
HAL Id: hal-02332468
https://normandie-univ.hal.science/hal-02332468v1

Submitted on 13 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Importance Sampling and Statistical Romberg Method
for Lévy Processes

M. Ben Alaya, K. Hajji, A. Kebaier

To cite this version:
M. Ben Alaya, K. Hajji, A. Kebaier. Importance Sampling and Statistical Romberg Method
for Lévy Processes. Stochastic Processes and their Applications, 2016, 126 (7), pp.1901-1931.
�10.1016/j.spa.2015.12.008�. �hal-02332468�

https://normandie-univ.hal.science/hal-02332468v1
https://hal.archives-ouvertes.fr


ar
X

iv
:1

40
8.

08
98

v1
  [

m
at

h.
PR

] 
 5

 A
ug

 2
01

4

Importance Sampling and Statistical

Romberg Method for Lévy Processes
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Abstract

An important family of stochastic processes arising in many areas of applied probabil-
ity is the class of Lévy processes. Generally, such processes are not simulatable especially
for those with infinite activity. In practice, it is common to approximate them by trun-
cating the jumps at some cut-off size ε (ε ց 0). This procedure leads us to consider a
simulatable compound Poisson process. This paper first introduces, for this setting, the
statistical Romberg method to improve the complexity of the classical Monte Carlo one.
Roughly speaking, we use many sample paths with a coarse cut-off εβ , β ∈ (0, 1), and
few additional sample paths with a fine cut-off ε. Central limit theorems of Lindeberg-
Feller type for both Monte Carlo and statistical Romberg method for the inferred errors
depending on the parameter ε are proved. This leads to an accurate description of the op-
timal choice of parameters with explicit limit variances. Afterwards, the authors propose a
stochastic approximation method of finding the optimal measure change by Esscher trans-
form for Lévy processes with Monte Carlo and statistical Romberg importance sampling
variance reduction. Furthermore, we develop new adaptive Monte Carlo and statistical
Romberg algorithms and prove the associated central limit theorems. Finally, numerical
simulations are processed to illustrate the efficiency of the adaptive statistical Romberg
method that reduces at the same time the variance and the computational effort asso-
ciated to the effective computation of option prices when the underlying asset process
follows an exponential pure jump CGMY model.
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1 Introduction

Lévy processes arise in many areas of applied probability and specially in mathematical finance,
where they become very fashionable since they can describe the observed reality of financial
markets in a more accurate way than models based on Brownian motion (see e.g. Cont and
Tankov [8] and Shoutens [27]). In particular in the pricing of financial securities we are inter-
ested in the computation of the real quantity EF (LT ), T > 0, where (Lt)0≤t≤T is a R

d-valued
pure jump Lévy process, d ≥ 1 and F : Rd 7→ R is a given function. In the literature, the
computation of this quantity involves three types of methods: Fourier transform methods, nu-
merical methods for partial integral differential equations and Monte Carlo methods. It is well
known that the two first methods can not cope with high dimensional problems. This gives a
competitive edge for Monte Carlo methods in this setting. Therefore, the focus of this work
is to study improved Monte Carlo methods using the statistical Romberg algorithm and the
importance sampling technique. The statistical Romberg method is known for reducing the
time complexity and the importance sampling technique is aimed at reducing the variance.

The Monte Carlo method consists of two steps. In the first step, we approximate the Lévy
process (Lt)0≤t≤T by a simulatable Lévy process (Lε

t )0≤t≤T with ε > 0. If ν denotes the Lévy
measure of the Lévy process under consideration, then it is common to take (Lε

t )0≤t≤T with
Lévy measure ν|{|x|≥ε} and ε ց 0. This approximation is nothing but a compound Poisson

process. In the second step, we approximate EF (Lε
T ) by

1
N

∑N
i=1 F (L

ε
T,i), where (Lε

T,i)1≤i≤N is
a sample of N independent copies of Lε

T . Therefore, this Monte Carlo method (MC) is affected
respectively by an approximation error and a statistical one

E1(ε) := E (F (Lε
T )− F (LT )) and E2(N) :=

1

N

N
∑

i=1

F (Lε
T,i)− EF (Lε

T ).

On one hand, for a Lipschitz function F we have E1(ε) = O(σ(ε)), where σ2(ε) = E|L1 − Lε
1|2

(see relation (6) for more details). On the other hand, the statistical error is controlled by the
central limit theorem with order 1/

√
N . Hence, optimizing the choice of the sample size N in

the Monte Carlo method leads to N = O(σ−2(ε)). Moreover, if we choose N = σ−2(ε) we prove
a central limit theorem of Lindeberg-Feller type (see Theorem 3.1). Therefore, if we denote by
K(ε) the cost of a single simulation of Lε

T , then the total time complexity necessary to achieve
the precision σ(ε) is given by CMC = O(K(ε)σ−2(ε)) (see subsection 3.3).

In order to improve the performance of this method we use the idea of the statistical
Romberg method introduced by Kebaier [18] in the setting of Euler Monte Carlo methods for
stochastic differential equations driven by a standard Brownian Motion which is also related
to the well known Romberg’s method introduced by Talay and Tubaro in [28]. Inspired by
this technique, we introduce a novel method for the computation of our initial target. The
main idea of this new method is to consider two cut-off sizes ε and εβ, β ∈ (0, 1) and then
approximate EF (LT ) by

1

N1

N1
∑

i=1

F (L̂εβ

T,i) +
1

N2

N2
∑

i=1

F (Lε
T,i)− F (Lεβ

T,i).
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The samples (Lε
T,i)1≤i≤N2

and (Lεβ

T,i)1≤i≤N2
have to be independent of (L̂ε

T,i)1≤i≤N1
. Moreover,

for 1 ≤ i ≤ N2, the process (L
ε
t,i)0≤t≤T is nothing else the sum of (Lεβ

t,i)0≤t≤T and an independent

Lévy process (Lε,εβ

t,i )0≤t≤T with Lévy measure ν|{ε≤|x|≤εβ} which is also simulatable as a compound
Poisson process. This new method will be referred as the statistical Romberg method (SR).
Additionally, like for the MC method, we prove a central limit theorem of Lindeberg-Feller
type for the SR algorithm with N1 = σ−2(ε) and N2 = σ−2(ε)σ2(εβ) (see Theorem 3.2). Then,
according to subsection 3.3, the total time complexity necessary to achieve the precision σ(ε) is
given by CSR =

(

K(εβ) +K(ε)σ2(εβ)
)

σ−2(ε). It turns out that the complexity ratio CSR/CMC

vanishes as ε goes to zero.
Since the efficiency of the Monte Carlo simulation considerably depends on the smallness of

the variance in the estimation, many variance reduction techniques were developed in the recent
years. Among these methods appears the technique of importance sampling very popular for its
efficiency. For the Gaussian setting, the importance sampling technique was studied by Arouna
[1], Galasserman, Heidelberger and Shahabuddin [15] for MC method and by Ben Alaya, Hajji
and Kebaier [3] for SR method. Concerning Lévy process without a Brownian component,
Kawai [17] has already applied this technique for MC algorithm using the Esscher transform
which is nothing but the well known exponential tilting of laws. From a practical point of view,
his approach is exploitable only when the Lévy process (Lt)0≤t≤T is simulatable without any
approximation. Note also that in his study there is no results on the rate of convergence of the
obtained algorithm.

The main aim of the present work is to apply the idea of [17] to the approximation Lévy
process (Lε

t )0≤t≤T for both MC and SR algorithms and to study the inferred error in terms of
the cut-off ε; a question which has not been addressed in previous research. Roughly speaking,
thanks to the Esscher transform we produce a parametric transformation such that for all
θ ∈ K we have EF (Lε

T ) = EG(θ, Lε
T ), where K is a suitable subset of Rd and (θ, x) 7→ G(θ, x)

is a real function taking values in R
d × R

d. Concerning the MC method it looks natural
to implement the method with θ∗1,ε = argminθ∈K EG2(θ, Lε

T ). However, for the SR method
the inferred error is controlled by Var(G(θ, Lε

T )) + TE(|∇xG(θ, L
ε
T )|2). Then, in this case,

it is natural to implement the first (resp. the second) empirical mean appearing in the SR
estimator with θ∗1,ε (resp. θ∗2,ε = argminθ∈K E(|∇xG(θ, L

ε
T )|2). But what about the effective

computation of (θ∗i,ε)i∈{1,2} ? To answer this question, we use a constrained version of the well-
known stochastic approximation Robbins-Monro. All these ideas led us to introduce two new
methods based on adaptive approximations. The first method concerns a combination of an
adaptive importance sampling technique and the MC method that will be called Importance
Sampling Monte Carlo method (ISMC) (see relation (22)). The second one concerns an original
combination of an adaptive importance sampling technique with the SR algorithm that will
be referred as Importance Sampling Statistical Romberg method (ISSR) (see relation (26)).
The main point in favor of the ISSR method is that it inherits the variance reduction from
the Importance sampling procedure and the complexity reduction from the SR method. A
complexity analysis is also provided.

The rest of the paper is organized as follows. Section 2 introduces the general framework and
recalls some useful results. In section 3, the central limit theorems of Lindeberg-Feller type are
proved for both MC and SR methods (see Theorems 3.1 and 3.2). Similar results are derived for
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the setting of an exponential Lévy model (see Corollaries 3.1 and 3.2). A complexity analysis
is included. In section 4, we recall the Esscher transform and the principle of importance
sampling technique for the SR method. For i ∈ {1, 2} and ε ց 0, we prove the convergence
of the optimal choice θ∗i,ε to the optimal choice associated to the limit model (see Theorem
4.1). In section 5, we first study, for i ∈ {1, 2}, the almost sure convergence of the stochastic
recursive constrained Robbins-Monro algorithm given by the double indexed sequence θi,ε,n as
ε ց 0 and n ր ∞ (see Theorems 5.1 and 5.2 and Corollary 5.1). The rest of this section is
devoted to prove the central limit theorems of Lindeberg-Feller type for both adaptive ISMC
and ISSR methods (see Theorems 5.3 and 5.4). Section 6 illustrates the superiority of the ISSR
method over all the other ones via numerical examples for both one and two-dimensional Carr,
Geman, Madan and Yor (CGMY) process [6]. Finally, the last Section is devoted to discuss
some future openings.

2 General Framework

We denote by (Ω,F ,P) our underlying probability space. A stochastic process (Lt)t≥0 on
(Ω,F ,P) with values in R

d such that L0 = 0 is a Lévy process if it has independent and
stationary increments. We endow the probability space (Ω,F ,P) with the canonical filtration
(Ft)0≤t≤T where Ft = σ(Ls, s ≤ t). The characteristic function of a Lévy process L with
generating triplet (γ, A, ν) is given by the well known Lévy Kintchine representation

Eeiu.Lt = exp

{

t

(

iγ.u− 1

2
u.Au+

∫

Rd

(eiu.x − 1− iu.x1|x|≤1)ν(dx)

)}

, u ∈ R
d,

where γ ∈ R
d, A is a symmetric non-negative-definite d× d matrix and ν is a Lévy measure on

R
d \ {0} verifying

∫

Rd\{0}
(|x|2 ∧ 1)ν(dx) < ∞. (Given vectors x and y ∈ R

d, x.y denotes the

inner product of x and y associated to the Euclidean norm | · |). In this paper, we are interested
in studying pure-jump Lévy processes, that is, we set A ≡ 0 throughout all the paper.Then,
(Lt)t≥0 is a Lévy process with generating triplet (γ, 0, ν). The simulation of a Lévy process
with infinite Lévy measure is not straightforward. From the Lévy-Itô decomposition (see e.g.
Theorem 19.2 in Sato [26]), we know that L can be represented as a sum of a compound Poisson
process and an almost sure limit of compensated compound Poisson process Lt = limε→0 L

ε
t

a.s. where for 0 < ε < 1

Lε
t = γt+

∑

0<s≤t

∆Ls1|∆Ls|>1 + (
∑

0<s≤t

∆Ls1ε≤|∆Ls|≤1 − t

∫

ε≤|x|≤1

xν(dx)), t ≥ 0. (1)

Note that without the compensation t
∫

ε≤|x|≤1
xν(dx), the sum of jumps

∑

0<s≤t∆Ls1ε≤|∆Ls|≤1

may not converge as ε goes to zero. We denote the approximation error by

Rε = L− Lε. (2)

The process Rε is also a Lévy process independent of Lε with characteristic function

Eeiu.R
ε
t = exp

{

t

∫

|x|≤ε

(eiu.x − 1− iu.x)ν(dx)

}

.
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Consequently, E[Rε
t ] = 0 and the variance-covariance matrix E[Rε

t (R
ε
t )

′] = tΣε where

Σε =

∫

|x|≤ε

xx′ν(dx).

(A′ denotes the transpose of a matrix A). The asymptotic behavior of the distribution of Rε

is firstly studied by Asmussen and Rosiński [2] in the one dimensional case and later extended
to the multidimensional case by Cohen and Rosiński [7]. Throughout this paper W = (Wt)t≥0

is a standard Brownian motion in R
d independent of (Lt)t≥0.

Theorem 2.1. Under the above notation, suppose that Σε is invertible for every ε ∈ (0, 1].
Then as ε → 0,

Σ−1/2
ε Rε⇒W,

if and only if for each k > 0

lim
ε→0

∫

〈Σ−1
ε x,x〉>k

〈Σ−1
ε x, x〉1|x|≤εν(dx) = 0. (3)

Here “⇒“ stands for the convergence in distribution.

If ν is given in polar coordinates by ν(dr, du) = µ(dr|u)λ(du), r > 0, u ∈ Sd−1, where
{µ(·|u) : u ∈ Sd−1} is a measurable family of Lévy measures on (0,∞) and λ is a finite measure
on the unit sphere Sd−1, then

Σε =

∫

Sd−1

∫ ε

0

r2uu′µ(dr|u)λ(du).

If we define σ2(ε, u) :=
∫ ε

0
r2µ(dr|u) and σ2(ε) :=

∫

Sd−1 σ
2(ε, u)λ(du), then

E|Lt − Lε
t |2 = tTr(Σε) = tσ2(ε). (4)

Remark 1. In the one dimensional case Assmussen and Rosiński [2] have obtained the conver-
gence of σ−1(ε)Rε to a standard Brownian motion if and only if for each k > 0, σ(kσ(ε)∧ ε) ∼
σ(ε) which is satisfied as soon as lim

ε→0

σ(ε)
ε

= ∞ (see Theorem 2.1 and Proposition 2.1 in [2]).

An extension to this sufficient condition in the multidimensional case is given by Theorem 2.5
in Cohen and Rosiński [7]. Suppose that the support of the measure λ is not contained in any
proper linear subspace of Rd, they proved that if

lim
ε→0

σ(ε, u)

ε
= ∞, λ− a.e. (5)

then Σε is invertible and condition (3) of Theorem 2.1 holds.

On the other hand, according to Proposition 2.1 of Dia [9], we have a Lq-upper bound of the
error approximation in the one dimensional case for any real q > 0. This result on the strong
error approximation remains valid for the multidimensional case. More precisely, if we consider
the d-dimensional error Lévy process Rε given by relation (2), then we can easily deduce that

E|Rε
t |q ≤ Kq,Tσ0(ε)

q, where Kq,T > 0 and σ0(ε) = σ(ε) ∨ ε. (SE)
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Concerning the weak error, if F denotes a real valued Lipschitz continuous function with Lip-
schitz constant C > 0, then it is easy to see that

|EF (LT )− EF (Lε
T )| ≤ C

√
Tσ(ε) (6)

Moreover, under some regularity conditions on function F we can obtain an expansion of the
weak error as in Proposition 2.2 and Remark 2.3 of [9]. So, it is worth to introduce the following
assumption: there exist CF ∈ R and υε ց 0 as εց 0 such that

υ−1
ε (EF (LT )− EF (Lε

T )) → CF as εց 0. (WEυε)

We recall, in what follows, an important moment property of Lévy processes. For this, we
introduce before the below definition.

Definition 2.1. A function f : R
d 7→ [0,∞) is said to be submultiplicative if there exists

a positive constant c such that f(x + y) ≤ cf(x)f(y) for x, y ∈ R
d. The product of two

submultiplicative functions is also submultiplicative.

Theorem 2.2 (Sato [26], Theorem 25.3). Let f be a submultiplicative, locally bounded, mea-
surable function on R

d, and let (Lt)t≥0 be a Lévy process in R
d with Lévy measure ν. Then,

Ef(Lt) is finite for every t > 0 if and only if
∫

|z|≥1
f(z)ν(dz) < +∞.

3 Statistical Romberg method and Lévy process

In this section, we establish two central limit theorems of Lindeberg-Feller type, for the inferred
errors associated to MC and SR algorithms, in terms of the cut-off ε. Similar results are derived
for the setting of an exponential Lévy model. We also provide a complexity analysis for both
algorithms.

3.1 Central limit theorem for the MC method

Theorem 3.1. Let F : Rd → R be a continuous function satisfying assumption (WEυε). If
sup0<ε≤1E [F 2a(Lε

T )] < +∞ for a > 1, then for N = υ−2
ε we have

υ−1
ε

(

1

N

N
∑

i=1

F (Lε
T,i)− EF (LT )

)

L−→ N (CF ,Var(F (LT ))) as εց 0. (7)

Proof. At first, we write the total error as follows

1

N

N
∑

i=1

F (Lε
T,i)− EF (LT ) =

1

N

N
∑

i=1

F (Lε
T,i)− EF (Lε

T ) + (EF (Lε
T )− EF (LT )) .

Assumption (WEυε) ensures that limε→0 υ
−1
ε E (F (Lε

T )− F (LT )) = CF . Concerning the first
term on the right hand side of the above relation, as N depends on ε we plan to apply the
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Lindeberg-Feller central limit theorem (see Theorem 8.1). In order to do that, we set Xi,ε :=
υ−1
ε

N

(

F (Lε
T,i)− EF (Lε

T )
)

and we check assumptions A1 and A3 of Theorem 8.1. Thus, the
proof is divided into two steps.
Step 1. For assumption A1 , it is straightforward that

∑N
i=1 E(X

2
i,ε) = Var(F (Lε

T )). Then, by
the almost sure convergence of Lε

T toward LT , the continuity of function F and the uniform
integrability condition given by sup0<ε≤1 E [F 2a(Lε

T )] < +∞, we obtain

lim
ε→0

N
∑

i=1

E(X2
i,ε) = lim

ε→0
Var(F (Lε

T )) = Var(F (LT )). (8)

Step 2. Concerning the Lyapunov condition A3 , for 1 < ã < a, we have

N
∑

i=1

E
[

|Xi,ε|2ã
]

= υ2(ã−1)
ε E |F (Lε

T )− EF (Lε
T )|2ã .

Once again by the same arguments used in the previous step we prove the convergence of
E |F (Lε

T )− EF (Lε
T )|2ã toward E |F (LT )− EF (LT )|2ã as ε tends to zero. Since υ

2(ã−1)
ε −→

ε→0
0,

we obtain

lim
ε→0

N
∑

i=1

E
[

|Xi,ε|2ã
]

= 0. (9)

By (8) and (9), we obtain thanks to Theorem 8.1 the desired convergence in law.

In the corollary below, we will treat the special case where F (x) = f(ex1 , · · · , exd) for all
x = (x1, · · · , xd) ∈ R

d and f : Rd
+ → R is a Lipschitz continuous function. In finance this

model is well known as an exponential Lévy model.

Corollary 3.1. Assume that
∫

|z|>1
e2a|z|ν(dz) is finite for a > 1. Then, in the setting of an

exponential Lévy model there is C > 0 such that |EF (LT )− EF (Lε
T )| ≤ Cσ(ε). Moreover, if

we choose N = σ−2+η(ε), with 0 < η < 2, then

σ−1+η/2(ε)

(

1

N

N
∑

i=1

F (Lε
T,i)− EF (LT )

)

L−→ N (0,Var(F (LT ))) as εց 0. (10)

Proof. We denote by ex the exponential function element-wise of the vector x = (x1, · · · , xd) ∈
R

d, ex = (ex1 , · · · , exd). Let Cf denote the Lipschitz constant of function f , since L1
T and

(LT − L1
T , L

ε
T − L1

T ) are independent we obtain by standard calculations

|EF (LT )− EF (Lε
T )| ≤ CfEe

|L1
T |E |LT − Lε

T | (e|LT−L1
T | + e|Lε

T−L1
T |)

≤ Cfσ(ε)Ee
|L1

T |
(

∥

∥e|LT−L1
T
|
∥

∥

2
+
∥

∥e|L
ε
T
−L1

T
|
∥

∥

2

)

.

Now, on the one hand thanks to Theorem 2.2, the assumption
∫

|z|>1
e2a|z|ν(dz) < +∞ ensures

the finiteness of Ee|L1
T |. On the other hand by virtue of Lemmas 25.6 and 25.7 in Sato [26]

we have the boundedness of
∥

∥e|LT−L1
T
|
∥

∥

2
. Concerning the term

∥

∥e|L
ε
T
−L1

T
|
∥

∥

2
, we have e|x| ≤

7



∏d
j=1(e

xj +e−xj ), this last upper bound can be written as a sum of finite number of exponential
functions evaluated at points which are a linear combination of the components of the vector
x. Therefore there exists a family of Rd-valued vectors, (bj)1≤j≤2d such that

∥

∥e|L
ε
T
−L1

T
|
∥

∥

2

2
≤

2d
∑

j=1

exp

{

T

∫

ε≤|x|≤1

(ebj .x − 1− bj .x)ν(dx)

}

.

Note that the finiteness of the above upper bound is once again ensured by Lemmas 25.6 and
25.7 in Sato [26]. Since its limit exists we deduce that sup0<ε≤1

∥

∥e|L
ε
T
−L1

T
|
∥

∥

2
is finite. Now,

thanks to the linear growth of f and using the same arguments as above we check in the same
manner the property sup0<ε≤1 E [F 2a(Lε

T )] < +∞. Hence, if we choose υε = σ1−η/2(ε) then
Theorem 3.1 applies and this completes the proof.

3.2 Central limit theorem for the SR method

We use the SR method to approximate E[F (LT )] by

Qε =
1

N1

N1
∑

i=1

F (Lεβ

T,i) +
1

N2

N2
∑

i=1

(

F (Lε
T,i)− F (Lεβ

T,i)
)

Theorem 3.2. Let F : Rd → R be a C
1 function satisfying assumption (WEυε) and such that

sup0<ε≤1EF
2a(Lε

T ) and sup0<ε≤1E |σ−1(ε)(F (Lε
T )− F (LT ))|2a are finite, for a > 1. Moreover,

assume that

H1 . Condition (3) in Theorem 2.1 holds and there exists a definite positive matrix Σ such that
lim
ε→0

σ−2(ε)Σε = Σ.

H2 . For 0 < β < 1, we have lim
ε→0

σ(ε)σ−1(εβ) = 0 and lim
ε→0

υεσ
−1(εβ) = 0.

If we choose N1 = υ−2
ε and N2 = υ−2

ε σ2(εβ), then

υ−1
ε (Qε − EF (LT ))

L−→ N
(

CF ,Var(F (LT )) + TE(∇F (LT ).Σ∇F (LT ))
)

, as ε ց 0.

Proof. At first we write the total error as Qε − EF (LT ) = Q1
ε +Q2

ε + EF (LT )− EF (Lε
T ), with

Q1
ε =

1

N1

N1
∑

i=1

F (Lεβ

T,i)− EF (Lεβ

T ) and Q2
ε =

1

N2

N2
∑

i=1

F (Lε
T,i)− F (Lεβ

T,i)− E

[

F (Lε
T )− F (Lεβ

T )
]

.

So, assumption (WEυε) yields the convergence of υ
−1
ε (EF (LT )− EF (Lε

T )) toward CF as ε goes
to zero and following step by step the proof of Theorem 3.1 the convergence law of υ−1

ε Q1
ε to

the normal distribution N (0,Var(F (LT ))) is easily obtained. Concerning the term Q2
ε, we plan

to use Theorem 8.1 and we set Xi,ε := υ−1
ε

N2

(

F (Lε
T,i)− F (Lεβ

T,i)−
(

EF (Lε
T )− EF (Lεβ

T )
))

. In

the following two steps, we will check assumptions A1 and A3 of Theorem 8.1.

8



Step 1. It is straightforward that
∑N2

i=1 E(X
2
i,ε) = σ−2(εβ)Var(F (Lε

T )−F (Lεβ

T )). Now applying
Taylor-Young’s expansion to the real valued C1 function F we get

F (Lε
T )− F (Lεβ

T ) = ∇F (Lεβ

T ).(Lε
T − Lεβ

T ) + (Lε
T − Lεβ

T ).ǫ(Lε
T − Lεβ

T ),

where ǫ(Lε
T − Lεβ

T )
a.s.−→ 0 as ε → 0. Now, by applying twice Theorem 2.1 to Lε

T − LT and

LT − Lεβ

T and thanks to assumption H2 we obtain σ−1(εβ)
(

Lε
T − Lεβ

T

) L−→
ε→0

Σ1/2WT . Since L
εβ

T

is independent from Lε
T − Lεβ

T and ∇F (Lεβ

T )
a.s.−→
ε→0

∇F (LT ) , we obtain

σ−1(εβ)
(

F (Lε
T )− F (Lεβ

T )
)

L−→
ε→0

∇F (LT ).Σ
1/2WT (11)

For the second term, using the tightness of σ−1(εβ)
(

Lε
T − Lεβ

T

)

we deduce that σ−1(εβ)
(

Lε
T −

Lεβ

T

)

ǫ(Lε
T −Lεβ

T )
a.s.−→
ε→0

0. Thanks to the inequality |x+y|2a ≤ 22a−1(|x|2a+ |y|2a), for any x, y ∈ R,

sup0<ε≤1E |σ−1(ε)(F (Lε
T )− F (LT ))|2a < +∞ and lim

ε→0
σ(ε)σ−1(εβ) = 0 we deduce the uniform

integrability of σ−2(εβ)|F (Lε
T )− F (Lεβ

T )|2. Therefore, we obtain the first condition

lim
ε→0

N2
∑

i=1

E(Xi,ε)
2 = Var(∇F (LT ).Σ

1/2WT ) = TE(∇F (LT ).Σ∇F (LT )).

Step 2. For the Lyapunov condition, let 1 < a′ < a, we get by standard evaluations

N2
∑

i=1

E|Xi,ε|2a
′ ≤ 22a

′

υ2(a
′−1)

ε σ−2(a′−1)(εβ)E
∣

∣

∣
σ−1(εβ)(F (Lε

T )− F (Lεβ

T ))
∣

∣

∣

2a′

.

Once again we use the convergence in distribution given by relation (11) and the uniform inte-

grability property sup0<ε≤1E

∣

∣

∣
σ−1(εβ)(F (Lε

T )− F (Lεβ

T ))
∣

∣

∣

2a

< +∞ to deduce the convergence of

E

∣

∣

∣
σ−1(εβ)(F (Lε

T )− F (Lεβ

T ))
∣

∣

∣

2a′

toward E
∣

∣∇F (LT ).Σ
1/2WT

∣

∣

2a′
. Finally, since lim

ε→0
υεσ

−1(εβ) =

0, we conclude that lim
ε→0

∑N2

i=1 E|Xi,ε|2a′ = 0 with a′ > 1. This gives the asymptotic normality

of Q2
ε and completes the proof.

Now, we get back to the exponential Lévy model setting introduced before Corollary 3.1
where F (x) = f(ex1 , · · · , exd) for a given C

1 Lipschitz continuous function f . Our aim is to
deduce in this setting a central limit theorem for SR method.

Corollary 3.2. Assume that
∫

|z|>1
e2a|z|ν(dz) is finite for a > 1. In the setting of an exponential

Lévy model there is C > 0 such that |EF (LT )− EF (Lε
T )| ≤ Cσ(ε). Moreover, assume that for

0 < β < 1 there exists 0 < η < 2 such that lim
ε→0

σ1−η/2(ε)σ−1(εβ) = 0, σ(ε) > ε for all

0 < ε < 1 and condition H1 of Theorem 3.2 is satisfied. Then, if we choose N1 = σ−2+η(ε) and
N2 = σ−2+η(ε)σ−1(εβ) we obtain

σ−1+η/2 (Qε − EF (LT ))
L−→ N

(

0,Var(F (LT )) + TE(∇F (LT ).Σ∇F (LT ))
)

, as εց 0.
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Proof. According to Theorem 3.2 and Corollary 3.1 we only need to check that assumption
sup0<ε≤1E |σ−1(ε)(F (Lε

T )− F (LT ))|2a < ∞ is satisfied. Since f is Lipschitz it is sufficient to

find an upper bound for E
∣

∣eL
ε
T − eLT

∣

∣

2a
. To do so, we use the independence of L1

T and the
couple (LT − L1

T , L
ε
T − L1

T ) and Cauchy-Schwartz’s inequality to get

E
∣

∣eL
ε
T − eLT

∣

∣

2a ≤ Ee2a|L
1
T |
∥

∥|LT − Lε
T |2a

∥

∥

2

(

∥

∥e2a|LT−L1
T |
∥

∥

2
+
∥

∥e2a|L
ε
T−L1

T |
∥

∥

2

)

.

By the same arguments given in the proof of Corollary 3.1 we have the finiteness of Ee2a|L
1
T
|,

∥

∥e2a|LT−L1
T |
∥

∥

2
and sup0<ε≤1

∥

∥e2a|L
ε
T−L1

T |
∥

∥

2
. Combining all these results together with assumption

(SE) we deduce the existence of a constant C > 0 not depending on ε such that

E
∣

∣σ−1(ε)(F (Lε
T )− F (LT ))

∣

∣

2a ≤ Cσ−2a(ε)σ2a
0 (ε).

This completes the proof since σ0(ε) = σ(ε), for 0 < ε < 1.

3.3 Complexity Analysis

Thanks to the above limit results we are able now to provide a complexity analysis for both
MC and SR algorithm. To keep things simple, we consider the particular case d = 1, vε = σ(ε)
and we assume that the measure ν has a density of the form L(x)/|x|Y+1 for a small x, where
L(x) is a slowly varying as x → 0 and Y ∈ (0, 2). Observe that the positive (resp. negative )
part of the approximation (Lε

t )0≤t≤T is essentially a compound Poisson process with intensity
ν([ε,+∞)) (resp. ν((−∞,−ε])). Then, the cost necessary of a single simulation is random, with
expectation of order K(ε) = ν(|x| ≥ ε). Hence, according to Theorem 3.1 the time complexity
of the MC method necessary to achieve a total error of order σ(ε) is random with expectation
of order

CMC = K(ε)N = K(ε)σ−2(ε).

In the same way, thanks to Theorem 3.2 the time complexity of the SR method necessary to
achieve a total error of order σ(ε) is random with expectation of order

CSR = K(εβ)N1 +K(ε)N2 =
(

K(εβ) +K(ε)σ2(εβ)
)

σ−2(ε).

By Karamata’s theorem (see e.g. Bingham, Goldie and Teugels [5] or Feller [14] )

σ2(ε) =

∫ ε

−ε

|x|1−Y L(x)dx ∼ L(ε) + L(−ε)
2− Y

ε2−Y .

Similarly we have

K(ε) ∼ L(ε) + L(−ε)
Y

ε−Y .

Consequently, we compute the time complexity ratio given by

CSR

CMC

=
L(εβ) + L(−εβ)
L(ε) + L(−εβ) ε

Y (1−β) +
L(εβ) + L(−εβ)

2− Y
εβ(2−Y ).

10



If L(ε) is constant in the neighborhood of zero, like for the CGMY model (see relation (28)),
then we easily get

CSR

CMC
= O

(

εY (1−β) + εβ(2−Y )
)

.

Optimizing the order of this last quantity yields β = Y/2 which leads us to a gain of a complexity
of order εY (Y/2−1) that asymptotically increases as soon as ε becomes small.

4 Importance Sampling and Statistical Romberg method

Let {Lt; t ≥ 0} be a Lévy process in R
d under the probability P with generating triplet (γ, 0, ν).

We define the set

Θ1 :=
{

θ ∈ R
d : E[eθ.Lt ] < +∞

}

=
{

θ ∈ R
d :

∫

|x|>1

eθ.xν(dx) <∞
}

, (12)

where the second equality holds by Theorem 2.2. Thanks to the convexity of the exponential
function it is straightforward that the set Θ1 is convex. In view to use importance sampling
routine, based on exponential tilting, we define the family of {Pθ, θ ∈ Θ1}, as all the equivalent
probability measures with respect to P such that

dPθ

dP

∣

∣

Ft
=

eθ.Lt

E[eθ.Lt ]
= eθ.Lt−tκ(θ)

whee κ denotes the cumulant generating function given by κ(θ) = lnE
[

eθ.L1

]

. Under Pθ,
the stochastic process {Lt; t ≥ 0} is still a Lévy process with the exponential tilted triplet
(γθ, 0, νθ) where γθ = γ+

∫

|x|≤1
x(νθ − ν)(dx) and νθ(dx) = eθ.xν(dx) (see e.g. Cont and Tankov

[8]). Hence, we obtain E [F (LT )] = Eθ

[

F (LT )e
−θ.LT+Tκ(θ)

]

. If we introduce the Lévy process
{Lθ

t ; t ≥ 0} with generating triplet (γθ, 0, νθ) under P, then the random variable LT under Pθ

has the same law as Lθ
T under P and we get

E [F (LT )] = E

[

F (Lθ
T )e

−θ.Lθ
T
+Tκ(θ)

]

.

Further, one can use this importance sampling twice in the SR algorithm with considering θ1
and θ2 in R

d and approximate E[F (LT )] by

1

N1

N1
∑

k=1

F (Lεβ ,θ1
T,k )e−θ1.L

εβ,θ1
T,k

+Tκ(θ1) +
1

N2

N2
∑

k=1

(F (Lε,θ2
T,k )− F (Lεβ ,θ2

T,k ))e−θ2.L
ε,θ2
T,k

+Tκ(θ2).

Miming the proof of Theorem 3.2 we establish a central limit theorem with limit variance

Var(F (Lθ1
T )e−θ1L

θ1
T

+Tκ(θ1)) + TE((∇F (Lθ2
T ).Σ∇F (Lθ2

T ))e−2θ2L
θ2
T

+2Tκ(θ2)). Since Lθ1
T (resp. Lθ2

T )
under P has the same law as LT under Pθ1 (resp. Pθ2) we rewrite this variance using once again
the Esscher transform as

E
[

F 2(LT )e
−θ1.LT+Tκ(θ1)

]

− [EF (LT )]
2 + TE

[

(∇F (LT ).Σ∇F (LT ))e
−θ2LT+Tκ(θ2)

]

.
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Hence, let us introduce for i ∈ {1, 2},
vi(θ) := E

[

Fi(LT )e
−θLT+Tκ(θ)

]

, with F1 ≡ F 2 and F2 ≡ ∇F.Σ∇F. (13)

Our aim now is to minimize separately these two quantities. To do so, for i ∈ {1, 2}, we
introduce a first set

Θi,2 := Θ1 ∩
{

θ ∈ R
d : E

[

Fi(LT )e
−θ.LT

]

< +∞
}

to ensure the existence of vi(θ) and a second set

Θi,3 := Θi,2 ∩
{

θ ∈ R
d : E

[

|LT |2Fi(LT )e
−θ.LT

]

< +∞
}

to make sens for the first and second derivatives of vi(θ). For i ∈ {1, 2}, if we assume that
Leb(Θi,3) > 0, then the convexity of sets Θi,2 and Θi,3 can be proved in a similar manner to the
proof of Lemma 2.2 in [17]. Moreover, we prove the convexity of vi, i ∈ {1, 2}.
Proposition 4.1. Let i ∈ {1, 2}. Assume P(Fi(LT ) 6= 0) > 0. Then, θ 7→ vi(θ) is a C 2 strictly
convex function on Θi,3 and ∇vi(θ) = E [Hi(θ, LT )] where

Hi(θ, LT ) = (T∇κ(θ)− LT )Fi(LT ) exp(−θ.LT + Tκ(θ)). (14)

Proof. For a fixed i ∈ {1, 2}, the function θ 7→ Fi(LT )e
−θLT+Tκ(θ) is almost surely differen-

tiable on Θ1 with a first derivative equal to Hi(θ, LT ). Further, according to the properties of
the moment generating function, the function θ 7→ vi(θ) is finite for θ ∈ Θi,2 and is differentiable
with ∇vi(θ) = E [Hi(θ, LT )] provided that E [|Hi(θ, LT )|] is finite. Using Hölder’s inequality,
this last condition is satisfied as soon as θ ∈ Θi,3. In the same way, we prove that vi is of class
C 2 on Θi,3 and we get for all u ∈ R

d \ {0},
u.Hess(vi(θ))u = E

[(

u.Hess(κ(θ))u+ (u.(T∇κ(θ)− LT ))
2)Fi(LT )e

−θ.LT+Tκ(θ)
]

.

Note that Hess(κ(θ)) is nothing but the variance-covariance matrix of the random vector LT

under the probability measure Pθ and it is clearly definite positive. Finally, since P(Fi(LT ) 6=
0) > 0, we conclude that vi is strictly convex on Θi,3. �

For ε > 0, the same result holds for the approximated Lévy process (Lε
t )t≥0 by considering

the associated sets Θε
1, Θ

ε
i,2 and Θε

i,3 and functions κε and vi,ε, i ∈ {1, 2}, with the canonical
filtration (F ε

t )0≤t≤T defined by F ε
t = σ(Lε

s, s ≤ t).

Proposition 4.2. Let i ∈ {1, 2}. Assume P(Fi(L
ε
T ) 6= 0) > 0 then the function vi,ε(θ) =

E
[

Fi(L
ε
T )e

−θLε
T+Tκε(θ)

]

is of class C 2 and strictly convex on Θε
i,3 with ∇vi,ε(θ) = E [Hi(θ, L

ε
T )].

Now, let us introduce for i ∈ {1, 2}
θ∗i,ε := argmin

θ∈Θε
i,3

vi,ε(θ) and θ∗i := argmin
θ∈Θi,3

vi(θ). (15)

Our aim now is to study for i ∈ {1, 2} the convergence of θ∗i,ε toward θ
∗
i as ε tends to zero. For

q > 1, we define the set

Θq :=

{

θ ∈ R
d :

∫

|x|>1

|x|2qe−qθ.xν(dx) < +∞
}

. (16)
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Remark.

1. It is worth to note that for 0 ≤ q′ ≤ 2q and θ ∈ Θq we have
∫

|x|>1
|x|q′e−qθ.xν(dx) < +∞.

We also have Θq2 ⊂ Θq1 for all q1 ≤ q2.

2. Further, for i ∈ {1, 2}, if E [F a
i (LT )], a > 1, is finite then by Hölder’s inequality we easily

get Θq ⊂ Θi,3 for all q ≥ a/a− 1. The same result holds for the approximated Lévy
process. Indeed, for ε > 0, we have Θq ⊂ Θε

i,3 provided that E [F a
i (L

ε
T )] <∞.

According the above remark, choosing θ ∈ Θq with q ≥ a/a− 1 ensures that θ will belong to
the domain of convexity of both vi and vi,ε. On the other hand it also guarantees the finiteness
of the quantity

∫

|x|>1
|x|qe−qθ.xν(dx) which will be needed in each proof assuming condition

θ ∈ Θq.

In what follows, let E̊ denote the set of all interior points of a given set E. We have the
following result.

Theorem 4.1. Let i ∈ {1, 2}. Suppose that x 7→ Fi(x) is continuous, that is for the case i = 1
the function F is continuous and for i = 2 the function F is of class C 1. Moreover, assume
P(Fi(LT ) 6= 0) > 0, P(Fi(L

ε
T ) 6= 0) > 0 for all ε > 0 and there exists a > 1 such that E [F a

i (LT )]
and supε>0E [F a

i (L
ε
T )] are finite. Let K be a compact set such that K ⊂ Θ̊q with q > a

a−1
and

assume that the sequence (θ∗i,ε)ε>0 ∈ K. Then,

θ∗i,ε−→θ∗i ∈ K, as ε→ 0.

We prove Theorem 4.1 after the following technical lemma.

Lemma 4.1. Let K be a compact subset of Θq with q > 1, we have supθ∈Θq
E
[

|Lε
T |qe−qθ.Lε

T

]

is
uniformly bounded in ε.

Proof. Let us consider the two independent Lévy processes L1 and L̃ε := Lε − L1 and the
submultiplicative function gθ(x) := (|x| ∨ 1)qe−qθ.x. There exists cq > 0 depending only on q
such that gθ(x+ y) ≤ cqgθ(x)gθ(y) for any θ ∈ R

d and

E
[

|Lε
T |qe−qθ.Lε

T

]

≤ cqE
[

gθ(L̃
ε
T )
]

E
[

gθ(L
1
T )
]

.

Since the function θ 7→ E
[

gθ(L
1
T )
]

is continuous on Θq the second expectation on the right
hand side is uniformly bounded on θ ∈ K. Concerning the first expectation, we start by
establishing the uniform convergence of κ̃ε toward κ̃, where κ̃ε and κ̃ denote the cumulant
generating functions of respectively L̃ε = Lε − L1 and L̃ = L − L1. According to the Lévy
Kintchine decomposition, we have κ̃(θ) − κ̃ε(θ) =

∫

|x|<ε
(eθ.x − 1 − θ.x)ν(dx) and thanks to

Taylor’s expansion we get

|κ̃(θ)− κ̃ε(θ)| ≤
|θ|2
2
e|θ|σ2(ε). (17)

This ensures the uniform convergence of the family functions (κ̃ε)0<ε<1 on any compact set of
R

d. Note that for all x = (x1, · · · , xd) ∈ R
d we have (|x| ∨ 1)q ≤ ce|x| ≤ c

∏d
j=1(e

xj + e−xj )
with some c > 0 depending only on q. This last upper bound can be written as a sum of
finite number of exponential functions evaluated at points which are a linear combination of
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the components of the vector x. Therefore there exists a family of deterministic R
d-valued

vectors, (bj)1≤j≤2d such that

E
[

gθ(L̃
ε
T )
]

≤ c

2d
∑

j=1

E
[

e(bj−qθ).Lε
T

]

.

Each term in the above sum is nothing else exp(κ̃ε(bj−qθ)) which in turn converges to exp(κ̃(bj−
qθ)) as ε tends to zero. This gives us the desired claim.

Proof of Theorem 4.1. Let i ∈ {1, 2} and (εn)n∈N be a sequence decreasing to zero. Note that
(θ∗i,εn)n∈N is a R

d-bounded sequence. So, we only need to prove that for any subsequence
(θ∗i,εnk

)k∈N, if θ
∗
i,εnk

→ θ∗i,∞ ∈ R
d then θ∗i,∞ = θ∗i . According to Proposition 4.2 above we have

∇vi,εnk
(θ∗i,εnk

) = E

[

(θ∗i,εnk
T − L

εnk

T )Fi(L
εnk

T )e
−θ∗i,εnk

.L
εnk
T

+Tκεnk
(θ∗i,εnk

)
]

= 0.

Now, let ã = aq
a+q

, it is easy to check that 1 < ã < a, so by applying Hölder’s inequality we get

E

[

∣

∣(θ∗i,εnk
T − L

εnk

T )Fi(L
εnk

T )e
−θ∗i,εnk

.L
εnk
T

+Tκεnk
(θ∗i,εnk

)∣
∣

ã
]

≤

E
(a−ã)/a

[

∣

∣(θ∗i,εnk
T − L

εnk

T )e
−θ∗i,εnk

.L
εnk
T

+Tκεnk
(θ∗i,εnk

)∣
∣

ãa/(a−ã)
]

E
ã/a
[

F a
i (L

εnk

T )
]

.

Note that supε>0E [F a
i (L

ε
T )] < ∞. Hence, to get the uniform integrability it is sufficient to

prove that the first expectation on the right hand side of the above inequality is uniformly
bounded on εnk

and θ∗i,εnk
. Indeed, using the almost sure convergence of Lε

T toward LT and the
continuity of function Fi, we easily get

∇vi(θ∗i,∞) = E

[

(θ∗i,∞T − LT )Fi(LT )e
−θ∗i,∞.LT+Tκ(θ∗i,∞)

]

= 0

and then we complete the proof using the uniqueness of the minimum ensured by Proposition
4.1. Consequently, noticing that q = ãa/(a− ã), it remains now to prove the uniform bounded-

ness of the quantity E

[

∣

∣(θ∗i,εnk
T − L

εnk

T )e
−θ∗i,εnk

.L
εnk
T

+Tκεnk
(θ∗i,εnk

)∣
∣

q
]

. To do so, we establish first

the uniform convergence of κε toward κ. According to the decomposition given by relation (2),
we have that κ(θ)− κε(θ) =

∫

|x|<ε
(eθ.x − 1− θ.x)ν(dx). By Taylor’s expansion we deduce

|κ(θ)− κε(θ)| ≤
|θ|2
2
e|θ|σ2(ε). (18)

Hence, the family functions (κε)0<ε<1 is equicontinuous on any compact subset of Θ1 and we
deduce the convergence of κεnk

(θ∗i,εnk
) toward κ(θ∗i,∞) when k tends to infinity. Noticing that

−qK ⊂ Θ1, we use once again the equicontinuity of (κε)0<ε<1 on the compact set −qK to
get limk→∞ κεnk

(−qθ∗i,εnk
) = κ(−qθ∗i,∞) and then the problem is reduced to prove the uniform

boundedness of E
[

|Lεnk

T |qe−qθ∗i,εnk
.L

εnk
T
]

which is ensured by Lemma 4.1.
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5 The adaptive procedure

5.1 Stochastic algorithms

The aim now is to construct family sequences converging almost surely to the optimal limits
θ∗1,ε and θ∗2,ε of the previous section. For this, let (LT,n)n≥1 (resp. (Lε

T,n)n≥1, ε > 0), be i.i.d
copies of the R

d-valued random variable LT (resp. Lε
T ). Let K be a compact convex subset

of Θ1 ⊂ R
d with {0} ∈ K. For fixed i ∈ {1, 2} and θi,0 ∈ K, we construct recursively the

sequences of Rd-valued random variables (θi,n)n∈N and (θi,ε,n)n∈N defined by the system

{

θi,n+1 = ΠK [θi,n − γn+1Hi(θi,n, LT,n+1)]
θi,ε,n+1 = ΠK

[

θi,ε,n − γn+1Hi(θi,ε,n, L
ε
T,n+1)

] (19)

where ΠK is the Euclidean projection onto the constraint set K, H1 and H2 are given by relation
(14) and the gain sequence (γn)n≥1 is a decreasing sequence of positive real numbers satisfying

∞
∑

n=1

γn = ∞ and
∞
∑

n=1

γ2n <∞ (20)

Theorem 5.1. Let i ∈ {1, 2}. Assume P(Fi(LT ) 6= 0) > 0, P(Fi(L
ε
T ) 6= 0) > 0 for all ε > 0 and

there exists a > 1 such that E [F 2a
i (LT )] and supε>0 E [F 2a

i (Lε
T )] are finite. Let K be a compact

set such that K ⊂ Θ̊2a/(a−1) then the following assertions hold.

• If the unique θ∗i = argmin
θ∈Θi,3

vi(θ) satisfies θ
∗
i ∈ K then the sequence θi,n −→

n→+∞
θ∗i a.s.

• If the unique θ∗i,ε = argmin
θ∈Θε

i,3

vi,ε(θ) satisfies θ
∗
i,ε ∈ K then the sequence θi,ε,n −→

n→+∞
θ∗i,ε a.s.

Proof. Both items can be proved in the same way, so we choose to give the proof only for
the first one. According to Theorem A.1. in Laruelle, Lehalle and Pagès [20] on truncated
Robbins Monro algorithm (see also Kushner and Yin [19] for more details): in order to prove
that θεi,n −→

n→+∞
θ∗i,ε a.s., we need to check firstly the mean-reverting property, namely

∀θ 6= θ∗i ∈ K, 〈∇vi(θ), θ − θ∗i 〉 > 0.

This is satisfied using ∇vi(θ∗i ) = 0 and the convexity of vi ensured by Proposition 4.1. Secondly,
we have to check the non explosion assumption given by

∃C > 0 such that ∀θ ∈ K, E
[

|Hi(θ, LT )|2
]

< C(1 + |θ|2).

In fact, using Hölder’s inequality with the couple a and a/(a− 1), we obtain

E|Hi(θ, LT )|2 ≤ E
1

a

[

F 2a
i (LT )

]

E
a−1

a

[

|T∇κ(θ)− LT |2a/(a−1)e−2a/(a−1)θ.LT
]

e2Tκ(θ)

Since E [F 2a
i (LT )] is finite and θ ∈ K ⊂ Θ2a/(a−1), we deduce that supθ∈K E|Hi(θ, LT )|2 < ∞

which completes the proof.
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Theorem 5.2. Considering the sequences given by relation (19), for i ∈ {1, 2}, we have for all
n ∈ N

θi,ε,n −→
ε→0

θi,n a.s.

Proof. We proceed by induction. The base case is trivial and for the inductive step we suppose
that for i ∈ {1, 2}, n ∈ N, θi,ε,n converges to θi,n a.s. as ε goes to 0 and we prove the statement
for n+1. We have θi,ε,n+1 = ΠK

[

θi,ε,n − γi+1Hi(θi,ε,n, L
ε
T,n+1)

]

. By the continuity of the function
Hi given by (14), the almost sure convergence of Lε

T,n+1 to LT,n+1 and the continuity of the
projection function ΠK , we deduce that θi,ε,n+1 converges to θi,n+1 a.s. as ε goes to 0.

The following corollary follows immediately thanks to theorems 4.1, 5.1 and 5.2.

Corollary 5.1. Under assumptions of Theorem 5.1, the constrained algorithm given by routine
(19) satisfies for i ∈ {1, 2}

lim
ε→0
n→∞

θi,ε,n = lim
ε→0

( lim
n→∞

θi,ε,n) = lim
n→∞

(lim
ε→0

θi,ε,n) = θ∗i , P-a.s. (21)

Remark. Suppose for a while that we omit assumptions θ∗i ∈ K and θ∗i,ε ∈ K in Theorem 5.1
above. According to Theorem 3.2. of Kawai [17] based on Theorem 2.1 of Kushner and Yin
[19] there exist θ̄i and θ̄i,ε in K such that θi,n −→

n→+∞
θ̄i a.s. and θi,ε,n −→

n→+∞
θ̄i,ε a.s. Moreover,

vi(θ̄i) ≤ vi(θ) and vi,ε(θ̄i,ε) ≤ vi,ε(θ) for all θ ∈ K. In this case we can prove that the constrained
algorithm given by routine (19) satisfies relation (21) with θ̄i,ε instead of θ∗i .

5.2 Central limit theorems

In what follows, we consider the filtration FT,k = σ(Lt,ℓ, L
ε
t,ℓ, 0 < ε < 1, t ≤ T, ℓ ≤ k), where

(Lℓ, L
ε
ℓ)ℓ≥1 are independent copies of (L, Lε). Let us assume that there exists a family of

sequences (θεk)k≥0,0<ε≤1 and (θk)k≥0 satisfying

(Hθ)







For each ε > 0, (θεk)k≥0 and (θk)k≥0 are (FT,k)k≥0-adapted

lim
k→∞

(lim
ε→0

θεk) = lim
k→∞

θk = lim
ε→0

( lim
k→∞

θεk) = lim
ε→0

θ∗ε = θ∗, P-a.s.,

with deterministic limits θ∗ and θ∗ε .
At first, we start with studying the MC setting. We use the adaptive importance sampling

algorithm for the MC method to approximate our initial quantity of interest EF (LT ) by

QISMC
ε =

1

N

N
∑

k=1

F (L
ε,θε

k−1

T,k )e−θε
k−1

.L
ε,θε

k−1

T,k
+Tκε(θεk−1

). (22)

Our task now is to establish a central limit theorem for the adaptive importance sampling
Monte Carlo method (ISMC).
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Theorem 5.3. Let F : Rd → R be a continuous function satisfying assumption (WEυε) and
such that sup0<ε≤1 E [F 2a(Lε

T )] < +∞ for a > 1. Moreover, assume that Leb(Θq) > 0 with
q > a/(a− 1) and there exists a double indexed family (θεk)k∈N,ε>0 satisfying (Hθ) and belonging

to some compact subset K ⊂ Θ̊q. Then, if we choose N = υ−2
ε , the following convergence holds

υ−1
ε

(

QISMC
ε − EF (LT )

) L−→ N (CF , σ
2), as ε ց 0, (23)

where σ2 := E
[

F 2(LT )e
−θ∗.Lε

T
+Tκ(θ∗)

]

− (E[F (LT )])
2.

Proof. By assumption (WEυε) we only need to study the asymptotic behavior of the martingale

arrays (Mε
k)k≥1 given byMε

k := υε
∑k

i=1

(

F (L
ε,θεi−1

T,i )e−θεi−1
.L

ε,θεi−1

T,i
+Tκε(θεi−1

) − EF (Lε
T )

)

. To do so,

we plan to apply the Lindeberg-Feller central limit theorem for martingales arrays (see Theorem
8.2 in the Appendix section). The proof is divided into two steps.

Step 1. The quadratic variation of the martingale arrays (Mε
k)k≥1 is given by

〈Mε〉N =
1

N

N
∑

k=1

E
[

F 2(L
ε,θε

k−1

T,k )e−2θε
k−1

.L
ε,θε

k−1

T,k
+2Tκε(θεk−1

)|FT,k−1

]

− (EF (Lε
T ))

2 . (24)

Since θεk−1 is FT,k−1-measurable and (Lε,θ
T,k)θ∈Θq

⊥⊥ FT,k−1, by Esscher transform we obtain

〈Mε〉N =
1

N

N
∑

k=1

γε(θ
ε
k−1)e

Tκε(θεk−1
) − (EF (Lε

T ))
2 ,

where for all θ ∈ Θq, γε(θ) = E
[

F 2(Lε
T )e

−θ.Lε
T

]

. On the one hand, using assumption (WEυε),
we have limε→0EF (L

ε
T ) = EF (LT ). On the other hand, thanks to relation (18) we have the

uniform equicontinuity of the family (κε)ε>0 on the compact subset K. So, we only need to check
this last property for the family (γε)ε>0 in view to use after that Lemma 8.1 and then deduce
the convergence of 〈Mε〉N toward γ(θ∗)−(EF (LT ))

2 as εց 0, where γ(θ) := E
[

F 2(LT )e
−θ.LT

]

.
Thus, it remains to prove the uniform equicontinuity of the family functions (γε)ε>0 defined

on the compact set K. Using Hölder’s inequality and the assumption supε>0 E [F 2a(Lε
T )] < +∞,

there exists c1 > 0 not depending on ε such that

|γε(θ)− γε(θ
′)| ≤ E

[

F 2(Lε
T )
∣

∣e−θ.Lε
T − e−θ′.Lε

T

∣

∣

]

≤ c1E
1/q
[

∣

∣e−θ.Lε
T − e−θ′.Lε

T

∣

∣

q
]

.

By Taylor’s expansion and standard calculations we easily get

|e−θ.Lε
T − e−θ′.Lε

T |q ≤ |θ − θ′|q
∫ 1

0

|Lε
T |qe−q(uθ+(1−u)θ′).Lε

T du.

Therefore, we have

|γε(θ)− γε(θ
′)| ≤ c1|θ − θ′| sup

θ∈Θq

E
1/q
[

|Lε
T |qe−qθ.Lε

T

]

.
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Hence, according to Lemma 4.1 there exists a constant c2 > 0 also not depending on and ε such
that

|γε(θ)− γε(θ
′)| ≤ c2|θ − θ′|. (25)

This completes the proof of the first step.

Step 2. We check now the Lyapunov condition given by assumption B3 in Theorem 8.2. So,
let ã = aq+a

2a+q
, it is easy to check that 1 < ã < a. Once again using the mesurability properties

of the family (Lε,θ
T,k)θ∈Θq

and the sequence (θεk)k≥0, we get using the Esscher transform

N
∑

k=1

E

[

∣

∣Mε
k −Mε

k−1

∣

∣

2ã |FT,k−1

]

=
1

N ã

N
∑

k=1

E

[

∣

∣F (L
ε,θε

k−1

T,k )e−θε
k−1

.L
ε,θε

k−1

T,k
+Tκε(θεk−1

) − EF (Lε
T )
∣

∣

2ã|FT,k−1

]

≤ 22ã−1

N ã

N
∑

k=1

γã,ε(θ
ε
k−1)e

(2ã−1)Tκε(θεk−1
) +

22ã−1

N ã

∣

∣EF (Lε
T )
∣

∣

2ã

where for all θ ∈ Θq, γã,ε(θ) = E
[

F 2ã(Lε
T )e

−(2ã−1)θ.Lε
T

]

. Then, by Hölder’s inequality we get

γã,ε(θ) ≤ E
ã/a
[

F 2a(Lε
T )
]

E
(a−ã)/a

[

e−(2ã−1)a/(a−ã)θ.Lε
T

]

.

Noticing that q = (2ã − 1)a/(a − ã), it results from assumption sup0<ε≤1 E [F 2a(Lε
T )] < +∞

that γã,ε is uniformly bounded on the compact subset K ⊂ Θq. Moreover, using once again
relation (18) we deduce the uniform boundedness of the family (κε)ε>0 on the compact subset K.
Hence, combining all these results together with assumption (WEυε), we deduce the existence of

c3 > 0 not depending on ε such that
∑N

k=1 E

[

∣

∣Mε
k −Mε

k−1

∣

∣

2ã |FT,k−1

]

≤ c3
N ã−1 . This completes

the proof.

Remark. If one have in mind to reduce the variance by using an adaptive crude Monte Carlo
method, it appears clear that the natural choice is

θ∗1 = argmin
θ∈Θ1,3

v1(θ) and θ∗1,ε = argmin
θ∈Θε

1,3

v1,ε(θ) for ε > 0,

where v1 and v1,ε are presented in section 4. The construction of stochastic sequences converging
almost surely to these desired targets and satisfying (Hθ) is ensured by Corollary 5.1.

Now, we use the adaptive importance sampling statistical Romberg method (ISSR) to ap-
proximate our initial quantity of interest EF (LT ) by

QISSR
ε :=

1

N1

N1
∑

k=1

F (L
εβ ,θε

β

1,k−1

T,k )e−θε
β

1,k−1
.L

εβ,θε
β

1,k−1

T,k
+Tκ

εβ
(θε

β

1,k−1
)

+
1

N2

N2
∑

k=1

(

F (L
ε,θε

2,k−1

T,k )− F (L
εβ ,θε

2,k−1

T,k )

)

e−θε
2,k−1

.L
ε,θε

2,k−1

T,k
+Tκε(θε2,k−1

) (26)

Our second result is a central limit theorem for the adaptive ISSR method
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Theorem 5.4. Let F : Rd → R be a C 1 function satisfying assumption (WEυε) and such that
sup0<ε≤1EF

2a(Lε
T ) and sup0<ε≤1E |σ−1(ε)(F (Lε

T )− F (LT ))|2a are finite, for a > 1. Suppose
also that the following assumptions are satisfied.

H1 . Condition (3) in Theorem 2.1 holds and there exists a definite positive matrix Σ such that
lim
ε→0

σ−2(ε)Σε = Σ.

H2 . For 0 < β < 1, we have lim
ε→0

σ(ε)σ−1(εβ) = 0 and lim
ε→0

υεσ
−1(εβ) = 0.

Moreover, assume that Leb(Θq) > 0 with q > a/(a− 1) and for i ∈ {1, 2} there exists a double

indexed family (θεi,k)k∈N,ε>0 satisfying (Hθ) and belonging to some compact subset Ki ⊂ Θ̊q. If

we choose N1 = υ−2
ε and N2 = υ−2

ε σ2(εβ), then

υ−1
ε

(

QISSR
ε − EF (LT )

) L−→ N
(

CF , σ
2 + σ̃2

)

, as ε→ 0,

where

σ2 = E
[

F 2(LT )e
−θ∗.LT+Tκ(θ∗)

]

− [EF (LT )]
2 and σ̃2 = TE

[

(∇F (LT ).Σ∇F (LT ))e
−θ∗.LT+Tκ(θ∗)

]

.

Proof. By assumption (WEυε) we only need to study the asymptotic behavior of υ−1
ε QISSR

1,ε +
υ−1
ε QISSR

2,ε with

QISSR
1,ε =

1

N1

N1
∑

k=1

(

F (L
εβ ,θε

β

1,k−1

T,k )e−θε
β

1,k−1
.L

εβ,θε
β

1,k−1

T,k
+Tκ

εβ
(θε

β

1,k−1
) − EF (Lεβ

T )
)

and

QISSR
2,ε =

1

N2

N2
∑

k=1

(

[

F (L
ε,θε

2,k−1

T,k )− F (L
εβ ,θε

2,k−1

T,k )
]

e−θε
2,k−1

.L
ε,θε

2,k−1

T,k
+Tκε(θε2,k−1

) − E
[

F (Lε
T )− F (Lεβ

T )
]

)

.

An application of Theorem 5.3 yields υ−1
ε QISSR

1,ε
L−→ N (0, σ2), as ε → 0. For the second term,

we aim to apply Theorem 8.2. So, we introduce the martingale arrays (Mε
k)k≥1

Mε
k :=

υ−1
ε

N2

k
∑

ℓ=1

(

(

F (L
ε,θε

2,ℓ−1

T,ℓ )− F (L
εβ ,θε

2,ℓ−1

T,ℓ )
)

e−θε
2,ℓ−1

.L
ε,θε

2,ℓ−1

T,ℓ
+Tκε(θε2,ℓ−1

) − E
[

F (Lε
T )− F (Lεβ

T )
])

.

Step 1. Thanks to assumption (Hθ) and the Esscher transform, the quadratic variation ofM
evaluated at N2 is equal to

〈Mε〉N2
=

1

N2

N2
∑

k=1

ξε(θ
ε
2,k−1)e

Tκε(θε2,k−1
) −
(

E
[

σ−1(εβ)(F (Lε
T )− F (Lεβ

T ))
]

)2

,

where for all θ ∈ Θq, ξε(θ) = σ−2(εβ)E

(

∣

∣

∣
F (Lε

T )− F (Lεβ

T )
∣

∣

∣

2

e−θ.Lε
T

)

. Using the convergence in

law given by relation (11), the assumption sup0<ε≤1E |σ−1(ε)(F (Lε
T )− F (LT ))|2a < +∞ and
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the independence of LT and WT , we deduce that the second term on the right hand side of the
above equation vanishes when ε tends to zero. Concerning the first one, we aim to use Lemma
8.1. So, we only need to prove the equicontinuity of the family (ξε)ε>0 on any compact subset of

Θq. First, we prove the simple convergence of ξε to ξ with ξ(θ) = E

(

∣

∣∇F (LT ).Σ
1

2WT

∣

∣

2
e−θ.LT

)

.

For this, we can proceed analogously to the proof of relation (11). More precisely, we use Taylor-
Young’s expansion with function F , the convergence in law given by (11), the independence of
Lε
T − Lεβ

T and Lεβ

T and Slutsky’s theorem to get

σ−2(εβ)
∣

∣F (Lε
T )− F (Lεβ

T )
∣

∣

2
e−θ.Lε

T
L−→

ε→0

∣

∣∇F (LT ).Σ
1

2WT

∣

∣

2
e−θ.LT .

Now, applying Hölder’s inequality with ã = aq
a+q

yields

E
∣

∣σ−2(εβ)
(

F (Lε
T )− F (Lεβ

T )
)2
e−θ.Lε

T

∣

∣

ã ≤ E
ã/a
∣

∣σ−1(εβ)
(

F (Lε
T )− F (Lεβ

T )
)
∣

∣

2a
E
(a−ã)/ae−

ãa
a−ã

θ.Lε
T .

Using assumptions H2 and sup0<ε≤1E |σ−1(ε)(F (Lε
T )− F (LT ))|2a < +∞, it is easy to check

the uniform boundedness with respect to ε of the first term on the right hand side of the above
inequality. Concerning the second one, since q = ãa

a−ã
we use relation (18) to deduce the same

result. Hence, we have the simple convergence of ξε toward ξ when ε tends to zero. Therefore,
it remains to prove the equicontinuity of the family functions (ξε)ε>0 on any compact subset
K ⊂ Θq. Replacing F (Lε

T ) by σ−1(εβ)
(

F (Lε
T ) − F (Lεβ

T )
)

in the steps of the proof of relation

(25) and using assumptions H2 and sup0<ε≤1E |σ−1(ε)(F (Lε
T )− F (LT ))|2a < +∞ we prove the

existence of a constant c > 0 not depending on ε such that

|ξε(θ)− ξε(θ
′)| ≤ c|θ − θ′|. (27)

Thus, under assumption (Hθ), we get the almost sure convergence of ξε(θ
ε
2,k) toward ξ(θ∗) as

k goes to infinity and ε vanishes. We complete the proof of the first step using the almost sure
convergence of κε(θ

ε
2,k) toward κ(θ

∗) as k goes to infinity and ε vanishes. This last convergence
is obtained thanks to relation (18).

Step 2. The second step of this proof consists on checking the Lyapunov condition B3 of
Theorem 8.2. We proceed in the same way as in the second step of the proof of Theorem 5.3.

We take ã = aq+a
2a+q

and we get using the same arguments that
∑N2

k=1E
[
∣

∣Mε
k −Mε

k−1

∣

∣

2ã |FT,k−1

]

is bounded by

22ã−1

N ã

N2
∑

k=1

ξa,ε(θ
ε
2,k−1)e

(2ã−1)Tκε(θε2,k−1
) +

22ã−1

N ã

∣

∣

∣
E
[

σ−1(εβ)(F (Lε
T )− F (Lεβ

T ))
]

∣

∣

∣

2a

where for all θ ∈ Θq, ξã,ε(θ) = E

[

∣

∣σ−1(εβ)(F (Lε
T ) − F (Lεβ

T ))
∣

∣

2ã
e−(2ã−1)θ.Lε

T

]

. Then replacing

F (Lε
T ) by σ

−1(εβ)
(

F (Lε
T )− F (Lεβ

T )
)

in the second step of the proof of Theorem 5.3, the same

arguments remain valid thanks to assumptions H2 and sup0<ε≤1E |σ−1(ε)(F (Lε
T )− F (LT ))|2a <

+∞. So, we deduce the existence of c > 0 not depending on ε such that

N2
∑

k=1

E

[

∣

∣Mε
k −Mε

k−1

∣

∣

2ã |FT,k−1

]

≤ c

N ã−1
2

.

This completes the proof.
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Remark. Similarly as in the MC case, we still have in mind to reduce the variance associated
now to the SR method. This goes back to optimize separately v1 and v2. Hence, the optimal
choice corresponds to

θ∗i = argmin
θ∈Θ1,3

vi(θ) and θ∗i,ε = argmin
θ∈Θε

i,3

vi,ε(θ) for ε > 0 and i ∈ {1, 2},

where vi and vi,ε are presented in section 4. In the same way, the construction of stochastic
sequences converging almost surely to these desired targets and satisfying (Hθ) is ensured by
Corollary 5.1.

6 Numerical results

Now, we present numerical simulations that illustrate the efficiency of the ISSR method through-
out the pricing of vanilla options with an underlying asset following an exponential pure jump
CGMY model. The CGMY process has been introduced by Carr, Geman, Madan and Yor [6]
with the aim to develop a model for the dynamic of equity log-returns which is rich enough to
accommodate jumps of finite or infinite activity, and finite or infinite variation. Monte Carlo
simulation of the CGMY process has been tackled in the literature specifically by Madan and
Yor [21], Poirot and Tankov [22] and Rosinski [25]. A CGMY process is a pure jump process
with generating triplet (0, 0, ν) where for C > 0, G > 0,M > 0 and Y < 2

ν(dx) = C
e−Mx

x1+Y
1x>0dx+

Ce−G|x|

|x|1+Y
1x<0dx. (28)

Following the notations of [22], we consider the Lévy-Kintchine representation with a trun-
cation function h and a characteristic exponent given by

ψ(u) = iγhu+

∫

R

(eiux − 1− iuh(x))ν(dx) with γh =

∫

R

(h(x)− x1{|x|≤1})ν(dx), u ∈ R.

• For 1 < Y < 2 and h(x) = x, we have γh =
∫

|x|≥1
xν(dx) and

ψ(u) = iuγh + CΓ(−Y )
[

MY

(

(1− iu

M
)Y − 1 +

iuY

M

)

+GY

(

(1 +
iu

G
)Y − 1− iuY

G

)]

.

• For 0 < Y < 1 and h(x) = 0, we have γh =
∫

|x|≤1
xν(dx) and

ψ(u) = iuγh + CΓ(−Y )
[

MY

(

(1− iu

M
)Y − 1

)

+GY

(

(1 +
iu

G
)Y − 1

)]

.

In what follows, we consider the risk neutral model with jumps generalizing the Black Scholes
model by replacing the Brownian motion by (Lt)0≤t≤T the CGMY process with generating
triplet (γ, 0, ν), γ ∈ R and define the asset price

St = S0 exp(rt+ Lt), where r > 0 is the interest rate and S0 > 0.
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To guarantee that e−rtSt is a martingale we have to impose the condition
∫

|x|≥1
exν(dx) < ∞

(which is satisfied as soon as M > 1 ) and the condition

γ +

∫

R

(ey − 1− y1{|y|≤1})ν(dy) = 0, (29)

or in other words γ = −ψ(−i).
Now, let us recall that for 0 < ε < 1, the approximation (Lε

t )t≥0 of (Lt)t≥0 is a Lévy
process with generating triplet (γ, 0, νε) where νε(dx) := 1{|x|≥ε}ν(dx). It is worth to note that
(Lε

t )t≥0 can be seen as a compound Poisson process with drift γε := γ −
∫

ε≤|x|≤1
xν(dx), see

(1). This compound Poisson process can be represented as the difference of two independent
processes namely the positive part and the negative one. More precisely, the positive part (resp.

the negative part) is a compound Poisson process with jump size ν+ε = 1{x≥ε}
ν(dx)

ν([ε,+∞[)
(resp.

ν−ε = 1{x≤−ε}
ν(dx)

ν(]−∞,−ε])
) and intensity ν([ε,+∞[) (resp. ν(] − ∞,−ε])). To simulate these

compound Poisson processes, we can use either the classical rejection method as described in
Cont and Tankov [8] or an improved method used by Madan and Yor [21]. Indeed, when we

simulate the positive part we choose ν+0,ε so that dν+ε
dν+

0,ε

(x) = e−Mx1{x>ε} ≤ 1. Then, according to

Rosinski [24] we may simulate the paths of ν+ε from those of ν+0,ε by only accepting all jumps

x in the paths of ν+0,ε for which dν+ε
dν+

0,ε

(x) > u where u is an independent draw from uniform

distribution. Hence, we use following algorithm

Algorithm 1 Simulating the positive jump size Z of the CGMY process using Rosinski’s
rejection

Require: U1 and U2 are uniform random variables and Z = εU
− 1

Y

1

if U2 > exp−M.Z then

Z = 0
end if

return Z

In the same way, we simulate the negative jump part by replacing in the above algorithm
the parameter M by G.

Our aim is to test our approximation methods for computing the price of a vanilla option
with payoff F . To do so, we use the importance sampling technique, introduced in section 4,
to approximate the price e−rT

EF (ST ) by

e−rT
E

[

F (Sε,θ
T )e−θ.Lε,θ

t +Tκε(θ)
]

, with Sε,θ
T = S0 exp(rt+ Lε,θ

t ) (30)

where Lε,θ
T is also a Lévy process with generating triplet (γε,θ, 0, νε,θ), where νε,θ = eθ.xνε(dx) and

γθ,ε = γε +
∫ 1

−1
x(eθ.x − 1)νε(dx). The choice of θ depends on using the classical MC method or

the SR one. According to relation (15), θ∗1,ε is the optimal choice for the MC method. However,
for the SR method, we omptize separately each quantity appearing in the associated variance
and the optimal choice is given by the couple (θ∗1,ε, θ

∗
2,ε) (see relation (15)) . To compute these

optimal terms, we use the constrained algorithms introduced in the system (19). It is worth to
note that in practice it is easier to use κ(θ) instead of κε(θ).
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6.1 One-dimensional CGMY process

In this setting we consider the European call option with payoff F (x) = (x − Strike)+ . The
parameters of the CGMY model are chosen as follows: S0 = 100, Strike = 100, C = 0.0244, G =
0.0765,M = 7.5515, Y = 1.2945, the free interest rate r = log(1.1) and maturity time T = 1.
We run 50000 iteration for the constrained algorithm with the compact set [−G,M ]. The
obtained optimal values are given by (θ∗1,ε, θ

∗
2,ε) = (5.3, 2.5) (see Figure 1).

Figure 1: Variances v1,ε and v2,ε versus θ in the one-dimensional setting.

In order to compare the ISMC algorithm (22) and the ISSR one (26) we use the couple
(θ∗1,ε, θ

∗
2,ε) computed above. For this, we compute for each method the CPU time (per second)

(the computations are done on a PC with a 2.5 GHz Intel core i5 processor) and an error
measure given by the mean squared error (MSE) which is defined by

MSE =
1

30

30
∑

i=1

(Real value− Simulated value)2. (31)

The real value is obtained using the Fourier-cosine method introduced by Fang and Oosterlee
[13] for a one-dimensional CGMY with an accuracy of order 10−10. This method is available in
the free online version of Premia platform (https://www.rocq.inria.fr/mathfi/Premia/index.html).
For this setting, our ISSR algorithm (26) is now available in the latest premium version of Pre-
mia.

For different values of ε, we give in Figure 2 below the log-log plot of the obtained MSE
versus the CPU time for the classical Monte Carlo (MC), the statistical Romberg (SR), the
importance sampling Monte Carlo (ISMC) and the importance sampling statistical Romberg
(ISSR) methods.

According to Table 1 and for a fixed MSE of order 6 · 10−3, the ISSR method reduces the
CPU time by a factor of 8, 73 compared to the ISMC one. Clearly the ISSR method is the most
efficient compared to the other ones.
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Figure 2: CPU time versus MSE in the one-dimensional setting.

Time complexity reduction

MSE ISMC CPU time ISSR CPU time
7 · 10−3 7 · 102 5 · 102
6, 5 · 10−3 2 · 103 6 · 102
6 · 10−3 5, 5 · 103 6, 3 · 102
5, 5 · 10−3 15 · 103 7 · 102

Table 1: Time complexity reduction (ISSR versus ISMC).

6.2 Two-dimensional CGMY process

We focus now on the computation of a price of the form e−rT
EF (S1

T , S
2
T ), where F (x, y) =

(x + y − Strike)+ and the couple (S1
t , S

2
t )0≤t≤T denotes the underlying asset process. In this

setting we choose (S1
t , S

2
t ) = (S0e

rt+L1
t , S0e

rt+L2
t ) where (L1

t )0≤t≤T and (L2
t )0≤t≤T are two in-

dependent CGMY processes with generating triplets (γ1, 0, ν1) and (γ2, 0, ν2) such that the
processes (e−rtS1

t )0≤t≤T and (e−rtS2
t )0≤t≤T are two martingales. So, it amounts to selectγ1 and

γ2 as in relation (29).
Since the Fourier-cosine method with high accuracy is no more available for the two-

dimensional setting, the ”Benchmark” price is obtained by running the classical MC algo-
rithm with a very small value of ε. Indeed, for ε = 10−6 the ”Benchmark” price is 21.0782
with a CPU time of 24718 seconds. The parameters of the considered two CGMY pro-
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cesses defined by (C,G1,M1, Y ) and (C,G2,M2, Y ) are chosen as follows: C = 0.0244, G1 =
0.0765,M1 = 7.55015, G2 = 2,M2 = 5, Y = 0.9, S0 = 100, Strike = 200, r = log(1.1)
and the maturity time T = 1. Using the constrained algorithms (19), we obtain the values
of the optimal two-dimensional vectors given by relation (15) and we get θ∗1,ε = (4, 3.5) and
θ∗2,ε = (3.5, 1.1). In Figure 3, we plot the evolution of both variances v1,ε and v2,ε in terms of
θ = (θ1, θ2) ∈ [−G1,M1]× [−G2,M2].

Figure 3: Variances v1,ε and v2,ε versus θ in the two-dimensional setting.

Now we proceed as in the one-dimensional case to compare the different methods. Figure 4
confirms the superiority of the ISSR method over the other ones and this holds even when we
compare it to the ISMC method. Indeed, for a given MSE, the ISSR spends less time than the
other methods to compute the desired option price. The difference in terms of computational
time becomes more significant as soon as the MSE becomes very small, which corresponds to
low values of ε (see Figure 4 below).

According to Table 2 and for a fixed MSE of order 10−3, the ISSR reduces the CPU time of
the considered option price by a factor 2 in comparison to the ISMC method. Moreover, this
factor becomes more important when we consider a smaller MSE. In fact, for a fixed MSE of
order 3 · 10−4, the ISSR reduces the CPU time by a factor > 5 in comparison to the ISMC one.

Time complexity reduction

MSE ISMC CPU time ISSR CPU time
10−3 40 20

6 · 10−4 100 30
4 · 10−4 250 60
3 · 10−4 450 80

Table 2: Time complexity reduction ISSR versus ISMC.

25



Figure 4: CPU time versus MSE in the two-dimensional setting.

7 conclusion

In this paper, we highlight the superiority of the ISSR method over the classical Monte Carlo
approach for the setting of Lévy processes. It may be of interest to extend this study to the
setting of Euler discretization schemes for Lévy driven diffusions developed by Protter and
Talay [23] and Jacod, Kurtz, Méléard and Protter [16]. Also, a next natural question consists
on developing analogous results for path dependent options in exponential Lévy models in the
spirit of the works of Dia and Lamberton [10, 11]. These two points will be the object of a
forthcoming works.

8 Appendix

We recall first the Lindeberg Feller Central Limit Theorem for independent random variables.

Theorem 8.1 (Lindeberg Feller Central Limit Theorem [4]). Let (kn)n∈N be a sequence such
that kn −→ ∞, as n −→ ∞ and for each n ∈ N we consider a sequence Xn1, Xn2, ..., Xnkn of
independent centered and real square integrable random variables. We make the following two
assumptions.

A1 . There exists a positive constant v such that
∑kn

i=1 E(Xni)
2 −→

n→∞
v.
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A2 . Lindeberg’s condition holds: that is for all ε > 0,
∑kn

i=1 E(|Xni|21|Xni|≥ε) −→
n→∞

0. Then

kn
∑

i=1

Xni
L−→ N (0, v) as n→ ∞.

Remark. The following assumption known as the Lyapunov condition implies the Lindberg’s
condition A2..

A3 . There exists a real number a > 1 sucht that

kn
∑

k=1

E
[

|Xni|2a
]

−→
n→∞

0.

This result was generalized in the context of martingales arrays.

Theorem 8.2 (Central Limit Theorem for martingales arrays [12]). Suppose that (Ω,F,P)
is a probability space and that for each n, we have a filtration Fn = (Fn

k )k≥0, a sequence
kn −→ ∞ as n −→ ∞ and a real square integrable vector martingale Mn = (Mn

k )k≥0 which is
adapted to Fn and has quadratic variation denoted by (〈M〉nk)k≥0. We make the following two
assumptions.

B1. There exists a deterministic symmetric positive semi-definite matrix Γ , such that

〈M〉nkn =

kn
∑

k=1

E
[

|Mn
k −Mn

k−1|2|Fn
k−1

]

P−→
n→∞

Γ.

B2. Lindeberg’s condition holds: that is, for all ε > 0,

kn
∑

k=1

E

[

|Mn
k −Mn

k−1|21{|Mn
k
−Mn

k−1
|>ε}|Fn

k−1

]

P−→
n→∞

0.

Then
Mn

kn

L−→ N (0, Γ ) as n→ ∞.

Remark. The following assumption known as the Lyapounov condition, implies the Lind-
berg’s condition B2.,

B3. There exists a real number a > 1, sucht that

kn
∑

k=1

E
[

|Mn
k −Mn

k−1|2a|Fn
k−1

]

P−→
n→∞

0.

Moreover, we give a double indexed version of the Toeplitz lemma. For a proof of this result
see Lemma 4.1 in [3]
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Lemma 8.1. Let (ai)1≤i≤kn a sequence of real positive numbers, where kε ↑ ∞ as ε tends to 0,
and (xεi )i≥1,0<ε≤1 a double indexed sequence such that

(i) lim
ε→0

∑

1≤i≤kε
ai = ∞

(ii) lim
i→+∞
ε→0

xεi = lim
i→+∞

(lim
ε→0

xεi ) = lim
ε→0

( lim
i→+∞

xεi ) = x

Then

lim
ε→0

∑kε
i=1 aix

ε
i

∑kε
i=1 ai

= x.

References

[1] B. Arouna. Adaptative Monte Carlo method, a variance reduction technique. Monte Carlo
Methods Appl., 10(1):1–24, 2004.
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