect. [6, 5, 22].
Therefore, several numerical methods have been suggested in the literature to over-
come the difficulties faced by nonlocal equations. Droniou [16] used a general class
of difference methods for fractional conservation laws, Zheng, Li and Zhao [32] pro-
posed a finite element method to solve space-fractional advection equations. Deng
[14] analyzed a finite element method for the numerical resolution of the space and
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time fractional Fokker-Planck equation. Li, Huang and Wang [20] used a Galerkin
finite element method and an implicit midpoint difference method to approximate
the nonlinear fractional Ginzburg-Landau equation. Meerschaert and Tadjeran [23]
studied finite difference approximations of fractional advection dispersion flow equa-
tion. Bueno-Orovio, Kay and Burrage [9] introduced Fourier spectral methods for
fractional-in-space reaction-diffusion equations. Safari and Chen [25] proposed a
coupling of the improved singular boundary method and dual reciprocity method
for multi-term time-fractional mixed diffusion-wave equations. Recently Vong and
Lyu [27] studied a second order finite difference schemes for spatial fractional dif-
ferential equations with variable coefficients.

The Discontinuous Galerkin method (DG hereafter) is a finite element method
which uses a completely discontinuous piecewise polynomial space for the numer-
ical solution and the test functions. Advantages of DG methods are their higher
order convergence property, their great flexibility in mesh construction, their easily
handling of complex geometries, as well as its efficiency in parallel implementation.
However, the main challenge in this method is based on the choice of the numerical
flux which is essential to ensure the stability and accuracy of the scheme.

For the DG methods, recent works have been proposed to deal with equations
involving fractional operators: Xu and Hesthaven [29] applied the local discontinu-
ous Galerkin method to fractional convection diffusion equations with a fractional
Laplacian of order α ∈ (1, 2). Mustapha and McLean [24] studied a discontinuous
Galerkin method for fractional diffusion and wave equations. Cifani, Jakobsen and
Karlsen [10] studied fractional degenerate convection-diffusion equation (α ∈ (0, 1))
and, Deng and Hesthaven [15] a local discontinuous Galerkin method for fractional
diffusion equations. Cockburn and Mustapha [13] investigated a hybridizable dis-
continuous Galerkin method for fractional diffusion problems. Aboelenen and El-
Hawary [1] developed a nodal discontinuous Galerkin method for the linearized
fractional Cahn-Hillard equation. Recently, Ahmadinia, Safari and Fouladi [2] an-
alyzed a local discontinuous Galerkin method for time-space fractional convection-
diffusion equations.

For equations like (1.1), few numerical methods have been developed up to now:
finite difference method [3], split-step Fourier method [7] and finite element method
[8] have been used to perform numerical simulations for the Fowler equation (1.2).
More recently [19] proposed finite difference schemes for fractional water waves
models.
We propose in this paper to develop a DG method for equations (1.1). We consider
in particular the Local Discontinuous Galerkin (LDG hereafter) since the equations
contain higher order spatial derivatives. The idea of LDG methods is to rewrite
the equation into a first order system and then apply the discontinuous Galerkin
method to the system [11].
The application of the LDG method to the convection-diffusion-fractional anti-
diffusion equations allows to get a numerical scheme of order O(∆xk+1) (resp.
O(∆xk+1/2)) for linear (resp. nonlinear) case. A similar convergence result has
been obtained using only finite element method in [8]. But the advantages of this
method reside on the specificity of the DG methods like their local nature.
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In comparison with the results presented in [29] the main difference in this paper
resides on the way to control the anti-diffusive effects of the nonlocal operators.
For that, we decompose the fractional operators into a singular and non-singular
integrals. As a consequence, a part of the anti-diffusive fractional operator is con-
trolled with the diffusion term.

To control the fractional operator with the diffusion term, we write the nonlocal
terms as follows:
Let r be a strictly positive constant such that

Dune model Integrating by parts we can rewrite J d as

J d[ϕ′](x) := J d1 [ϕ′](x) + J d2 [ϕ](x),(1.6)

where

J d1 [ϕ](x) =

∫ x

x−r
|x− ξ|−1/3ϕ(ξ) dξ

and

J d2 [ϕ](x) = −1

3

∫ x−r

−∞
|x− ξ|−4/3ϕ(ξ) dξ + r−1/3ϕ(x− r).

Signal model: As previously by integrating by parts and since ϕ is a Schwartz
function, we rewrite J s as

J s[ϕ′](x) = C(λ)

∫ −r
−∞
|ξ|−λϕ′(x− ξ) dξ + C(λ)

∫ r

−r
|ξ|−λϕ′(x− ξ) dξ

+ C(λ)

∫ ∞
r

|ξ|−λϕ′(x− ξ) dξ

= C(λ)

∫
|ξ|<r

|ξ|−λϕ′(x− ξ) dξ + C(λ)

(
λ

∫ −r
−∞
|ξ|−λ−1ϕ(x− ξ) dξ − r−λϕ(x+ r)

)
+ C(λ)

(
−λ
∫ ∞
r

|ξ|−λ−1ϕ(x− ξ) dξ + r−λϕ(x− r)
)

Therefore, we decompose J s as

J s[ϕ′](x) := J s1 [ϕ′](x) + J s2 [ϕ](x),(1.7)

where

J s1 [ϕ](x) = C(λ)

∫
|ξ|<r

|ξ|−λϕ(x− ξ) dξ

and

J s2 [ϕ](x) = C(λ)λ

(
−
∫ ∞
r

|ξ|−λ−1ϕ(x− ξ) dξ +

∫ −r
−∞
|ξ|−λ−1ϕ(x− ξ) dξ

)
+ C(λ)

(
r−λϕ(x− r)− r−λϕ(x+ r)

)
.

This splitting helps to control the nonlocal term with the diffusion operator: indeed
we prove for r well chosen that the operator J1 is completely controlled with the
diffusion operator. Note that the operator J2 does not need to be controlled be-
cause this term will be bounded by the L2 norm of the solution, which is a natural
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behavior because solutions of these equations are stable in the sense of (3.1).

The rest of this paper is organized as follows. In the next section, we introduce
the semi-discrete LDG method for equations (1.2) and (1.4) and we prove some
useful results. In sections 3 and 4, we prove that both approximations are L2

stable and optimal order of convergence O(∆xk+1) for linear equations and an

order of convergence of O(∆xk+ 1
2 ) for the nonlinear problem. Finally in section 5,

we present numerical experiments to illustrate both applications and we validate
the convergence results stated in the previous section.

2. The semi-discrete LDG method

For numerical simulations, it is more convenient to restrict the problem to a
domain Ω = (−1, 1) ⊂ R. Therefore, we impose homogeneous Dirichlet boundary
conditions in R\Ω.
We then choose a partition of Ω consisting of cells Ij = (xj , xj+1), j = 0, . . . ,M
where −1 = x0 < x1 < · · · < xM < xM+1 = 1. We denote the cell lengths
∆xj = xj+1 − xj and we define ∆x = max

j=1,··· ,M
∆xj .

We denote by P k(Ij) the space of all polynomials of degree at most k with
support on Ij , and we define the piecewise polynomial space V k as

V k =
{
v ; v|Ij ∈ P

k(Ij), j = 0, · · · ,M
}
.

Let us finally introduce the operators

[v]j = v(x+
j )− v(x−j ), v(xj) =

1

2
(v(x+

j ) + v(x−j )).

where

v(x±j ) = lim
x→x±

j

v(x).

2.1. Formulation of the LDG scheme . Let us introduce the numerical schemes

for the dune morphodynamics model (1.2) and the signal filtering model (1.4).

Taking into account the decomposition (1.6) and (1.7), we introduce two variables

v, q, and set

q = −v + J1[v] + J2[u]

v =
∂u

∂x
.

Signal model. In this case, the linear problem is rewritten as follows
∂u
∂t + ∂q

∂x = 0
q = −v + J s1 [v] + J s2 [u]

v = ∂u
∂x

Dune model.
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The nonlinear problem can be rewritten as
∂u
∂t + ∂

∂xf(u) + ∂q
∂x = 0

q = −v + J d1 [v] + J d2 [u]

v = ∂u
∂x

In both cases, we seek an approximation (uh, qh, vh) ∈ V k × V k × V k to (u, q, v)
such that, for any ϕu, ϕq, ϕv ∈ V k, we have

Signal model.


(∂uh∂t , ϕu)Ij − (qh, ϕ

′
u)Ij + q̂h ϕu|

x−j+1

x+j
= 0

(qh, ϕq)Ij = −(vh, ϕq)Ij + (J s1 [vh], ϕq)Ij + (J s2 [uh], ϕq)Ij

(vh, ϕv)Ij = −(uh, ϕ
′
v)Ij + ûhϕv|

x−j+1

x+j

(uh(0, ·), ϕv)Ij − (u0, ϕv)Ij = 0

(2.1)

Dune model.

(2.2)


(∂uh∂t , ϕu)Ij − (f(uh) + qh, ϕ

′
u)Ij +

(
f̂hϕu + q̂h ϕu

)
|
x−j+1

x+j
= 0

(qh, ϕq)Ij = −(vh, ϕq)Ij + (J d1 [vh], ϕq)Ij + (J d2 [uh], ϕq)Ij

(vh, ϕv)Ij = −(uh, ϕ
′
v)Ij + ûhϕv|

x−j+1

x+j

(uh(0, ·), ϕv)Ij − (u0, ϕv)Ij = 0

To complete the LDG schemes (2.1) and (2.2), we now introduce the numerical
fluxes.
For the high order derivative part, it is well know that a good choice to guarantee
the stability and solvability is to consider the following numerical fluxes [11, 30]

(2.3) ûhj = uh(x−j ), q̂hj = qh(x+
j ).

or

(2.4) ûhj = uh(x+
j ), q̂hj = qh(x−j ).

At the external boundaries we use

(2.5) q̂h(t,−1) = q+
h (t,−1) = q−h (t,−1); q̂h(t, 1) = q+

h (t, 1) = q−h (t, 1);

and

(2.6) ûh(t,−1) = 0; ûh(t, 1) = 0.

For the nonlinear part f̂h, any consistent (i.e. f̂h(u, u) = f(u) ) and monotone
(i.e. increasing w.r.t. its first variable and decreasing w.r.t. its second variable )
numerical flux can be used [12]

f̂h(uj) = f̂(u(x−j ), u(x+
j )).
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2.2. Some useful results.

Lemma 2.1. The following result holds for any v ∈ V k

1. Dune model:
a. ||J d1 [v]||2L2(Ω) ≤ C(r1/3) ||v||2L2(Ω)

b. ||J d2 [v]||2L2(Ω) ≤ c(1 + r−2/3) ||v||2L2(Ω)

2. Signal model :
a. ||J s1 [v]||2L2(Ω) ≤ C(rλ) ||v||2L2(Ω), ∀λ ∈ (0, 1/2)

b. ||J s1 [v]||2L2(Ω) ≤ C(r2(1−λ)) ||v||2L2(Ω), ∀λ ∈ (1/2, 1)

c. ||J s2 [v] ||2L2(Ω) ≤ C(r−2λ) ||v||2L2(Ω), ∀λ ∈ (0, 1)

Proof. 1. Let us study the operators J d1 and J d2 associated to the dune mor-
phodynamics equation (1.2).

a. Using Cauchy-Schwarz’s inequality, we obtain for all x ∈ Ω

|J d1 [v](x)|2 ≤
(∫ x

x−r
|x− ξ|−2/3dξ

)
||v||2L2(Ω)

≤ 3r1/3||v||2L2(Ω)

and by integrating over Ω we obtain∫
Ω

|J d1 [v](x)|2 ≤ 6r1/3||v||2L2(Ω).

b. Using the equivalence of norms in finite dimensional spaces, we obtain

|J d2 [v](x)| ≤ C
(
r−1/3 − (x+ 1)−1/3

)
||v||L2(Ω) + Cr−1/3||v||L2(Ω).

Therefore, we have

|J d2 [v](x)|2 ≤ C
(
r−2/3 + (x+ 1)−2/3

)
||v||2L2(Ω).

By integrating, we get∫
Ω

|J d2 [v](x)|2 dx ≤ c(r−2/3 + 1)||v||2L2(Ω).

2. For λ ∈ (0, 1/2), the proof for the operators J s1 and J s2 is similar to the
previous ones.
For λ ∈ (1/2, 1), we use again the equivalence of norms in finite dimensional
spaces to get the result.

�

Remark 2.2. Note that if x± r is a node of the mesh, nothing change for the term
J1 but we have to be careful for J2. Indeed, for example, J d2 can be approximated
by:

J d2 [v](x) = −1

3

∫ xk∗

−∞
|x− ξ|−4/3v(ξ) dξ + r−1/3v(x−k∗),
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where xk∗ = x−r. Therefore, using again Young’s inequality and inverse inequality,
we obtain exactly the same estimate proved in Lemma 2.1 where we have assumed
that x− r is not a node.
As a consequence, in the remainder of this work, we will not make the difference if
x± r is a node of the mesh or not.

Lemma 2.3 (Gronwall lemma [26]). Let y(t), h(t), g(t), f(t) be nonnegative func-

tions such that
∫ T

0
g(t) dt ≤M and either

y(t) +

∫ t

0

h(s) ds ≤ y(0) +

∫ t

0

(g(s)y(s) + f(s)) ds, ∀0 ≤ t ≤ T,

or
d

dt
y(t) + h(t) ≤ g(t)y(t) + f(t), ∀0 ≤ t ≤ T.

Then

y(t) +

∫ t

0

h(s) ds ≤ eM
(
y(0) +

∫ t

0

f(s) ds

)
, ∀0 ≤ t ≤ T.

3. The linear and nonlinear stability

Let us first review the stability property for the continuous problem. Let u ∈
C((0, T ), L2(Ω)) be a smooth solution to the initial value problem (1.2) or (1.4).
Then, we can prove using Fourier analysis that (see [8] for (1.2) and [4] for (1.4))

(3.1) ||u(t, ·)||L2(Ω) ≤ ew∗t||u0||L2(Ω), ∀t ∈ (0, T )

where w∗ is a positive constant.
Therefore, we say that the LDG schemes (2.1) and (2.2) are L2-stable if the nu-
merical solutions uh satisfy

||uh(T, ·)||L2(Ω) ≤ C(T )||u0||L2(Ω).

The goal of this section is then to prove the numerical stability of the LDG schemes
(2.1) and (2.2). For that, let us some over all j, add the three equations, integrate
over t ∈ (0, T ) and define two functionals associated to both models (2.1) and (2.2):

Signal model.

Bs(uh, qh, vh;ϕu, ϕq, ϕv)(3.2)

=

∫ T

0

((uh)t, ϕu) dt−
∫ T

0

M∑
j=0

(qh, ϕ
′
u)Ijdt−

∫ T

0

M∑
j=1

(q̂h)j [ϕu]jdt

−
∫ T

0

(q+
h (t,−1)ϕ+

u (−1)− q−h (t, 1)ϕ−u (1)) dt+

∫ T

0

(qh, ϕq) dt+

∫ T

0

(vh, ϕq) dt

−
∫ T

0

(J s1 [vh], ϕq) dt−
∫ T

0

(J s2 [uh], ϕq) dt+

∫ T

0

(vh, ϕv) dt

+

∫ T

0

M∑
j=0

(uh, ϕ
′
v)Ij dt+

∫ T

0

M∑
j=0

(ûh)j [ϕv]j dt

(3.3)
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Dune model.
We first define the functional associated to the linear part

Bdl (uh, qh, vh;ϕu, ϕq, ϕv) =

∫ T

0

((uh)t, ϕu) dt−
∫ T

0

M∑
j=0

(qh, ϕ
′
u)Ijdt−

∫ T

0

M∑
j=1

(q̂h)j [ϕu]jdt

−
∫ T

0

(q+
h (t,−1)ϕ+

u (−1)− q−h (t, 1)ϕ−u (1)) dt+

∫ T

0

(qh, ϕq) dt+

∫ T

0

(vh, ϕq) dt

−
∫ T

0

(J d1 [vh], ϕq) dt−
∫ T

0

(J d2 [uh], ϕq) dt+

∫ T

0

(vh, ϕv) dt

+

∫ T

0

M∑
j=0

(uh, ϕ
′
v)Ij dt+

∫ T

0

M∑
j=0

(ûh)j [ϕv]j dt

(3.4)

then the functional associated to the dune model (2.2) is given by

Bd(uh, qh, vh;ϕu, ϕq, ϕv) = Bdl (uh, qh, vh;ϕu, ϕq, ϕv)

−
∫ T

0

M∑
j=0

(f(uh), ϕ′u)Ijdt−
∫ T

0

M∑
j=0

f̂h[ϕu])jdt(3.5)

because f(0) = 0.

Lemma 3.1. For any u, v, q ∈ V k, the following result holds

(1) Signal Model.

Bs(u, q, v;u, v,−q) =
1

2
||u(T, ·)||2L2(Ω) −

1

2
||u0||2L2(Ω) +

∫ T

0

||v(t, ·)||2L2(Ω)dt

−
∫ T

0

(J s1 [v], v) dt−
∫ T

0

(J s2 [u], v) dt

(2) Dune Model.

Bd(u, q, v;u, v,−q) =
1

2
||u(T, ·)||2L2(Ω) −

1

2
||u0||2L2(Ω) +

∫ T

0

||v(t, ·)||2L2(Ω)dt

−
∫ T

0

(J d1 [v], v) dt−
∫ T

0

(J d2 [u], v) dt+

∫ T

0

M∑
j=0

(
[Φ(u)]j − (f̂h[u])j

)
dt

where Φ(u) =
∫ u

f(u) du.

Proof. (1) Signal Model
We set (ϕu, ϕq, ϕv) = (u, v,−q) in (3.3) and we obtain

Bs(u, q, v;u, v,−q) =
1

2
||u(T, ·)||2L2(Ω) −

1

2
||u0||2L2(Ω) +

∫ T

0

||v(t, ·)||2L2(Ω)

−
∫ T

0

(J s1 [v], v) dt−
∫ T

0

(J s2 [u], v)− (q+(t,−1)u+(t,−1)− q−(t, 1)u−(t, 1)) dt

−
∫ T

0

M∑
j=0

(
(q, ux)Ij + (u, qx)Ij

)
dt−

∫ T

0

M∑
j=1

(q̂j [u]j + ûj [q]j) dt
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Using the integration by parts (q, ux)Ij +(u, qx)Ij = (u q)|x
−
j+1

x+
j

, the numerical fluxes

(2.3) or (2.4) with the external boundaries (2.5) and (2.6) we obtain

−
M∑
j=0

(
(q, ux)Ij + (u, qx)Ij

)
=

M∑
j=1

[u q]j + q+(t,−1)u+(t,−1)− q−(t, 1)u−(t, 1)

=

M∑
j=1

(q̂j [u]j + ûj [q]j) + q+(t,−1)u+(t,−1)− q−(t, 1)u−(t, 1)

(2) Dune Model
As previously, we set (ϕu, ϕq, ϕv) = (u, v,−q) in (3.5), and using the numerical
fluxes defined in (2.3) or (2.4) we have

Bd(u, q, v;u, v,−q) =
1

2
||u(T, ·)||2L2(Ω) −

1

2
||u0||2L2(Ω) +

∫ T

0

||v(t, ·)||2L2(Ω)dt

−
∫ T

0

M∑
j=0

(f(u), ux)Ijdt−
∫ T

0

M∑
j=1

(f̂h[u])jdt

−
∫ T

0

(J d1 [v], v)Ij dt−
∫ T

0

(J d2 [u], v)Ij dt

and since f(0) = 0 we get∫ T

0

M∑
j=0

(f(u), ux)Ijdt = −
∫ T

0

M∑
j=1

[Φ(u)]jdt

then we obtain

Bd(u, q, v;u, v,−q) =
1

2
||u(T, ·)||2L2(Ω) −

1

2
||u0||2L2(Ω) +

∫ T

0

||v(t, ·)||2L2(Ω)dt

−
∫ T

0

(J d1 [v], v) dt−
∫ T

0

(J d2 [u], v) dt+

∫ T

0

M∑
j=1

(
[Φ(u)]j − (f̂h[u])j

)
dt

which concludes the proof of this Lemma.

�

Theorem 3.2 (Linear stability ). The LDG scheme (2.1) is L2-stable, and its
solution satisfies

||uh(T, ·)||2L2(Ω) +

∫ T

0

||vh(t, ·)||2L2(Ω dt ≤ C(λ, T )||u0||2L2(Ω)

Proof. Without loss of generality we assume λ ∈ (0, 1/2).
By construction and thanks to (2.1) we have Bs(uh, qh, vh;ϕu, ϕq, ϕv) = 0 for all
ϕu, ϕq, ϕv ∈ V k.
Then, we have for (ϕu, ϕq, ϕv) = (uh, vh,−qh),

Bs(uh, qh, vh;uh, vh,−qh) = 0
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From Lemma 3.1, Lemma 2.1 and Hölder’s inequality, we obtain

1

2
||uh(T, ·)||2L2(Ω) −

1

2
||u0||2L2(Ω) +

∫ T

0

||vh(t, ·)||2L2(Ω) dt

≤
∫ T

0

||J s1 [vh(t, ·)]||L2(Ω)||vh(t, ·)||L2(Ω) dt+

∫ T

0

||J s2 [uh(t, ·)]||L2(Ω)||vh(t, ·)||L2(Ω) dt

≤ C(r
λ
2 )

∫ T

0

||vh(t, ·)||2L2(Ω) dt+

∫ T

0

||J s2 [uh(t, ·)]||2L2(Ω) dt+
1

4

∫ T

0

||vh(t, ·)||2L2(Ω) dt

≤
(
C(r

λ
2 ) +

1

4

)∫ T

0

||vh(t, ·)||2L2(Ω) dt+ C(r−λ)

∫ T

0

||uh(t, ·)||2L2(Ω) dt

we then choose r such that C(r
λ
2 ) + 1

4 = 1
2 and we obtain

1

2
||uh(T, ·)||2L2(Ω) −

1

2
||u0||2L2(Ω) +

1

2

∫ T

0

||vh(t, ·)||2L2(Ω) dt ≤ C(λ)

∫ T

0

||uh(t, ·)||2L2(Ω) dt

Finally, using Gronwall’s lemma (see Lemma 2.3) with

y(t) = ||uh(t, ·)||2L2(Ω), h(t) = ||vh(t, ·)||2L2(Ω), g(t) = C(λ) and f(t) = 0,

we obtain the following result{
||uh(T, ·)||2L2(Ω) +

∫ T

0

||vh(t, ·)||2L2(Ω)dt

}1/2

≤ ||u0||L2(Ω)e
C(λ)T .

�

Theorem 3.3 (Nonlinear stability). The LDG scheme (2.2) is L2-stable, and their
solution satisfies

||uh(T, ·)||2L2(Ω) +

∫ T

0

||vh(t, ·)||2L2(Ω) dt ≤ C(T )||u0||2L2(Ω)

Proof. The proof follows the same lines as the previous Theorem 3.2.
Thanks to (2.2) Bd(uh, qh, vh;ϕu, ϕq, ϕv) = 0 for all ϕu, ϕq, ϕv ∈ V k, then in par-
ticular we have Bd(uh, qh, vh;uh, vh,−qh) = 0 .

From Lemma 3.1 we have

1

2
||uh(T, ·)||2L2(Ω) −

1

2
||u0||2L2(Ω) +

∫ T

0

||vh(t, ·)||2L2(Ω) dt−
∫ T

0

(J d1 [vh], vh) dt

−
∫ T

0

(J d2 [uh], vh) dt+

∫ T

0

M∑
j=1

(
[Φ(uh)]j − (f̂h[uh])j

)
dt = 0

Thanks to the monotone property of the flux f̂h (i.e. increasing w.r.t its first
variable and decreasing w.r.t the second variable) we have∫ u+

j

u−
j

(
f(x)− f̂h(u−j , u

+
j )
)
dx ≥ 0,
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using now a change of variable we get∫ u+
j

u−
j

(
f(x)− f̂h(u−j , u

+
j )
)
dx = [Φ(u)]j − (f̂h[u])j

and then we have [Φ(uh)]j − (f̂h[uh])j > 0.
Therefore we obtain

1

2
||uh(T, ·)||2L2(Ω) −

1

2
||u0||2L2(Ω) +

∫ T

0

||vh(t, ·)||2L2(Ω) dt−
∫ T

0

(J d1 [vh], vh) dt−
∫ T

0

(J d2 [uh], vh) dt ≤ 0

We finally conclude the proof by using Lemma 2.1, Hölder’s inequality and Gron-
wall’s Lemma. �

4. Errors estimates

We consider the following special projections P± and Q into V k :
For all intervals Ij , j = 0, · · · ,M∫

Ij

(P±u(x)− u(x))v(x) dx = 0, ∀v ∈ P k−1(Ij)

P−u(xj) = u(x−j ), P+u(xj) = u(x+
j ).

and Q is the standard L2 projection defined as∫
Ij

(Qu(x)− u(x))v(x) dx = 0, ∀v ∈ P k(Ij)

Lemma 4.1. The following result holds

(1) Signal Model.

Bs(P−u− u,P+q − q,Qv − v;P−eu,Qev,−P+eq)

=

∫ T

0

M∑
j=0

((P−u− u)t,P−eu)Ij dt+

∫ T

0

M∑
j=0

(P+q − q,Qev)Ij dt

−
∫ T

0

M∑
j=0

(J s1 [Qv − v],Qev)Ij dt−
∫ T

0

M∑
j=0

(J s2 [P−u− u],Qev)Ij dt

(2) Dune Model.

Bdl (P−u− u,P+q − q,Qv − v;P−eu,Qev,−P+eq)

=

∫ T

0

M∑
j=0

((P−u− u)t,P−eu)Ijdt+

∫ T

0

M∑
j=0

(P+q − q,Qev)Ij dt

−
∫ T

0

M∑
j=0

(J d1 [Qv − v],Qev)Ij dt−
∫ T

0

M∑
j=0

(J d2 [P−u− u],Qev)Ij dt

Proof. (1) Signal Model.
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From (3.3) we have

Bs(P−u− u,P+q − q,Qv − v;P−eu,Qev,−P+eq)

=

∫ T

0

M∑
j=0

((P−u− u)t,P−eu)Ij dt−
∫ T

0

M∑
j=0

(P+q − q, (P−eu)x)Ijdt

−
∫ T

0

M∑
j=1

̂(P+q − q)j [P
−eu]j

−
∫ T

0

(
(P+q(−1, t)− q(−1, t))+P−eu(−1, t)− (P+q(1, t)− q(1, t))−P−eu(1, t)

)
dt

+

∫ T

0

M∑
j=0

(P+q − q,Qev)Ij dt+

∫ T

0

M∑
j=0

(Qv − v,Qev)Ij dt−
∫ T

0

M∑
j=0

(J s1 [Qv − v],Qev)Ij dt

−
∫ T

0

M∑
j=0

(J s2 [P−u− u],Qev)Ij dt−
∫ T

0

M∑
j=0

(Qv − v,P+eq)Ij dt

−
∫ T

0

M∑
j=0

(P−u− u, (P+eq)x)Ij dt−
∫ T

0

M∑
j=1

̂(P−u− u)j [P
+eq]j dt

Using the properties of the projection P±,Q, we have

(P+q − q, (P−eu)x)Ij = 0, (Qv − v,Qev)Ij = 0,

(Qv − v,P+eq)Ij = 0, (P−u− u, (P+eq)x)Ij = 0

̂(P−u− u)j = 0, ̂(P+q − q)j = 0

We then obtain

Bs(P−u− u,P+q − q,Qv − v;P−eu,Qev,−P+eq)

=

∫ T

0

M∑
j=0

((P−u− u)t,P−eu)Ij dt+

∫ T

0

M∑
j=0

(P+q − q,Qev)Ij dt

−
∫ T

0

M∑
j=0

(J s1 [Qv − v],Qev)Ij dt−
∫ T

0

M∑
j=0

(J s2 [P−u− u],Qev)Ij dt

(2) Dune Model. The proof is similar to the previous ones.
�

We are now ready to prove the error estimates of our numerical schemes.

4.1. Error estimate for the signal model.

Theorem 4.2. Let u be the sufficiently smooth exact solution to (1.4) and let
uh ∈ C1([0, T ];V k) be the numerical solution of (2.1). Then, with eh := u − uh
there holds the following error estimate:

||eh(T, ·)|| ≤ C∆xk+1||∂k+1
x u(T, ·)||,(4.1)
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where C = C(k, λ, T ) is a constant depending on k, λ and T but independent of u
and ∆x.

Proof. We denote

eu = u− uh, eq = q − qh and ev = v − vh.
We then recover the error equation:

Bs(eu, eq, ev;ϕu, ϕq, ϕv) = 0, ∀ϕu, ϕq, ϕv ∈ V k

We obtain after rearranging terms,

Bs(ue, qe, ve;ϕu, ϕq, ϕv) = Bs(P−u−u,P+q−q,Qv−v;ϕu, ϕq, ϕv), ∀ϕu, ϕq, ϕv ∈ V k.
where ue = P−u− uh, qe = P+q − qh and ve = Qv − vh,
and for ϕu = ue, ϕq = ve, ϕv = −qe we obtain

Bs(ue, qe, ve;ue, ve,−qe) = Bs(P−u− u,P+q − q,Qv − v;ue, ve,−qe).
From Lemma 3.1, we have

Bs(ue, qe, ve;ue, ve,−qe) =

∫ T

0

1

2

d

dt
||ue(t)||2L2(Ω) dt+

∫ T

0

M∑
j=0

||v(t)e||2L2(Ij)
dt

−
∫ T

0

M∑
j=0

(J s1 [ve], ve)Ij dt−
∫ T

0

M∑
j=0

(J s2 [ue], ve)Ij dt.

and from Lemma 4.1

Bs(P−u− u,P+q − q,Qv − v;ue, ve,−qe) =

∫ T

0

(
(P−u− u)t, u

e
)
dt

+

∫ T

0

M∑
j=0

(P+q − q, ve)Ij dt−
∫ T

0

M∑
j=0

(J s1 [Qv − v], ve)Ij dt

−
∫ T

0

M∑
j=0

(J s2 [P−u− u], ve)Ij dt

Therefore, we have∫ T

0

1

2

d

dt
||ue(t)||2L2(Ω) +

∫ T

0

M∑
j=0

||ve(t)||2L2(Ij)
−
∫ T

0

M∑
j=0

(J s1 [ve], ve)Ij −
∫ T

0

M∑
j=0

(J s2 [ue], ve)Ij dt

=

∫ T

0

(P−u− u)t, u
e) dt+

∫ T

0

M∑
j=0

(P+q − q, ve)Ij dt

−
∫ T

0

M∑
j=0

(J s1 [Qv − v], ve)Ij dt−
∫ T

0

M∑
j=0

(J s2 [P−u− u], ve)Ij dt

(4.2)

Then using Lemma 2.1, the error associated with the projection operators [29],
Cauchy-Schwartz, Holder inequalities and the initial error ||ue0|| = 0 (obtained
thanks to the last equation of system (2.1)), (4.2) gives
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1

2
||ue(T )||2L2(Ω) +

∫ T

0

M∑
j=0

||ve(t)||2L2(Ij)
dt ≤ C∗(r

λ
2 )

∫ T

0

M∑
j=0

||ve(t)||2L2(Ij)
dt

+4

∫ T

0

M∑
j=0

||J s2 [ue]||2L2(Ij)
dt+

1

16

∫ T

0

M∑
j=0

||ve||2L2(Ij)
+

∫ T

0

(P−u− u)t, u
e) dt

+4

∫ T

0

M∑
j=0

||P+q − q||2L2(Ij)
+

1

16

∫ T

0

M∑
j=0

||ve||2L2(Ij)
+ 4

M∑
j=0

∫ T

0

||J s1 [Qv − v]||2L2(Ij)

+
1

16

∫ T

0

M∑
j=0

||ve||2L2(Ij)
+ 4

∫ T

0

M∑
j=0

||J s2 [P−u− u]||2L2(Ij)
+

1

16

∫ T

0

M∑
j=0

||ve||2L2(Ij)
≤

∫ T

0

C∗(rλ/2)
∑
j

||ve||2L2(Ij)
+

1

4

M∑
j=0

||ve||2L2(Ij)
+ C(rλ)∆x2(k+1)|u|2k+2

 dt

+

∫ T

0

(
C(r−2λ)∆x2(k+1)|u|2k+1 + C(r−2λ)||ue||2L2(Ij)

)
dt

and if we choose r such that C∗(r
λ/2) = 1

4 , we obtain

1

2
||ue(T )||2L2(Ω) +

1

2

∫ T

0

M∑
j=0

||ve(t)||2L2(Ij)
≤
∫ T

0

(
C(λ, |u|k+1, |u|k+2)∆x2(k+1) + C(λ)||ue||2L2(Ω)

)
dt

Finally, using Gronwall’s Lemma we get

||ue(T )||2L2(Ω) +

∫ T

0

M∑
j=0

||ve(t)||2L2(Ij)
dt ≤ C(k, λ, T, |u|k+1, |u|k+2)∆x2k+2

�

4.2. Error estimate for the dune model.

4.2.1. The linear case f = c u. In this subsection we consider the linear problem

(4.3)

{
ut +

(
cu− ux + J d[ux]

)
x

= 0,

u(0, x) = u0(x).

For the convection term, we opt for the well-known monotone Lax-Friedrich flux
[12]

(4.4) f̂(u−i , u
+
i ) = cui − |c|

[u]i
2
.

Theorem 4.3. Let u be the sufficiently smooth exact solution to (4.3) and uh ∈
C1([0, T ];V k) be a solution of (2.2) with f(u) = c u and the numerical flux (4.4) .
With eu := u− uh, we have the following error estimate:

||eh(T, ·)|| ≤ C∆xk+1||∂k+1
x u(T, ·)||,(4.5)

where C = C(k, c, T ) is a constant depending on c, k and T but independent of u
and ∆x.
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Proof. The proof follows the same lines as the previous Theorem 4.2. The difference
here resides on the presence of the convection term.
As previously, we have

Bd(ue, qe, ve;ue, ve,−qe) = Bd(P−u− u,P+q − q,Qv − v;ue, ve,−qe),

where ue = P−u−uh, qe = P+q− qh and ve = Qv−vh. From Lemma 3.1, we have

Bd(ue, qe, ve;ue, ve,−qe) =
1

2
||ue(T )||2L2(Ω) +

∫ T

0

M∑
j=0

||ve(t)||2L2(Ij)

−
∫ T

0

M∑
j=0

(J d1 [ve], ve)Ij −
∫ T

0

M∑
j=0

(J d2 [ue], ve)Ij

−
∫ T

0

M∑
j=0

(cue, (ue)x)Ij −
∫ T

0

M∑
j=0

(c(ue)j −
|c|
2

[ue]j)[u
e]j

=
1

2
||ue(T )||2L2(Ω) +

∫ T

0

M∑
j=0

||ve(t)||2L2(Ij)
−
∫ T

0

M∑
j=0

(J d1 [ve], ve)Ij

−
∫ T

0

M∑
j=0

(J d2 [ue], ve)Ij +

∫ T

0

M∑
j=0

|c|
2

[ue]2j(4.6)

Moreover, from Lemma 4.1, we obtain

Bd(P−u− u,P+q − q,Qv − v;ue, ve,−qe) =

∫ T

0

((P−u− u)t, u
e)dt

+

∫ T

0

M∑
j=0

(P+q − q, ve)Ij −
∫ T

0

M∑
j=0

(J d1 [Qv − v], ve)Ij dt−
∫ T

0

M∑
j=0

(J d2 [P−u− u], ve)Ij dt

(4.7)

Finally, as the proof of Theorem 4.2, by using (4.6), (4.7), Lemma 2.1, the error
associated to the projections operators [29] and Gronwall’s Lemma, we obtain for
r well chosen

||ue(T )||2L2(Ω)+

∫ T

0

M∑
j=0

||ve(t)||2L2(Ij)
dt+

∫ T

0

M∑
j=0

|c|
2

[ue]2jdt ≤ C(k, T, |u|k+1, |u|k+2) ∆x2k+2

�

4.2.2. The nonlinear case. To deal with the nonlinearity we argue as [29] and we
use the following results:

Lemma 4.4 ( [31] ). For any piecewise smooth function w ∈ L2(Ω), on each cell
boundary point we define

κ(f̂ ;w) ≡ κ(f̂ ;w−, w+) :=

{
[w]−1(f(w)− f̂(w)) if [w] 6= 0
1
2 |f
′(w)| if [w] = 0,

where f̂(w) ≡ f̂(w−, w+) is a monotone numerical flux consistent with the given

flux f . Then κ(f̂ ;w) is nonnegative and bounded for any (w−, w+) ∈ R. Moreover,
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we have

1

2
|f ′(w)| ≤ κ(f̂ ;w) + C∗|[w]|,

−1

8
f ′′(w)[w] ≤ κ(f̂ ;w) + C∗|[w]|2.

To estimate the nonlinear part, we define as in [28]

M∑
j=0

Hj(f ;u, uh, v) =

M∑
j=0

∫
Ij

(f(u)−f(uh))vx dx+

M∑
j=0

((f(u)−f(uh))[v])j+

M∑
j=0

((f(uh)−f̂)[v])j

Lemma 4.5 ([28]). For Hj(f ;u, uh, v) defined above, we have the following esti-
mate:

M∑
j=0

Hj(f ;u, uh, v) ≤ −1

4
κ(f̂ ;uh)[v]2 + (C + C?(||v||∞ + ∆x−1||eu||2∞))||v||2L2(Ω)

+ (C + C?∆x
−1||eu||2∞)∆x2k+1

As in [28] we consider for ∆x small and k ≥ 1 the following assumption

(4.8) ||u− uh|| ≤ ∆x.

Theorem 4.6. Let u be the sufficiently smooth exact solution to (1.2) and uh ∈
C1([0, T ];V k) be the discrete solution of the LDG scheme (2.2). We have for ∆x
small enough satisfying (4.8) and k ≥ 1,

||u− uh|| ≤ C∆xk+ 1
2 .

Proof. Using previous notations, (2.2) and by adding ±
∫ T

0

∑M
j=0 (f(uh)[ϕu])j , we

have for any ϕu, ϕq, ϕv ∈ V k

Bd(u, q, v;ϕu, ϕq, ϕv)− Bd(uh, qh, vh;ϕu, ϕq, ϕv)

:= Bdl (u, q, v;ϕu, ϕq, ϕv)− Bdl (uh, qh, vh;ϕu, ϕq, ϕv)−
∫ T

0

M∑
j=0

(f(u), ϕ′u) dt

−
∫ T

0

M∑
j=0

(f(u)[ϕu])j dt+

∫ T

0

M∑
j=0

(f(uh), ϕ′u)Ij dt+

∫ T

0

M∑
j=0

(
f̂ [ϕu]

)
j
dt

= Bdl (u− uh, q − qh, v − vh;ϕu, ϕq, ϕv)−
∫ T

0

M∑
j=0

(f(u)− f(uh), ϕ′u)Ij dt

−
∫ T

0

M∑
j=0

((f(u)− f(uh))[ϕu])j dt−
∫ T

0

M∑
j=0

(
(f(uh)− f̂)[ϕu]

)
j
dt

= Bdl (u− uh, q − qh, v − vh;ϕu, ϕq, ϕv)−
∫ T

0

M∑
j=0

Hj(f ;u, uh, ϕu) dt

= 0
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Setting (ϕu, ϕq, ϕv) = (ue, ve,−qe) we obtain

Bdl (ue, qe, ve;ue, ve,−qe) = Bdl (P−u− u,P+q − q,Qv − v;ue, ve,−qe)

+

∫ T

0

M∑
j=0

Hj(f ;u, uh, u
e)

Using Lemma 3.1, Lemma 4.1 and Lemma 4.5, we obtain

||ue(T )||2L2(Ω) +

∫ T

0

M∑
j=0

||ve(t)||2L2(Ij)
dt−

∫ T

0

M∑
j=0

(J d1 [ve], ve)Ij dt

−
∫ T

0

M∑
j=0

(J d2 [ue], ve)Ij dt+
1

4
κ(f̂ ;u)[ue]2

≤
∫ T

0

((P−u− u)t, u
e) dt+

∫ T

0

M∑
j=0

(P+q − q, ve)Ij dt

−
∫ T

0

M∑
j=0

(J d1 [Qv − v], ve)Ij dt−
∫ T

0

M∑
j=0

(J d2 [P−u− u], ve)Ij dt

+

∫ T

0

(C + C?(||ue||∞ + ∆x−1||eu||2∞))||ue||2L2(Ω) + (C + C?∆x
−1||eu||2∞)∆x2k+1 dt

The terms from the linear parts are analyzed in the same way as the proof of
Theorem 4.2. We control these terms using Lemma 2.1 and error properties for
the projection operators [29]. Again the paramater r is chosen in a way that we
can control the operator J d1 with the diffusive term. For the nonlinear part, we
consider Lemma 4.5 and the assumption (4.8) to control the nonlinear terms. We
finally conclude the proof by applying the Gronwall’s Lemma.

�

5. Numerical simulations

We conclude this paper by presenting some experimental results obtained us-
ing the local discontinuous Galerkin method (see numerical schemes (2.2) and
(2.1)) with different polynomial order for the space discretization, an Euler ex-
plicit method for the time discretization and we take r = 0.2.

Test 1: Numerical convergence To study the numerical convergence we con-
sider

ut − uxx + ∂x(J d1 [ux] + J d2 [u]) = 0, Ω = (−1, 1)(5.1)

with the following two initial data

Test 1a: u(0, x) = e−50(x+0.2)2 ,

Test 1b: u(0, x) = e−50(x+0.4)2 + e−50(x−0.4)2 .
We compute the numerical solution of this problem at time T = 0.1. LDG methods
based on P k polynomial approximations with k = 1, 2 are tested.
Table 1, Figure 1 and Figure 2 display the convergence numerical order for both
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Figure 1. Test 1a: Convergence curve (solid line) for one order
polynomial approximations (k = 1). Dashed line represents a slope
of order two. N denotes the number of elements.

Figure 2. Test 1b: Convergence curve (solid line) for second order
polynomial approximations (k = 2). Dashed line represents a slope
of order three. N denotes the number of elements.

examples. In Figures 1 and 2 we plot the logarithm of the error (in norm L2) in
function of the logarithm of the number of elements N . The time step is chosen in
a way that the condition ∆t = β∆x2 with β < 0.5 is satisfied. The convergence
numerical order is then given by the slope of this curve. For reference, a small line
(the dashed line) of slope two and three are added in the figures. We observe that
the numerical rate of convergence is slightly better approximation than two when
P 1 is considered and it is approaching three when P 2 is considered.
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N error (k = 1) order error (k = 2) order
40 0.1510 - 0.09520 -
80 0.0247 2.6112 0.0121 2.9760
160 0.0057 2.1157 0.00168 2.8485
320 0.0014 2.0255 0.000251 2.7427

Table 1. Test 1: Error and numerical rate of convergence for one
order polynomial approximations (k = 1) and for second order
polynomial approximations (k = 2). N denotes the number of
elements.

Figure 3. Test 2: Piecewise linear (P 1) approximations with N =
100. Solid line: initial data, dashed line: numerical solution at
T = 1.

Test 2: Dune model. In this example, we simulate using P 1 approximations the
nonlinear dune model

ut − uxx + uux + ∂x(J d1 [ux] + J d2 [u]) = 0, x ∈ Ω = (−10, 10), t ∈ (0, T ),

u(0, x) = e−0.5(x+0.1)2(5.2)

The numerical result is presented in Figure 3: the solid line represents the initial
data and the dashed line the numerical solution at the time T = 1. In this simula-
tion, we take ∆x = 0.2 and ∆t = 0.016.
As we expect from the linearized viscous Burger equation, the initial data is prop-
agated downstream but we can see here in addition an erosive process due to the
nonlocal term.

Test 3: Signal filtering model. In this example, we consider the following signal
filtering equation

ut − ε uxx + η ∂x(J s1 [ux] + J s2 [u]) = 0
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Figure 4. Test 3: Top : noisy signal (bleu) vs. filtered signal (red)
; Bottom: noiseless signal ( blue line) vs. filtered signal (dashed
red line) using P 1 approximations.

with α = 1.5 and we consider as initial data two Gaussians corrupted by a random
noise n(x)

u(0, x) = e−100(x−2/5)2 + e−500(x−3/5)2 + n(x)

Figure 4 illustrates filtered signal for T = 1, ε = 10, η = 1 and N = 100. As we
can see, the noise is very well eliminated and we find again the original signal. The
difference with the heat equation is that the shape of the signal is preserved thanks
to the anti-diffusive fractional operator.
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