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Abstract 26 

 27 

Combination of altered both social and feeding behaviors is common in children with autism 28 

spectrum disorder (ASD) but the underlying mechanisms are unknown. Nevertheless, it has been 29 

established that several specific neuropeptides are critically involved in the regulation of both 30 

feeding and social behavior, such as α-melanocyte-stimulating hormone (α-MSH) and oxytocin, 31 

respectively. Moreover, recent data implicated gut microbiota in regulation of host feeding and 32 

emotion and revealed its dysbiosis in ASD suggesting a mechanistic role of altered microbiota-33 

brain axis in ASD. In this review, we discuss how gut microbiota dysbiosis may alter hunger and 34 

satiety peptide hormones as well as brain peptidergic pathways involved in the regulation of host 35 

feeding and social behavior, and hence, may contribute to the ASD pathophysiology. In 36 

particular, we show that interactions between α-MSH and oxytocin systems in the brain can 37 

provide the clues for better understanding of the mechanisms underlying altered feeding and 38 

social behavior in ASD and that the origin of such alterations can be linked to gut microbiota. 39 

 40 

 41 

 42 

Key words: Autism, brain, feeding, social behavior, neuropeptides, gut microbiota 43 

44 



3 

 

Introduction 45 

Altered feeding behavior is a common feature in children with autism spectrum disorder (ASD) 46 

adding to the main pathological characteristics of impaired communication and social interaction 47 

(1). Typical alterations include both food refusal and aversion based on food texture, appearance 48 

or presentation of new food (2, 3). Although ASD subjects consume sufficient amount of 49 

calories and do not typically display symptoms of malnutrition such as body weight loss, 50 

selective deficit of some vitamins and microelement can be present, mainly due to low 51 

consumption of fruits and vegetables (4, 5). Decreased appetite in ASD has also been revealed as 52 

a part of depression-like symptoms (6). Taken together, the restrictive feeding behavior in ASD 53 

points to specific abnormalities in the brain control of appetite. This control involves hunger and 54 

satiety peptide hormones from the gut acting on the brain anorexigenic and orexigenic 55 

neuropeptidergic circuitries constituting the gut-brain axis which interacts with the dopaminergic 56 

reward system (7). In light of increasing knowledge of molecular mechanisms responsible in 57 

appetite control in normal and pathological conditions, it is possible to gain new insight into the 58 

origin of altered feeding behavior in ASD by looking at overlap between the peptidergic 59 

pathways regulating feeding and social behaviors. Indeed, social behavior is intimately linked to 60 

feeding at a basic behavioral levels as long as food acquisition and consumption involves 61 

interactions between subjects (8). Furthermore, gut microbiota appeared recently as a major 62 

player in the regulation of various physiological processes including brain development and 63 

behavior relevant to ASD (9-11). The involvement of gut peptides in the microbiome-brain axis 64 

relevant to anxiety and depression has recently been reviewed (12). In this review we discuss a 65 

possible mechanistic link between the gut microbiota-brain axis and altered feeding behavior in 66 

ASD mainly by analyzing the role of neuropeptides and peptide hormones in regulation of 67 

appetite and social behavior. 68 

 69 

  70 

1. Gastro-intestinal symptoms and feeding behavior in ASD 71 

According to the Diagnostic and Statistical Manual of Mental Disorders, ASD is characterized 72 

by impaired verbal or nonverbal communication and social interactions, and stereotyped or 73 

repetitive behavior (13). ASD is a neurodevelopmental disorder that begins in early childhood 74 

and appears with the notable incidence of 1% - 2%, according to different studies conducted in 75 

Asia, Europe and North America (14-16). ASD incidence is sex-dependent: it is about 4.5 times 76 

more frequent in males and is found in all races, ethnicities or socio-economic groups (17). As a 77 
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clinical and biological phenomenon, ASD comprises a wide range of complex and multifaceted 78 

neurological disorders and is believed to be multifactorial (18). Identification of gastro-intestinal 79 

abnormalities related to these factors is a complex task, they may vary in autistic patients, 80 

impeding the development of universal diagnostic methods and treatment regimens. From 9% to 81 

91% of patients with ASD may present different gastrointestinal problems correlating with ASD 82 

severity (19). Dyspepsia is dominated by constipation and diarrhea often accompanied by 83 

abdominal pain, vomiting and gastroesophageal reflux (20). 84 

Furthermore, about 90% of autistic children display aberrant feeding behavior (21). They 85 

are picky eaters whose diet is usually limited to a very narrow range of foods depending on their 86 

type, texture or appearance and prefer starchy and fatty foods, simple carbs, snacks, and 87 

processed foods over fruits, vegetables and proteins (meat, fish or eggs) (1). Children with ASD 88 

display also extreme nutrient sensitivity; their behavior is directly dependent on the eaten food. 89 

This connection may not be so obvious in healthy children, but autistic children are apparently 90 

more susceptible to the impact of microbial and bodily metabolites. Non-allergic intolerance of 91 

gluten/gliadin manifests itself as hyperactivity, agitation, aggression, auto-aggression, lethargy, 92 

sleepiness and dyspepsia. Hydrolyzed into polypeptides (casomorphins) with an opioid-like 93 

effect on the nervous system, cow’s milk induces similar behaviors. Sometimes, excluding 94 

gluten- or casein-containing foods from a child’s diet can help improve or control the 95 

aforementioned symptoms (22, 23). In spite of breastfeeding difficulties and the lack of nutrients 96 

early in life, 10% - 58% of autistic children grow to become overweight or obese (24). As a rule, 97 

food selectivity has long-term negative effects on health including cardiovascular and bone 98 

density problems (25, 26). Therefore, causes of food selectivity should be identified in order to 99 

correct aberrant eating habits in autistic children.  100 

Nutritional factors may contribute to the development of ASD via low provision of 101 

polyunsaturated fatty acids (PUFA) (27). Indeed, children with ASD display lower serum levels 102 

of omega-3 PUFA: docosahexaenoic acid (DHA) and of omega-6 PUFA, arachidonic acid, both 103 

the main constituents of nerve cells as well as of essential omega-6 PUFA linoleic acid (28). This 104 

suggests insufficient intake of fish, meat and nuts respectively. Indeed, some studies revealed 105 

low intake of foods containing PUFAs (29). Supplementation of autistic children with omega-3 106 

PUFA was, therefore, recommended (30). Arabinitol is a sugar alcohol derived from arabinose in 107 

a process catalyzed by gut microorganisms such as fungus Candida albicans. Increased levels of 108 

arabinitol was found in ASD and it was reduced after a probiotic treatment (31). 109 

Symptoms of dyspepsia and aberrant feeding behavior may be related to the altered 110 

digestive and metabolic functions of gut microbiota (32). One of the major functions of a healthy 111 
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microbiome is breakdown of complex plant-derived polysaccharides and other ‘non-digestible’ 112 

bioactive substances. Refusal to eat certain foods to avoid postingestive pain can be the only sign 113 

of dyspepsia in patients who lack social skills to communicate their problems. The deficiency of 114 

microbial digestive capacity in children with ASD may lead to abdominal pain or discomfort as 115 

well as inflammatory processes, oxidative stress, altered gut barrier, bloating, or flatulence (33). 116 

 117 

2. Feeding behavior and neuropeptides in the gut-brain axis and ASD 118 

 119 

Gut bacteria are involved in appetite regulation via bacteria-derived molecules produced during 120 

different bacterial growth phases which interact with the host molecular pathways of hunger and 121 

satiety, acting locally in the gut at short-term but also influencing the brain at long-term appetite 122 

control (34). It is, hence, conceivable that specific microbiota-derived molecules interfering with 123 

the host hunger and satiety peripheral and central pathways may also participate in mechanisms 124 

of altered feeding behavior in ASD. Such possibility is in line with a theory of the role of opioid-125 

like food-derived peptides in ASD (35, 36). This theory was formulated by Sahley and Panksepp 126 

who proposed that the increased levels of endogenous opioid peptides may alter social behavior 127 

and can produce autistic-like symptoms (37). Beta (β)-endorphin is one of the opioid peptides 128 

affecting social behavior (38). It is of interest that β-endorphin is a product of cleavage of its 129 

prepropeptide precursor proopiomelanocortin (POMC) which gives rise to other bioactive 130 

peptides including alpha (α)-melanocyte-stimulating hormone (α-MSH), one of the main 131 

anorexigenic neuropeptides in the brain acting on melanocortin receptors (MC) type 4 (39). 132 

Furthermore, neurons producing brain-derived neurotrophic factor (BDNF) appear as MC4R-133 

mediated downstream targets of α-MSH in producing anorexigenic effects (40). In turn, altered 134 

BDNF signaling in the brain has been implicated in ASD pathophysiology (41). Beside the 135 

central nervous system, melanocortin receptors are also present in the gut and may contribute to 136 

the signaling of intestinal satiety (42).  137 

Whether abnormal stimulation of POMC neurons in the brain may exist in ASD is 138 

unknown but it is conceivable that such stimulation may increase simultaneous or independent β-139 

endorphin and α-MSH production leading to altered social behavior and reduced feeding, 140 

respectively. Indeed, α-MSH independent release of β-endorphin by POMC neurons has been 141 

reported in response to endocannabinoids, which inhibit POMC neurons at low and excite at 142 

higher doses (43, 44). A bimodal effect of endocannabinoids relevant to feeding behavior was 143 

also observed in other brain areas including the ventral striatum, the brain area regulating feeding 144 
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reward (43, 44). It is interesting that in contrast to α-MSH, β-endorphin stimulates feeding 145 

behavior via mu-opioid receptors contributing to a non-homeostatic regulation of appetite (43). 146 

In fact, β-endorphin and other opioid peptides are known as key signals in the reward system of 147 

motivated behavior including feeding (45). Whether gut bacteria may produce opioid-like 148 

peptides or influence their production from nutrients is not yet know but they regulate host 149 

production of endocannabinoids (46). For instance, oral administration of specific Lactobacillus 150 

strains induced the expression of mu-opioid and cannabinoid receptors in intestinal epithelial 151 

cells (47). A therapeutic utility of enhancing endocannabinoid system in ASD has been recently 152 

reviewed (48). 153 

 The principal source of POMC neurons in the brain is the hypothalamic arcuate nucleus, 154 

located in the vicinity of a circumventricular organ accessible to systemically circulating 155 

signaling molecules. Several peptide hormones from the gut and other organs and tissues are 156 

known to activate arcuate POMC neurons. Leptin, a hormone regulating long-term energy 157 

balance produced mainly in the adipose tissue, but also in the stomach, can directly activate 158 

POMC neurons (49, 50). Plasma levels of leptin were reported to be elevated in autism (51, 52) 159 

and can be further increased together with body mass index (BMI) after chronic ASD treatment 160 

by Risperidone (53). Leptin is also able to activate POMC neurons indirectly by diminishing an 161 

inhibitory gamma (g)-aminobutyric acid (GABA) tone from neighboring neuropeptide Y (NPY) 162 

neurons of the arcuate nucleus (54). NPY neurons are involved in the orexigenic brain circuitry 163 

and are activated by ghrelin, peptide hormone produced in the stomach and stimulated by 164 

negative energy balance, (55). It is remarkable that plasma ghrelin levels are decreased in ASD 165 

children (51). The possible role of gut microbiota in producing such changes can be suspected 166 

because increased plasma levels of leptin and decreased ghrelin are typically found in obesity 167 

which, in turn, is characterized by modification of bacterial composition for instance increased 168 

ratios of Firmicutes to Bacteroidetes (56). ASD children may also display such ratios (57-59), 169 

however, this finding is not consistently reproduced neither in obese nor autistic subjects (60, 170 

61). These data point to existence of obesity-independent mechanistic links between gut 171 

microbiota and energy balance-related hormones such as leptin and ghrelin. 172 

POMC neurons can also be activated by caseinolytic protease B analogue (ClpB) a 96 KDa 173 

bacterial protein produced be Enterobacteriaceae (62). Such ability of ClpB is probably due to 174 

its molecular mimicry with α-MSH (63). In fact, a ClpB fragment containing α-MSH-epitope 175 

was able to activate MC1 receptor (64). Increased presence of Enterobacteriaceae was found in 176 

gut microbiota of patients with anorexia nervosa (65) and it was also reported for ASD (66). The 177 
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role of ClpB in activation of POMC neurons needs, however, further studies including 178 

identification of the cellular receptor pathway and possible distinct effects on α-MSH and β-179 

endorphin release. 180 

Among the principal downstream target of the arcuate NPY neurons involved in 181 

stimulation of appetite is the paraventricular hypothalamic nucleus (PVN) where NPY can 182 

inhibit oxytocin-producing neurons (67). Oxytocin is involved in a variety of physiological 183 

functions including a major role in promotion of social behavior (68). Such role of oxytocin 184 

places it as a possible target in ASD. Indeed, plasma oxytocin levels are decreased in ASD (69) 185 

and ASD patients receiving oxytocin intranasally show improvement of social communications 186 

(70). In experimental settings, oxytocin treatment prevents social and learning deficit in mice 187 

deficient for the Magel2 gene, involved in ASD (71). Mutation of another gene, encoding 188 

contactin-associated protein-like 2 (Cntnap2) results in lower number of oxytocin neurons in the 189 

hypothalamic PVN and altered social behavior which can be improved by administration of 190 

oxytocin or MC4 receptor agonist which stimulates endogenous oxytocin release (72). Moreover, 191 

contactin-deficient mice are anorectic and show abnormal expression of neuropeptides in the 192 

arcuate nucleus (73). These examples illustrate intrinsic mechanistic link between the 193 

melanocortin- and oxytocin- signaling systems in the regulation of feeding and social behavior. 194 

Moreover, beside the homeostatic control of feeding, oxytocin enhances rewarding properties of 195 

social interactions in the nucleus accumbens interacting with the serotonin system (74) and 196 

increases endocannabinoids mobilization in this brain areas (75). With regard to the possible 197 

influence of gut microbiota, it was shown that supplementation of mice with Lactobacillus 198 

reuteri in drinking water increased plasma levels of oxytocin (76). The same group of Erdman 199 

more recently showed that a lysate of Lactobacillus reuteri was also able to increase plasma 200 

oxytocin as well as the number of oxytocin-immunopositive neurons in the caudal part of PVN 201 

in mice (77). These results suggests that Lactobacilli are able to produce signaling molecules 202 

upregulating oxytocin release. This was further corroborated in a study showing a decrease of 203 

Lactobacillus reuteri in gut microbiota composition of mice born from mothers fed high fat diet 204 

and displaying social deficit and low number of oxytocin neurons in the PVN (78). Importantly, 205 

reintroduction of Lactobacillus reuteri to these mice restored both social deficit and oxytocin 206 

neurons (78). However, the data on lactobacilli content in gut microbiota of ASD patients are 207 

inconsistent showing either decrease or increase (58, 59, 79). Thus, future studies should identify 208 

the bacterial molecules responsible of oxytocin release and determine whether their production is 209 

specific for certain Lactobacillus species. 210 
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The intestinal satiety hormones activate brain anorexigenic pathways directly via the 211 

circulation and circumventricular organs or via the vagus nerve. Cholecystokinin (CCK) is a 212 

classical satiety hormone, produced in the duodenum with a peak of secretion about 15 min after 213 

a meal (80). It is of interest that CCK administration stimulates oxytocin secretion into the 214 

systemic circulation by selective activation of hypothalamic PVN and supraoptic oxytocin 215 

neurons (81). The data on CCK levels in ASD are very limited, one study has reported no 216 

differences of CCK levels in blood mononuclear cells, while the ASD patients from the same 217 

study showed increased levels of β-endorphin (82). Absence of gut flora in mice results in lower 218 

production of CCK and increased levels of secretin, but more detailed data linking these 219 

hormones with gut microbiota are missing (83). Secretin is another satietogenic peptide hormone 220 

produced in the small intestine which reduces food intake via activation of the melanocortin 221 

system (84). Secretin also activates oxytocin neurons in the PVN, although in a less extent than 222 

CCK (85). Of interest, secretin but not CCK administration was tested in ASD patients, although 223 

without significant improvement (84, 86). Thus, the relevance of a link between CCK and 224 

oxytocin to ASD pathophysiology and treatment opportunities needs further studies, including a 225 

possible involvement of gut microbiota. 226 

Glucagon-like peptide 1 (GLP-1) and peptide YY (PYY) are satiety hormones produced by 227 

the enteroendocrine L-cells located primarily in the large intestine. Although produced by the 228 

same cells, these hormones have distinct meal-triggered dynamics of secretion with GLP-1 229 

showing a peak at 15 min similar to CCK, while increased levels of PYY are observed after 20 230 

min and are maintained for 2-3 h (80). To cause satiety, both hormones act locally in the gut to 231 

activate their receptors in the vagal afferents as well as in the brain where GLP-1 activates 232 

arcuate POMC neurons and PYY inhibits NPY neurons. The latter is possible due to PYY 233 

binding to Y2 receptor after PYY degradation in plasma to PYY 3-36 by the dipeptidyl peptidase 234 

(87). Although there are no data implicating directly PYY and GLP-1 in autism, the GLP-1 role 235 

of an incretin i.e., a hormone increasing insulin secretion, suggests its possible relevance to 236 

diabetes which more frequently occurs in autistic patients (88, 89). Moreover, considering that 237 

PYY and NPY may inhibit the same neurons via binding to Y2R, and that NPY is co-released 238 

with GABA from arcuate NPY neurons, peripheral PYY may contribute to the insufficient 239 

GABA inhibition of brain targets relevant to impaired cognitive functions in ASD (90). The 240 

inductive effects of gut microbiota in GLP-1 and PYY secretion is certain, in particular, it has 241 

been shown that short chain fatty acids such as butyrate, produced during fermentation of non-242 

digestible fibers activate GLP-1 and PYY secretion (91). Thus, nutritional deficit in foods rich in 243 

fibers in ASD patients may contribute to insufficient production of GLP-1 and PYY and alter 244 
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their normal role as intestinal satiety hormones. Specific Lactobacillus and Bifidobacterium 245 

species with high GABA production may also contribute to the microbiota-brain axis signaling 246 

which can be altered in ASD (92). 247 

 248 

3. Conclusion  249 

Taken together, abnormal feeding behavior in ASD may involve uncoordinated secretion of 250 

gastro-intestinal hormones which are not able to timely activate brain anorexigenic and reward 251 

pathways to couple them with oxytocin secretion and, therefore, reinforce the social aspect of 252 

eating (Figure 1). Because gut microbiota participates in coordination of nutrient-induced 253 

activation of intestinal satiety, its implication in ASD is highly suspected. Future identification of 254 

gut bacteria-derived molecules which will be able to interfere with the brain oxytocin system 255 

directly or indirectly via the gastro-intestinal hormones may provide a new scientific background 256 

for ASD therapy. 257 

 258 

259 
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 269 

 270 

 271 

Figure legend 272 

 273 

Figure 1. Schematic positioning of neuropeptides and peptide hormones in the microbiota-brain 274 

axis involved in the regulation of feeding and social behaviors. It is notable that the several 275 

peripheral signals and neuronal circuitries are interconnected for the coordinated control of both 276 

feeding and social behaviors. Nutritional, genetic and environmental impact on gut microbiota 277 

composition can be causative factors of dysbiosis present in ASD leading to the altered signaling 278 

in the microbiota-brain axis and deficient social and feeding behaviors. The exact nature of such 279 

signals involved in the ASD remains to be established. 280 

281 
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