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Abstract

We consider a stable Cox—Ingersoll-Ross process driven by a standard Wiener process and a
spectrally positive strictly stable Lévy process, and we study asymptotic properties of the maxi-
mum likelihood estimator (MLE) for its growth rate based on continuous time observations. We
distinguish three cases: subcritical, critical and supercritical. In all cases we prove strong consis-
tency of the MLE in question, in the subcritical case asymptotic normality, and in the supercritical
case asymptotic mixed normality are shown as well. In the critical case the description of the
asymptotic behavior of the MLE in question remains open.

1 Introduction

We consider a jump-type Cox-Ingersoll-Ross (CIR) process driven by a standard Wiener process and
a spectrally positive strictly a-stable Lévy process given by the SDE

(1.1) dY; = (a — bY;) dt + o/Y, dW, + 6 ¢/Y,_ dL,,  t€]0,00),
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with an almost surely non-negative initial value Y, where a € [0,00), b € R, o € [0,00), § € (0,00),
a € (1,2), (Wi)icp,00) is a 1-dimensional standard Wiener process, and (Li)ic[0,c) is a spectrally
positive a-stable Lévy process such that the characteristic function of L; takes the form

(1.2) E(e21) = exp {/ (% —1—i02)Chzt72 dz} , 6 € R,
0

where C, := (al'(—@))™' and T denotes the Gamma function. In fact, (Li)ef,n0) is a strictly
a-stable Lévy process, see, e.g., Sato [35, part (vi) of Theorem 14.7]. We suppose that Yo, (W})ie(0,00)
and (L¢)seo,00) are independent. Under the given conditions together with E(Yp) < oo, there is a
(pathwise) unique strong solution of the SDE (1)) with P(Y; € [0,00) for all ¢t € [0,00)) = 1. As a
matter of fact, the SDE (L)) is a special case of the SDE (1.8) in Fu and Li [I5] (with the special
choice z; = 0), for which the existence of a pathwise unique non-negative strong solution has been
proved (see Fu and Li [I5] Corollary 6.3]). Eventually, the process (Y;)ic[o,00) given by the SDE
(II) is a continuous state and continuous time branching process with immigration (CBI process),
see (ii) of Proposition 2ZJ1 We call Y an a-stable CIR process (or Alpha-CIR process), which is a
generalization of the usual CIR process (given by the SDE (1) formally with ¢ = 0).

Stable CIR processes become more and more popular in stochastic modelling, and it is an inter-
esting class of CBI processes on its own right as well. Carr and Wu [0, equation (31)] considered a
stochastic process admitting an infinitesimal generator which coincides with the corresponding one of
an a-stable CIR process with o =0, see (iv) of Proposition 211

Li and Ma [26] proved exponential ergodicity for the process (Y;)icj0,c) Provided that a € (0,00)
and b € (0,00), for more details, see (ii) of Theorem[Z5l Li and Ma [26] also described the asymptotic
behavior of the conditional least squares estimator (LSE) and weighted conditional LSE of the drift
parameters (a,b) of an a-stable CIR process given by the SDE (I.T]) with o = 0, based on (discretely
observed) low frequency observations in the subcritical case (i.e., when b € (0,00)). In the region
ae (1, 1J”/g), Li and Ma [26] showed that the normalizing factor for the LSE of (a,b) is n(®1/o*

2
which is quite different from the +/n-normalization being quite usual for subcritical models. On the

top of it all, Li and Ma [26] also proved that the corresponding normalizing factor for the weighted
LSE of (a,b) is nl® D/ (being different from the one for the (usual) LSE) in the whole region
a € (1,2).

Jiao et al. [19] investigated several properties of a-stable CIR processes such as integral repre-
sentations, branching property in the pathwise sense, necessary and sufficient conditions for strictly
positiveness and they made an analysis of the jumps of the process. Further, they used a-stable CIR
processes for interest rate modelling and pricing by pointing out that these processes can describe
some recent phenomena on sovereign bond market such as large fluctuations at a local extent together
with the usual small oscillations, for more details, see the Introduction of Jiao et al. [I9]. Very recently,
Jiao et al. [20] have proposed concrete examples of applications and investigated a factor model for
electricity prices, where a-stable CIR processes may appear as factors of the model in question.

Peng [33] introduced and studied a so-called a-stable CIR process with restart, by which one means
that the process in question behaves as an a-stable CIR process given by the SDE (1)) with ¢ =0,
it is killed at the boundary 0 of [0,00), and according to an exponential clock it jumps to a new
point in [0,00) according to a given probability distribution on [0,00). As it was pointed out in
Peng [33], restart phenomenon appears in internet congestion as well: whenever a web page takes too



much time to appear, it is useful to press the reload button and then usually the web page appears
immediately.

Yang [38] studied a-stable CIR processes with small a-stable noises given by the SDE
(1.3) dYf = (a — bY)dt + de ¢/ YE dLy, t € [0,00),

with a non-negative deterministic initial value Y5 = yo € [0,00), where ¢ € (O,ﬁ) and
e € (0,00). The asymptotic behavior of an approximate maximum likelihood estimator (MLE) of

(a,b,0) has been described based on discrete time observations at n regularly spaced time points
k

n’
rate, for some restricted parameter set, Yang [38 Theorem 2.4] proved asymptotic normality of the

ke {l,...,n}, on a fixed time interval [0,1]. Tending & to 0 and n — oo at a given

approximate MLE in question. In some sense it is surprising, since this restricted parameter set
contains parameters belonging to critical (b = 0) and supercritical (b € (—o00,0)) models as well
both with normal limit distributions, and for critical models, the limit distribution, in general, is not
even mixed normal.

Ma and Yang [31] investigated asymptotic behavior of the LSE of a for the model (L3]) (all
the other parameters are supposed to be known) based on discrete time observations as in Yang [3§]
described above. They described the asymptotic behavior of the LSE in question and derived large
and moderate deviation inequalities for it as well, see Ma and Yang [31, Theorems 2.1, 2.3-2.5].

In this paper, supposing that a € [0,00), 0,6 € (0,00) and « € (1,2) are known, we study the
asymptotic properties of the MLE of b € R based on continuous time observations (Y});co7] Wwith
T € (0,00), starting the process Y from some known non-random initial value yo € [0, 00).

The paper is organized as follows. Section Bl is devoted to some preliminaries. First, we recall
some useful properties of the stable CIR process (Y});c0,00) given by the SDE (L)) such as the
existence of a non-negative pathwise unique strong solution, the forms of the Laplace transform and
the infinitesimal generator or conditions on the strictly positiveness of the process or the integrated
process, see Proposition 2.1l We derive a so-called Grigelionis form of the semimartingale (Y});c(0,00)
see Proposition Based on the asymptotic behavior of the expectation of Y; as t — oo, we
distinguish subcritical, critical or supercritical cases according to b € (0,00), b=0 or b€ (—00,0),
see Proposition 2.3] and Definition 2.4l In Proposition 23] it also turns out that the parameter b
can be interpreted as a growth rate of the model. We recall a result about the existence of a unique
stationary distribution for the process (Y});g[0,00) in the subcritical and critical cases, and about its
exponential ergodicity in the subcritical case, due to Li [25], Li and Ma [26] and Jin et al. [21], see
Theorem We call the attention that there exists a unique stationary distribution for (¥%).c(0,00)
in the critical case as well. Remark [2Z.6]is devoted to give an alternative proof for the weak convergence
of Y; as t — oo in Theorem[2Hlin case of o € (0,00), giving more insight as well. In Remark [27] we

give a statistic for o2

using continuous time observations (Y;);cjo,7] With an arbitrary 7' € (0, 00),
and due to this result we do not consider the estimation of the parameter o, it is supposed to be
known. In Section Bl we derive a formula for the joint Laplace transform of Y; and fg Y, ds, where
t € [0,00), using Theorem 4.10 in Keller-Ressel [22], see Theorem B.Il We note that this form of the
joint Laplace transform in question is a consequence of Theorem 5.3 in Filipovié¢ [13], a special case of
Proposition 3.3 in Jiao et al. [19] as well, and it is used for describing the asymptotic behavior of the
MLE of b in question in the critical and supercritical cases. Section[dlis devoted to prove the existence

and uniqueness of the MLE of b (provided that o € (0,00)) deriving an explicit formula for it as



well, see Proposition In Remark [43] under the additional assumption a € [0—22, oo), we prove
that L; is a measurable function of (Yy)yejo,ry for all ¢ € [0,7] with any T € (0,00). In Section
B provided that a € (0,00), we prove strong consistency and asymptotic normality of the MLE of
b in the subcritical case, see Theorem [B.1l The asymptotic normality in question holds with a usual
square root normalization (v/T), but as usual, the asymptotic variance depends on the unknown
parameter b, as well. To get around this problem, we also replace the normalization 7T by a
random one % < fg Y, ds) ' (depending only on the observation, but not on the parameter b) with
the advantage that the MLE of b with this random scaling is asymptotically standard normal, so one
can give asymptotic confidence intervals for the unknown parameter b, which is desirable for practical
purposes. Section [l is devoted to prove the strong consistency of the MLE of b in the critical case,
provided that a € (0,00), (see Theorem [6.2)) using the limit behavior of the unique locally bounded
solution of the differential equation ([B]) at infinity described in Proposition 6.1l We call the attention
to the fact that for the a-stable CIR process (Y)icp,c), the critical case (b = 0) is somewhat
special (compared to the original CIR process with b = 0), since there still exists a unique stationary
distribution for (Y})c(0,00), however its expectation is infinite unless a = 0 (see Theorem 2.3,
and surprisingly, we can prove strong consistency of the MLE in question not only weak consistency
usually proved for critical models. In the critical case the description of the asymptotic behavior of
the MLE remains open. In Section [7], for the supercritical case, provided that a € (0,00), we prove
that the MLE of b is strongly consistent and asymptotically mixed normal with the deterministic

1/2
—bT/2 " and it is asymptotically standard normal with the random scaling % ( fg Ysds , see

scaling e
Theorem [7.4l We point out that the limit mixed normal law in question is characterized in a somewhat
complicated way, namely in its description a positive random variable V comes into play of which
the Laplace transform contains a function related to the branching mechanism of the CBI process
(Y¢)te[o,00)> see Theorem [Tl We give two proofs for the derivation of the Laplace transform of V,
and the second one is heavily based on the general theory of CBI processes, for which we will refer to
Li [25]. We close the paper with three Appendices, where we recall certain sufficient conditions for the
absolute continuity of probability measures induced by semimartingales together with a representation
of the Radon-Nikodym derivative (Appendix[Al), some limit theorems for continuous local martingales
(Appendix[B]) and in case of a %—stable CIR process we present some explicit formulae for the Laplace
transform of the unique stationary distribution in the subcritical and critical cases, of Y;, t € [0, 00),

in all the cases of b€ R, and of V in the supercritical case, respectively (Appendix [C]).

Finally, we summarize the novelties of the paper. According to our knowledge, maximum likelihood
estimation based on continuous time observations has never been studied before for the a-stable CIR
process (Yt)te[o,oo)a and since these processes become more and more popular in financial mathematics
and market models for electricity prices, the problem of estimating its parameters is an important
question as well. Further, in the critical case, somewhat surprisingly, we can prove strong consistency
of the MLE of b, which can be considered as a new phenomenon, since for other critical financial
models, such as for the usual CIR process or for the Heston process, only weak consistency is proved
in the critical case, see Overbeck [32] Theorem 2, parts (iii) and (iv)] and Barczy and Pap [6, Remark
4.4], respectively.



2 Preliminaries

Let N, Z4, R, Ry, Ryy, R_, R__ and C denote the sets of positive integers, non-negative
integers, real numbers, non-negative real numbers, positive real numbers, non-positive real numbers,
negative real numbers and complex numbers, respectively. For x,y € R, we will use the notations
x Ay:=min(z,y) and zVy:=max(z,y). The integer part of a real number = € R is denoted by
|z]. By |lz|| and ||A|, we denote the Euclidean norm of a vector x € R? and the induced matrix
norm of a matrix A € R%?, respectively. By B(R.), we denote the Borel o-algebra on R,. We
will denote the convergence in probability, in distribution and almost surely, and almost sure equality
by i>, £>, 2% and %, respectively. By C2(R,,R) and C®(R,,R), we denote the set of
twice continuously differentiable real-valued functions on Ry with compact support and the set of
infinitely differentiable real-valued functions on R, with compact support, respectively.

Let (Q,]: s (F)ter +,]P’) be a filtered probability space satisfying the usual conditions, i.e.,
(€2, F,P) is complete, the filtration (F;)icr, is right-continuous, Fy contains all the P-null sets
in F, and F = cr(Ute]R+ ]:t). Let (Wi)ier, be a standard Wiener process with respect to the
filtration (F)ier ., and (L¢)ier, be aspectrally positive strictly a-stable Lévy process with respect
to the filtration (F;)ier, such that the characteristic function of L; is given by (I.2)). We assume
that W and L are independent. Recall that the Lévy-Itd’s representation of L takes the form

(2.1) L= / / L(ds,dz) = 7t+/ / L(ds,dz) + / / L(ds,dz)
0,8] J(0,00) 0,1] (0,1] J(1,00)

for t € Ry, where pl(ds,dz) := Zu€R+ 1AL, 0} E(u,ALy)(ds,dz) is the integer-valued Poisson
random measure on ]R?H_ associated with the jumps AL, := L, — Ly—, uvw € Ryy, ALy := 0,
of the process L, and ¢(,,) denotes the Dirac measure at the point (u,r) € R2, iF(ds,dz) :=
p*(ds,dz) — dsm(dz), where m(dz) = Caz ' "L )(2)dz, and v := f(l zdsm(dz) =

—Cy ffo z7%dz = 1€aa' The measure m is nothing else but the Lévy measure of L. We also note

that (L¢)ier, is a martingale and consequently E(L;) =0, t € R,.

The next proposition is about the existence and uniqueness of a strong solution of the SDE (IL.T])
stating also that Y is a CBI process with explicitly given branching and immigration mechanisms
and we also collect some other useful properties of Y based on Dawson and Li [10], Fu and Li [15],
Li [25] and Jiao et al. [19].

2.1 Proposition. Let 19 be a random variable independent of (Wy)ier, and (Li)ier, satisfying
Pnp e Ry) =1 and E(ny) <oco. Let a€Ry, beR, c€Ry, d€Riy, and a € (1,2). Then
the following statements hold.

(i) There exists a pathwise unique strong solution (Y;)ier, of the SDE (L)) such that P(Yy =
no) =1 and P(Y; € Ry forall teRy)=1.

(ii) The process (Yi)ier, is a CBI process having branching mechanism

o2

50!

R(z) = —2* + —2% + bz, z € Ry,
2 «

and immigration mechanism

F(z) = az, z € Ry.



(iii) For all t € Ry and yo € Ry, the Laplace transform of Y; takes the form

(2.2) E(e | Yo = yo) = exp {—yovtw - [ P ds}

for all N € Ry, where Ry 3t v(N) € Ry s the unique locally bounded solution to

0

(2.3) avt()\) = —R(vi(N)), vo(A) = A
If teRy, yoeRy and A€ Ry \ {0y} with Op:=inf{z e Ry;: R(z) e Ry} € Ry, then
we have
v (N)
(2.4) E(e Yo = yo) = exp { —yovs(A) + / et
r o R(z)

Especially, 24) holds for all X\ € Ry whenever b€ R,.

(iv) The infinitesimal generator of Y takes the form

2

(2.5) (Af)(y) = (a—by)f'(y) + %yf"(y) + 5% /OOO <f(y +2)— fly) - zf'(y))C’az_l_o‘ dz,

where y € Ry, f € C*R4,R), and f' and f" denote the first and second order partial
derivatives of f.

(v) If, in addition, P(ng € Ryy) =1 or a € Ryy, then ]P’(fotsts ER{4) =1 forall t € Ryy.

2

(vi) If, in addition, o € Ry and a > %, then IP’(Yt eRyy forall te R++) =1.
(vii) If, in addition, P(np € Ryy) =1, a =0 and b€ Ry, then P(ryp < co) = 1, where
10 :=1inf{s e Ry : Y; =0}, and P(Y; =0 forall t> 1) =1.

Proof. For the existence of a pathwise unique non-negative strong solution satisfying P(Yp =ng) =1
and P(Y; e Ry forall t € Ry) =1, see Fu and Li [I5] Corollary 6.3], which yields (i).
Further, Theorem 6.2 in Dawson and Li [10] together with
00 1 00 1 1
/ (z A 22)Chz717%dz = C’a/ T dz + C’a/ 2 %dz =C, < + > < o0
0 0 1

2—a a-—1

and

(67

1 —1 &
ola—1) / (e — 1+ za)z " %dx = =
0 «

> —zxr —1l-a _ = (
(2.6) /0 (e 1+ zx)Chx dz = ~T0

—

for z € Ry (see, e.g., Li [25] Example 1.9]) imply that Y is a CBI process having branching and
immigration mechanisms given in (ii).

For formula (2.2) and, in case of b € Ry, formula ([2.4) see Li |25, formula (3.29) and page 67].
Next we check that

t v () P
2.7) _ /0 Flos(\) ds = /A 28 dz

6




for all ¢t € Ry and A € Rip\ {fp}. It is enough to verify that the continuously differentiable
function (0,t) > s +— wvs(A\) 1is strictly monotone for all X € Ryi \ {fp}, since then, by the
substitution z = vs(\), we obtain

) . - vt (A) & . ve(d) & 2

and hence (27, where (vg(A) A vi(A),v9(A) V (X)) 5 2z — v,(\) denotes the inverse of (0,t)
s +— vs(A). By Li [25] Proposition 3.1], the function Ry 3 A — wvg(\) € Ry is strictly increasing
for all s € Ry. We have vs(6p) = 0y for all s € Ry, since R(0y) = 0 yields that this constant
function is the unique locally bounded solution to the differential equation (2.3)) with initial value 6.
If b€ Ry, then 6y =0, thus A € Ryy implies vs(N\) > v5(0) = 0 for all s € Ry. In this
case, using the differential equation (Z3]) and the inequality R(z) > 0 for all z € R,, we obtain
%fus()\) = —R(vs(N)) <0 forall s e Ry, hence the function (0,¢) 3 s+ vs(A) is strictly decreasing,
thus we conclude (27) for b€ Ry, If b€ R__, then 6y € R;,. Consequently, in case of b€ R__
and X € (0,0g) we have wvs(\) < vs(6p) = 6y for all s € Ry. In this case, using the differential
equation (2.3)) and the inequality R(z) <0 for all z € (0,6p), we obtain %vs()\) = —R(vs(A)) >0
for all s € Ry, hence the function (0,%) > s — vs(\) is strictly increasing, thus we conclude (2.7))
for be R__ and X € (0,6p). In a similar way, in case of b € R__ and X € (fy,00) we have
vs(A) > vs(6p) = Op for all s € Ry. In this case, using the differential equation (23] and the
inequality R(z) > 0 for all z € (fy,00), we obtain %US()\) = —R(vs(N)) < 0 for all s e Ry,
hence the function (0,%) 3 s+~ vs(A) is strictly decreasing, thus we conclude (7)) for b € R__ and
A € (0p,00) as well.

The form of the infinitesimal generator (Z3]) can be checked similarly as in the proof of Theorem
2.1 of Barczy et al. [4], implying (iv).

For (v), let us fix ¢t € Ry 4 and put
A ={weQ:[0,t] s Yy(w) is cadlag and Yi(w) € Ry forall s € [0,t]}.
Then, by (i), P(A;) =1 and for all w € A, fOtYS(w) ds = 0 if and only if Y;(w) = 0 for all
s €[0,t). By (L),
YsZYo—I-as—b/OsYudu+0/08\/Zqu+5/08‘(/KdLu, s€eRy,

holds P-almost surely. The stochastic integrals on the right hand side can be approximated as

[ns)

i— i — i—1) — ) ud u
sup ;‘/YTl(Wn Wit) /0\/7 W,

P
—0 as n — 00,

s€l0,t]]| .=

[ns] s .
51[1p} Z O“/Yu_(Li—Lil)—/ Y, dL,| — 0 as n — 0o,
se0,t]| i, n " n 0

see Jacod and Shiryaev [I8, Theorem 1.4.44]. Hence there exists a sequence (ny)reny of positive



integers such that

\_nkSJ s

sup Yioa(Wai —Wia)— VY, dW,| — 0 as k — oo,
[ns] s

sup o Yil_(Li—Lu)—/ YYy—dL,| — 0 as k — oo

hold P-almost surely. Let us denote by A; the event on which the above two P-almost sure
convergences hold. Consequently, with the notation

. t
A, = {wEQ:/ Ys(w)ds:O},
0
we have

/thﬂfltﬁAtC/:ltﬂ{weQ: (/ \/Yuqu>(w):0, </ \O‘/Yu_dLu>(w):0 for all sG[O,t)}
0 0
C;ltﬁ{weQ:Ys(w):Yo(w)—i-as for all s €[0,t)}

letﬁ{wEQ:/ (Yo(w) + au)du =0 for all sE[O,t)}
0

= 2
CAtﬂ{wGQ:YO(w)S—I—%Zo for all sG[O,t)}

C /thﬂ {w €N:Y(w) = —? for all s e [O,t)},

where the last event has probability 0, implying P(ngs(w) ds = 0) =0. Thus P(fg Yi(w)ds €
R44+) =0, and hence we have (v).

For (vi), see Proposition 3.7 in Jiao et al. [19].

Finally, we prove part (vii). First note that in case of a = 0, (Y})ier, Iis a continuous time
branching process (without immigration). If b € Ry, then by Corollary 3.9 in Li [25], P(7p <
oo|Yy =yy) =1 forall yy € Ryy, since Condition 3.6 in Li [25] holds for all 6 > 0 due to
feoo % dz < feoo ﬁ dz < oo. The last statement follows from the fact that in case of ¢ =0 and
P(Yp = 0) =1, the pathwise unique non-negative strong solution of the SDE (LLI]) is Y; =0 for all
teRy. O

Note that, by Proposition I} the process (Y;)icr, is a semimartingale, see, e.g., Jacod and
Shiryaev [18, 1.4.33]. Now we derive a so-called Grigelionis form for the semimartingale (Y;)icr, ,
see, e.g., Jacod and Shiryaev [I8] 111.2.23] or Jacod and Protter [I7, Theorem 2.1.2].

2.2 Proposition. Let 19 be a random variable independent of (Wi)ier, and (Li)ier, satisfying
P(np € Ry) =1 and E(ny) < oo. For a € Ry, beR, o € Ry, § € Ryy, and a € (1,2),
let (Yi)ier, be the unique strong solution of the SDE (LI) satisfying P(Yo = no) = 1. Then the



Grigelionis form of (Yi)ier, takes the form

Yf,ZY()—I—/Ot(a—bYu+75({/7u)du+/0t</ (26 /Yy) — 6 §/Yuh(2) >du
(2.8) +a/t\/7udwu
// (26 /Yo ) i¥(du,dz) + //za\/i h(28 §/Yu_)) pt(du, dz)

for t e Ry, where h:R —[-1,1], h(2):=z2L_y(2), z€R.
Proof. Using (21]) and Proposition I1.1.30 in Jacod and Shiryaev [18], we obtain

t t t
Yt:YOJr/ (a—bYu)du—i—/ U\/Yuqu—i—&/ /Y,_dL,
0 0 0
t t t
:YO+/ (a—bYu)du—i-/ J\/Yuqu—i—’y&/ Y,— du

0 0

+5//\/ _h(z) it (du, dz) +5//\/ (z—h L(du,dz)
for t € Ri. In order to prove the statement, it is enough to show
(2.9) 5/ / /Yy h(z) (p*(du,dz) — dum(dz)) = I — I,
(2.10) 5/ / VY- (z— Ldu,dz) = Is + I,

with

L= / / (28 §/Vs) (" (du, dz) — dum(dz)),

I = / [ (15 Y70 = 8 9/Tah(2) () = dum(d)
Iy = //za\/t h(=6 $/Vo)) i (du, d2),

L= // (h(=6 3/Vas) — 6 3/ Vo h(2)) i (du, d2),

and the equality

t
(2.11) L-L=1Is with Iy ::/ </ h(z6 3/Yy) — 6 3/ YVuh(z >du
0
For the equations (2.9), [2.10) and 211)), it suffices to check the existence of Iy, I3 and Is.

First note that for every s € (0,00) we have

szlycry i 5€(0,1), z€R,
(2.12) h(sz) —sh(z) =<0 if s=1, z€R,
—321{§<|z|<1} if se(1,00), z€R.



The existence of I will be a consequence of Iy = Ip1 — Iz — I>3 with

t
o o L
L2, -—/0 /R‘svyu—ﬁ{lmga%}1{6We<o,1>}“ (du, dz),

t
1272 ::/ /5«a/YU_Z]]_{1<Z<5a1Yu}1{6%6(071)} dum(dz),

I3 —/ /5\/Y z]l{ e <lel<1} {5W€(1 ( L(du,dz) — dum(dz)),

since on the set {Y,_ = 0}, the integrand h(zd {/Yy—) — 0 /Y,—h(z) in I takes value 0. Here
we have

t t
[I2,1] < /0 /R|59/Yu_z|]l{1<|z|< }11{5a Yo} pE(du,dz) < /0 /R]l{KZ} p(du, dz) < oo

P-almost surely, see, e.g., Sato [35, Lemma 20.1]. Moreover,

t
Bal < [ [ 1597

1
Ve

; %/1,,7}]1{5 3/Vase(o,1yy dum(dz)

t
< /0 /R]l{1<|z|} dum(dz) =tm({z € R:|z] > 1}) < o0

Further, the function 2 x Ry x R 3 (w,t,2) — h(z) belongs to Gloc( Ly, see Jacod and Shiryaev

[18, Definitions I1.1.27, Theorem I1.2.34]. We have \z]l{(s <e<1y L5 ¢/Fe(1,00) }] |h(z)|, hence,

by the definition of Gjoc(p”), the function Q@ xR, xR > (w t,z) — z]l{ <Je<y L RV e(1,00)

also belongs to Giee(u”). By Jacod and Shlryaev [18 Proposmon II. 1.30], we conclude that the

function Q@ xRy xR 3 (w,t,2) — 0 {Yy, z]l{ <<} L5 ¢/ P e (1,000} also belongs to Gloc (),

thus the integral I3 exists, and hence we obtam the existence of I, and hence that of I3.

Next observe that for the process ( := 9§ fg YYy—dL,, te Ry, wehave A = dVYi_ALy,
t € Ry, following from (Z1]) and Jacod and Shiryaev [18, Definitions I1.1.27]. Consequently,

13—/ /Z5 u_]l{| 5W‘>1}M d’LL dZ Z AL 5\/ “_]l{|ALu5O‘/Yu ‘>1}

u€(0,t]

= Y AGIgacsy

u€(0,t]

is a finite sum, since the process ((t)ic(o,00) admits cadlag trajectories, hence there can be at most
finitely many points u € [0,¢] at which the absolute value |A(,| of the jump size A(, exceeds 1,
see, e.g., Billingsley [7, page 122]. Thus we obtain the existence of I3, and hence that of Iy.
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Finally, we have

t
|75 S/O </R\5 V Yuzm{1<|z|<6%}1{5 YVue(0,1)} m(d2)> du

t
+/(; </R ’(5 “a/YuZ’]]'{(s%}ﬁ<‘z‘<1}]‘{5m€(1700)} m(dz)) du

< /Ot </R 11{1<|z|}m(d2)> du + /Ot (/R |6 %2\21{z<1}m(d2)> du

t 1
=tm({z e R:|z] > 1}) +/ 52y,e du/ |2]2 m(dz) < oo,
0 -1

since f_ll |z|2m(dz) = fol 22Chz717%dz = 2€“a € Ry, hence we conclude the existence of 5. O

Next we present a result about the first moment of (Y;)icr, -

2.3 Proposition. Let a € Ry, beR, 0 e Ry, d€ Ry, and a <€ (1,2). Let (Y;)ier, be the
unique strong solution of the SDE (1)) satisfying P(Yo € Ry) =1 and E(Yy) < co. Then
e (E(Yo) —4)+ ¢ if b#0,

(2.13) E(Y;) = t € R,
E(Yp) + at if b=0,

Consequently, if b€ Ry, then
. a
(2.14) Jim E(Y;) =

if b=20, then
lim t ' E(Y;) = a,

t—00

if be R__, then

. a

Jim e E(Y,) = E(¥p) — &

Proof. By Proposition I, (Y;)icr, is CBI process with an infinitesimal generator given in (2.5]).
By the notations of Barczy et al. [5], this CBI process has parameters (d,c, 3, B,v,u), where d =1,
c=1%0% B=a B=-b-— JSz=1)"pu(dz), v=0 and p=6*m. Since E(Yp) < oo and
the moment condition fR\{O} |2|1{j2151) ¥(d2) < oo trivially holds, we may apply formula (3.1.11) in
Li [27] or Lemma 3.4 and (2.14) in Barczy et al. [5] with B = B + JoS(z=1)" p(dz) = —=b and
B=p8+ fR\{O} zv(dz) = a yielding that

E(Y;) = !B E(Yy) + </Ot euB du> 3.

This implies (2I3]) and the other parts of the assertion. O

Based on the asymptotic behavior of the expectations E(Y;) as t — oo, we introduce a classifi-
cation of the stable CIR model given by the SDE (ILT]).

2.4 Definition. Let a € Ry, be R, o € Ry, d € Ry, and o € (1,2). Let (Yi)ier, be
the unique strong solution of the SDE (1)) satisfying P(Yo € Ry) =1 and E(Y)) < co. We call
(Yi)ter, subcritical, critical or supercritical if b€ Ry, b=0 or be R__, respectively.

11



The following result states the existence of a unique stationary distribution for the process (Y;)ier,
in the subcritical and critical cases, and the exponential ergodicity in the subcritical case.

2.5 Theorem. Let a €c Ry, be Ry, o e Ry, 6 € Ry, and o€ (1,2). Let (Yi)ier, Dbe the
unique strong solution of the SDE (1)) satisfying P(Yp € Ry) =1 and E(Y)) < oc.

(i) Then (Yi)ier, converges in law to its unique stationary distribution m having Laplace transform

o0 A F(z) A ax
2.15 / e M r(dy) = ex { —/ dx}: ex { —/ " dx}
(2.15) 0 (dy) P o R(z) P 0 T4 Ly y by

for X € Ry. FEspecially, in case of b =0 and o =0, w is a strictly (2 — «)-stable

distribution with no negative jumps. Moreover, the expectation of w is given by
- 0 if a=0 and b=0,
(2.16) /0 ym(dy) = TeRy if beRyy,
+00 if aeRyy and b=0.

ii) If, in addition, a € Ryy an € Ry, then the process (Yi)ier, is exponentially ergodic,
ii) If, in additi R d beR then th Yi)ter, i tiall di
i.e., there exist constants C € Ry, and D € Ry, such that

|| PY,&\Y():y —7T||T\/ < O(y + 1)e_Dt7 t € Ry, y e Ry,

where ||u||Tv  denotes the total-variation norm of a signed measure p on Ry defined by
lullrv == supacpm, ) [(A)], and Py, y,—, is the conditional distribution of Y; with respect
to the condition Yy =y. As a consequence, for all Borel measurable functions f:R; — R
with [;° 1 f (y)| w(dy) < oo, we have

T 00
(2.17) %/0 f(Ys)dsg/O fly)m(dy) as T — oo.

Proof. The weak convergence of Y; towards m as t — oo, and the fact that = is a stationary
distribution for (Y;)ier, follow immediately from Li [25, Theorem 3.20 and the paragraph after
Corollary 3.21], since R(z) = 6’2—2,22 + %az" +bz e Ryy, z€ Ry, and condition (3.30) in Li [25] is
satisfied. Indeed, for all A € R4,

A A A 22—«
F A
/ (Z)dz:/ 3 (;f dzgﬁ/ zl_adz:L<oo.
o Iiz) A 5 Jo 52 — )

We note that Li and Ma [26, Proposition 2.2] contains the above considerations in case of b€ Ry .

The uniqueness of a stationary distribution in (i) follows from, e.g., page 80 in Keller-Ressel [23].
Namely, let us assume that there exists another stationary distribution 7’ for (Y;)ier,, and let
(Y{)ier, be the unique strong solution of the SDE (L)) with a € Ry, b€ Ry, o € Ry, and
d € Ryy satisfying L£(Yy) = 7/, where L(Y;) denotes the law of Y. Then, by part (iii) of
Proposition 211 for all A € R,

A
e {- o) ool [ RS e}

12
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where the last but one step follows by the dominated convergence theorem and the fact that
limy oo (X)) =0, X € ]R+ (see, e.g., the proof of Theorem 3.20 in Li [25]). Since L(Y]) = 7/,
t € Ry, we have fooo '(dz) = eXp{ 0 g; dz}, A € Ry, yielding that fooo e M1l (dz) =

OOO M r(dz), A€ Ry. By the uniqueness of Laplace transform, we get 7 = 7/, as desired.

Further, in case of b=0 and o =0, by ([ZI5), we have

0o A
N () — _ / L P {_7“” )\2_‘1} AER
/0 e Y m(dy) eXp{ N il Gk S B Ry : +

o

so m is a strictly (2 — «)-stable distribution with no negative jumps. Finally, again by (2I5]),

0 if a=0 and b=0,
/OO 7(dy) = lim a @ cR, if beR
=4 ¢ i
. Y Y L0 02)\2+5a)\a—|—b)\ b + ++
+00 if aeRyy and b=0.

For part (ii), we can use Theorem 2.5 in Li and Ma [26]. We only have to check Condition 2.1 of Li
and Ma [26], namely, we have to show the existence of some constant 6 € Ry, such that R(z) € Ry
for z>6 and [;° R 7y 4z < oo. Here R(z) e R4y forall zeRiy (dueto beRiy), and, e.g.,
with 6 =1,

/001dz— e < 00
R 50‘ 2o (a—1)6@ )

In case of o =0, the exponential ergodicity of (Y;)ier, also follows by Theorem 6.1 in Jin et al.
[21]. Convergence ([ZI7) follows, e.g., from the discussion after Proposition 2.5 in Bhattacharya [8].
|

2.6 Remark. In what follows, in case of o € R, we present another (and more detailed) proof

for the convergence Y; Py ¢ as t— 0o in Theorem giving more insight as well. It is enough to
consider the case of P(Yy =1yp) =1 with some yo € Ry. Using (22]), we have

E(e=") = exp { o) —a /0 t vs()\)ds}

for t € Ry and X € Ry, where the function Ry 3 A — v (\) € Ry is given by ([23). First, we
show that limg_,o v¢(A) = 0. The proof is based on the following version of the comparison theorem
(see, e.g., Lemma C.3. in Filipovi¢ et al. [I4] or Amann [I, Lemma 16.4]): if S : Ry xR — R is
a continuous function which is locally Lipschitz continuous in its second variable and p,q : Ry — R
are differentiable functions satisfying

P'(s) <S(s,p(s)), s E€Ry,

q'(s) = S(s,q(s)), s € Ry,

then p(s) < q(s) forall s € Ry. By choosing S:Ri xR —R, S(s,z):= —6’2—2x2, (s,x) € Ry xR,
the comparison theorem yields that

(2.18) 0 <wvs(A) < f(s), seRy,
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where f: R, — R4 is the unique locally bounded solution to the differential equation

F(5) =S5, f(s) =~ T f(sP,  s€Ry  with  f(0)=A
The solution of this separable differential equation takes the form
A
(219) f(S) == PRI S € R+.
1+ %s

Hence, using o € Ryy, we readily have lim; o f(t) = 0, which, by (ZI8]), yields that
limy oo v¢(A) =0 for all A € Ry, as desired. Further, by (2.4]), we have
t ’l)t()\)

lim [ vs(A)ds=— lim 5 5o
t—=o0 Jo t—oo [y %224_?2@_’_[)2

z

dZ, A€R+

Then, by the continuity of the integral upper limit function, we have

t A
lim [ vs(\)ds = / e dz,  AeER,,
t=o0 Jo 0 G224+ 294+ bz

where the integral on the right hand side is well-defined, since

A z Az a 1 a2~
/ 5 — dzé/ M—dz:—/ Tdz = < 00.
0 T2+ L0 by 0 Sz e 5*(2 — )

Consequently, by continuity theorem, we have (ZI5)) in case of o € R, ;. O

Next we give a statistic for o2

using continuous time observations (Y;);co77 With an arbitrary
T € Ri,. Due to this result we do not consider the estimation of the parameter o, it is supposed to
be known. The parameter o is a parameter for the diffusion part related to W, and, in general, the
estimation of this kind of parameter is possible using an arbitrarily short (continuous time) observation
of the underlying process (at least theoretically), and that’s why authors suppose this to be known.

In the forthcoming Remark 7] we demonstrate that this also holds for our model.

2.7 Remark. Let a € Ry, be R, o0 Ry, §d € Ryy, and o € (1,2). Let (Y;)er, be
the unique strong solution of the SDE (L) satisfying P(Yy € Ry) =1 and E(Yp) < co. The
Grigelionis representation given in (2.8)) implies that the continuous martingale part Y of Y is
Yot = o fg VY, dW,, t € Ry, see Jacod and Shiryaev [I8, I11.2.28 Remarks, part 1)]. Consequently,
the (predictable) quadratic variation process of Y ig (ycont), — 42 fot Y,du, t € R.. Suppose
that we have P(Yp € Ryy) =1 or a € Ry;. Then for all T € Ry, we have

9 <Ycont>T e

= =.0p,

Ty, du

since, due to (v) of Proposition 21, P fOT Y,du € ]R++) = 1. We note that 7% is a statistic,
i.e., there exists a measurable function Z: D([0,7],R) — R such that 07 = Z((Yu)uefo,1)), where

D([0,T],R) denotes the space of real-valued cadlag functions defined on [0,77], since

LnT |
(2.20) . (Z (Vi— 1-;1)2 - Z (AYU)2> N % as n — 0o,

nT
% Zz\_ 1J Y% i=1 w€e(0,T]
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where the convergence in (Z20) holds P-almost surely along a suitable subsequence, the members of
the sequence in ([2.20) are measurable functions of (Yy)yec[o,7), and one can use Theorems 4.2.2 and
4.2.8 in Dudley [II]. Next we prove ([220). By Theorem 1.4.47 a) in Jacod and Shiryaev [18],

nT|
Z(Y%—Y%)Qﬂ[Y]T as n— oo, TER,,
i=1

where ([Y];)icr, denotes the quadratic variation process of the semimartingale Y. By Theorem
1.4.52 in Jacod and Shiryaev [18],

Yir=(Y)r+ Y (AY,)?,  TeRy.

u€e[0,T
Consequently, for all T € Ry, we have
[nT| ) .
Z (Yi =Yir)" — Z (AY,)? — (Yort), as m — 0.
=1 " " we[0,T]

Moreover, for all T'€ Ry, we have

1 [nT] b T

—ZYQ—>/ Y, du as n — 0o,

i 0

see Proposition 1.4.44 in Jacod and Shiryaev [18]. Hence ([2:20)) follows by the fact that convergence in
probability is closed under multiplication. Finally, we note that T is fixed above, and it is enough to
know any observation (Y});co,7] to carry out the above calculations, where 7' > 0 can be arbitrarily
small. O

3 Joint Laplace transform of Y; and fg Y,ds

Using Theorem 4.10 in Keller-Ressel [22] we derive a formula for the joint Laplace transform of Y;
and fg Ysds, where t € Ry. We note that this form of the joint Laplace transform in question is
a consequence of Theorem 5.3 in Filipovié¢ [13] and a special case of Proposition 3.3 in Jiao et al. [19]
as well.

3.1 Theorem. Let a c Ry, beR, o€ Ry, d € Ryy, and a € (1,2). Let (Yi)ier, be the
unique strong solution of the SDE (1)) satisfying P(Yy = yo) = 1 with some yo € Ry. Then for
all uw,v e R_,

t t
E [exp {uYtJrv/ stSH = exp {yowu,v(t)Jra/ VYu,v(s) dS}, t e Ry,
0 0

where the function 1y, : Ry — R_ s the unique locally bounded solution to the differential equation

2 «
(3-1) ¢§L,’U(t) = %¢U,v(t)2 + %(_¢U,v(t))a - bwu,v(t) + v, teRy, ¢U,v(0) = u.

Further, if (u,v) # (0,0), then ty,.,(t) e R__, te Ry, and if (u,v) =(0,0), then 1y,,(t) =0,
teR,.
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Proof. By Theorem 4.10 in Keller-Ressel [22], (Y}, fot sts) teR, is a 2-dimensional CBI process

with branching mechanism R(z1,22) = (R (21, 22), Ra(21, 22)), 21,22 € R4, with
Ry(21,22) = R(z1) — 22, Ro(z1,2) =0, 21,722 € Ry,

and with immigration mechanism F (21,22) = F(z1), 21,22 € Ry, where R and F are given in
Proposition 2l Consequently, by Theorem 2.7 of Duffie et al. [I2] (see also Barczy et al. [5, Theorem
2.4]), we have

 [o {ui v [ vash] = e funa) = [ Ftun) ~punt) s}

t
= €Xp {y0¢u,v(t) + a/O ¢u,v(s) ds}v t € Ry,

where the function (¢ 4, Puv) : Ry — R2 is the unique locally bounded solution to the system of
differential equations

Vm@ Ba (o (0), =un(®) = Fun(t) + G (~bun()® = buo(®) + pun(®),  LERy,
@;,v(t) = RQ(_wu,v(t)v _Spu,v(t)) = 07 te R-ﬁ-?

with initial values )y, ,(0) = u, ©u,(0) =v. Clearly, ¢,.,(t) =v, t € Ry, hence we obtain

2 5
o) = Svuo®)? + —(—tua () = Wuul) +v,  tERL,  uu(0) =

as desired.

If (u,v) = (0,0), then, since the identically zero function is a (locally bounded) solution to
@), by the unicity of such a solution, we have go(t) =0, t € Ry. If (u,v) # (0,0), then,
on the contrary, let us suppose that there exists an ¢y € Ri; such that ,,(to) = 0. Let
te ;== 1inf{t € Ry; : ¥y ,(t) =0}. Then t, < oo, y,(t) <0 forall ¢ € [0,t,), and b, ,(ts) = 0.
If t, =0, then 0= 1y,,(ts) = ¥y, (0) = u, and hence v € R__. Further, there exists a sequence
(tn)nen such that t, € Ryy, ne N, t, | 0=t as n — oo, and ¢You(t,) =0, n € N.
Consequently, using that a locally bounded solution to (B is unique, g (kt,) = 10,(0) = 0,
k,n € N. Since t, 0 as n — oo, for all ¢t € Ry4, there exists a sequence (k,)nen such that
k, € N, neN, and kpt, -t as n — oo (one can choose ky := L%j, n € N). Since g, is
continuous, we have g ,(t) =0, t € Ry, yielding us to a contradiction (due to v € R__). So, if
ty =0, then 1, ,(t) <0, t>0, as desired. In the sequel, let us assume that ¢, > 0. On the one
hand, 4, ,(t«) =0, since

/ RT leu,v(t* + h) - wu,v(t*)
dju,v(t*) - 1}1% h

1
=1l Py (ts h7
im - o (L + 1)

where h < 0 and ty,(te +h) < 0 yield Ftpu(ts +h) > 0. On the other hand, by @I,
! o(ts) = v <0, yielding that v =0. Consequently, if ¢, > 0, then (3]) takes the form

u,v

/ 02 2 o a
wu,v(t) = 7wu,v(t) + E(_wu,v(t)) - bwuﬂ)(t)v te R-H
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where ,,(0) = v and 1, ,(ts) = 0. By the uniqueness of a locally bounded solution of (BII),
yy(t) =0 for all t >t,, and hence i, ,(t) =0 for all ¢t > 0. Indeed, let )y ,(T) := Yyo(—7),
7<0, and 7 := —t,. Then

. o2 ~ P -
Tf)u’v(T) = _77;[)%0(7—) - _( ¢u v( )) + bﬂ)u,u(T), T < 07

where JMU(O) = u, Juﬂ,(a) = 0, and, by the uniqueness of a locally bounded solution of the
differential equation above, QZUW(T) =0 for 7€ [n,0], ie, yo(—7) =0 for 7€ [—t,,0], ie,
uo(t) =0 for te0,t.]. This yields us to a contradiction taking into account the definition of ¢,
and the fact that ¢, > 0. O

3.2 Remark. (i) By (iii) of Proposition 21 ), 0(t) = —vi(—u) for all t€ Ry and ueR_.

(ii) The differential equation ([B.I)) is a special case of Polyanin and Zaitsev [34] Section 1.5.1-2/(27)].
O

4 Existence and uniqueness of MLE

In this section, we will consider the stable CIR model (1)) with known a € Ry, 0,0 € Ryy,
€ (1,2), and a known deterministic initial value Yy = yp € Ry, and we will consider b € R as an
unknown parameter.

Let P, denote the probability measure induced by (Y;);cg, on the measurable space
(D(R4+,R),D(R4,R)) endowed with the natural filtration (D;(Ri,R));cr, , see Appendix[Al Further,
forall T € Ry, let Pypr:=Pyp, g, r) be the restriction of P, to Dr(Ri,R).

The next result is about the form of the Radon—Nikodym derivative jgb L for b, beR. We will

consider Pr,. as a fixed reference measure, and we will derive the MLE for the parameter b based

b,T
on the observations (Ye)telo,17-

4.1 Proposition. Let a € Ry, b,g ER, 0,0 R4y, and a € (1,2). Then for all T € R4y, the
probability measures Py and Py, are absolutely continuous with respect to each other, and

dP . Ta~ _ 72
(4.1) log( —2L(v) ) = _b-b Yo —yo — aT — 5/ Y, dL, b / Y, du
d]P)ET O' 0

holds P-almost surely, where Y is the a-stable CIR process corresponding to the parameter b.

Proof. In what follows, we will apply Theorem I11.5.34 in Jacod and Shiryaev [18] (see also Appendix
[A). We will work on the canonical space (D(R4,R),D(R4+,R)). Let (m)wicr, denote the canonical
process M (w) := w(t), w € D(R4,R), t € Ry. Recall that the stable CIR process (ILI)) can be written
in the form (Z8). By Proposition 2] the SDE (I has a pathwise unique strong solution (with the
given deterministic initial value yo € Ry), and hence, by Theorem II1.2.26 in Jacod and Shiryaev
[18], under the probability measure P, the canonical process (7;)icr, is a semimartingale with
semimartingale characteristics (B(b), C,v) associated with the truncation function h (introduced in
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Proposition 22)), where
t
B = / <a — by + Y6 /1 + / (h(20 §/nu) — h(2)6 /M) m(dz)> du,  teRy,
0 R

t t
C’t:/ (o nu)2du:02/ Ny du, teRy,
0 0
v(dt,dy) = K(n,dy) dt

with the Borel transition kernel K from R, x R into R given by
K(y,R) := /]lR\{O}(z(S ¢/y) m(dz) for ye Ry and R € B(R)
R

with m(dz) = Caz™'"*L(g00)(z)dz.  The aim of the following discussion is to check the set of
sufficient conditions presented in Appendix [A] (of which the notations will be used) in order to have
right to apply Theorem II1.5.34 in Jacod and Shiryaev [I8]. First note that (C})ier, and v(dt,dy)
do not depend on the unknown parameter b, and hence v®b) s identically one and then (A]) and
([A.2)) readily hold. We also have

]P’b(u({t}x]R):O):]P’b< K(HS,R)ds:O>:1, teRy, beR.

{t}

Further, (Cy)icr, can be represented as Cy = fg cydF,, t € R,, where the stochastic processes
(c)ter, and (F)ier, are given by ¢; := o%n, t€R,, and Fy =t, t € R,. Consequently, for
all b,b€eR,

ot t -
B - B" = —(b 1) /0 M du = /0 SOV dF,

Pp-almost surely for every ¢ € Ry, where the stochastic process (ﬁgb’b))teﬂh is given by
Tb b—b
t( ) = T2 t€ Ry,
which yields (A3]). Next we check (A4), i.e.,
-
(4.2) P, (/ (@Sb,b))Zcu dF, < oo> =1, teR,.
0
We have . —
7 b—b
/ (859) e, dF, = ¢ 2) / medu,  tER,.
0 o 0

Since for each w € D(R4,R), the trajectory [0,¢] > u > n,(w) is cadlag, hence bounded (see, e.g.,
Billingsley [7, (12.5)]), we have fot Nu(w) du < oo, hence we obtain (4.2]).

Next, we check that, under the probability measure P, local uniqueness holds for the martingale
problem on the canonical space corresponding to the triplet (B ® c, v) with the given initial value
yo with P, as its unique solution (for the definition of local uniqueness in question, see Definition
I11.2.27 in Jacod and Shiryaev [18]). By Proposition 2] the SDE (L)) has a pathwise unique strong
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solution (with the given deterministic initial value yp € Ry), and hence Theorem II1.2.26 in Jacod
and Shiryaev [18] yields that the set of all solutions to the martingale problem on the canonical space
corresponding to (B®,C,v) has only one element (P,) yielding the desired local uniqueness. We
also mention that Theorem I11.4.29 in Jacod and Shiryaev [I8] implies that under the probability
measure [Py, all local martingales have the integral representation property relative to 7.

By Theorem II1.5.34 in Jacod and Shiryaev [I8] (see also Appendix [A), P, and P;. are

equivalent (one can change the roles of b and g), and we have

dPyr T i) 1rcomn@® L [T (2@ 2
qp. (1) = exp ; B A )" = 5 i (BN ey duy, T eR

T

holds Pj-almost surely, where ((ncom)ib))teR . denotes the continuous (local) martingale part of
(M¢)ter, under P;. Using Remarks I11.2.28 in Jacod and Shiryaev [I8] and (2.8)), the continuous

(local) martingale part (fftcont)teR+ of (i)t€R+ takes the form z"om = O'fg \/ Y, dW,, t€ R,
and, by (L), we have

AY o = 4Y; — (a — bY;) dt — 6/ Y;_dLy, teR,.

Hence

log<j£§§(§7)>:/:< b b)(dY—éFdL) /T< b;b>(a—’z§Y)d
_%/OT< ba—2b> 2V, du

b—b (T < L= b T 02— [T
=——3 /0 (dY, — 04/ Y,—dL,) + adu — 207 ), Y, du
holds P-almost surely, which yields the statement. O

Next, using Proposition [I] by considering IP’~ as a fixed reference measure, we derive an MLE
for the parameter b based on the observations (Yt)te[o 77- Let us denote the right hand side of (L.
by AT(b,g) replacing Y by Y. By an MLE bT of the parameter b based on the observations
(Yi)iejo,r), we mean

by = arg max AT(b,g),
beR

which will turn out to be not dependent on b. Our method for deriving an MLE is one of the known
ones in the literature, and it turns out that these lead to the same estimator b, see Remark 4]

Next, we formulate a result about the unique existence of MLE by of b forall T € Ryy.

4.2 Proposition. Let a € Ry, beR, 0,0 e Ry, a€(1,2), and yo € Ry. If a € Ryy or
Yo € Ryy, then for each T € Ry, there exists a unique MLE br of b P-almost surely having the
form

- Yr—yo—al — 6 [] ¢/Yo_ dL,

43 br — — ,
( ) T foTifst

provided that fOT Ysds € Ryy (which holds P-almost surely due to (v) of Proposition [2.1]).
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Proof. Due to (v) of Proposition 2] P(fOTYSdS € R++) =1 for all T € Ry,, and hence the
right hand side of (&3] is well-defined P-almost surely. The aim of the following discussion is to
show that the right hand side of ([3) is a measurable function of (Y3 )0, (i-e., a statistic). By
Proposition 1] for all b,g € R and T € Ry,, the probability measures PE,T and P,7 are
absolutely continuous with respect to each other, and

dP- ’5_ b T ’52 _p2 (T
] T yy) = — Yy —yo — aT — /Y, dL, ) — Y,
0g<deT( )> 2 < T—Yo—a 5/0 d > 572 /0 du

holds P-almost surely.

The left-hand side of the above equality is measurable with respect to (Yt)te[oﬂ (see, e.g., Jacod
and Shiryaev [I8, Theorem III.3.4]), and hence its right hand-side is also measurable, which yields the
measurability of fOT /Yu—dL, with respect to (Y;)icor) and consequently that of br.

By Proposition E1], for all b,g € R, we have
9 (A (b'z}))——1 Yp — —aT—a/T%/Y dL —b/TYdu
b gl\AT(0, - 2 T — Yo 0 uU— u o2 0 u )

o?
2 log(Ar (b, b)) 02/ Y, du.

Thus the MLE b7 of b based on a continuous time observation (Ys)scjo,m exists P-almost surely,
and it takes the form (Z3)) provided that fOT Yods e Ry O

4.3 Remark. In what follows, under the assumptions of Proposition and the additional assump-
tion a > 0—22,
T € Ry, which (in the special case a > C’2—2) gives another proof for the fact that the right hand side
of ([3) is a statistic. Recalling the notation (; = 5fg YYy_dL,, t € Ry, wehave A =0 /Y ALy,
t € Ry (following from (2] and Jacod and Shiryaev [I8 Definitions 11.1.27]) and using the SDE

(T3, we get AY; = A =0/Y;_ ALy, t € Ry. Hence ALy = 6?? , te€ Ry, since, by (iv) of

Proposition 2.1 ]P’(Yt eRy forall te R++) =1. Forall t€[0,7] and € € (0,1),

du dz 1 AL, —/ / zdum(dz
/Ot /{e<| |<1} ) Z te<lalul<ty (0,t] J{e<]z|<1} ( )

u€e(0,t]

we prove that L; is a measurable function of (Yy),ejo ) for all ¢ € [0,T], where

—t zm(dz),

Z {€<5‘5§“‘ <1}5\/ {e<|z|<1}

which is a measurable function of (Y}),c(o,77- Similarly, for all ¢ € [0, 7],

AY,
L(du,dz 1 AL, = . —
/0 (0,1] /{z>1} )= Z tlALu>1} Z { ot >1} 0 /Y-

uel0,f] uel0,t] V¥u

which is a measurable function of (Yu)ue[oﬂ as well. Hence, using (2.1)), for all ¢ € [0,77,

P
- zm(dz) +yt — Ly as /0,
Z {1ar >€}5 TL_ /{e<| . (dz) + v ¢

S YY,y —
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yielding that L; is a measurable function of (Y;)ico7). Finally, note also that if V;_ =0, t € Ry,
then, using AY; = 0 /Y, AL, t € Ry, we have AY; =0 yielding Y; =Y;_ =0 (irrespective of
the size of the jump of L at t). O

4.4 Remark. In the literature there is another way of deriving an MLE. Sgrensen [36] defined an
MLE of b as a solution of the equation Az(b) = 0, where A7(b) is the so-called score vector given
in formula (3.3) in Sgrensen [36]. Luschgy [29], [30] called this equation as an estimating equation.
With the notations of the proof of Proposition 1], taking into account of the form of B0 and the
fact that V() is identically one, we have

T T
Ap(h) = / <_i> avert — — L [y, — (o — bY,) du— 6 ¢/Y,_ dLy)
0

O'2 0
1 T T
:——2<YT—yO—aT—|—b/ Yudu—5/ a\/Yu—dLu>
o 0 0

for b€ R and T € R,,. The estimating equation Ap(b) =0, b € R, has a unique solution

—yo—aT—6 [T ¢/Yy_ dLy . . . .. .
_Yr=yomalT—0 Jy Y Vu-dl provided that fOT Y, du is strictly positive, which holds P-almost surely

Jy Yudu
provided that a € Ry or yo € Ri; (due to (v) of Proposition [ZT]). Recall that this unique solution
coincides with bp, see (A3). O

5 Asymptotic behavior of the MLE in the subcritical case

If aeRiy or yp€ Ry, then, using (@3] and the SDE (I.1]), we get

5.1) o Yrow—al ¢ [T Vs dL, +b [] Yids o [ V/YdW,
I Y ds JT Y ds

provided that fOT Y;ds € Ry, which holds P-almost surely due to (v) of Proposition 21l Here note
that o fOT VY dWy =Y T € Ry, due to part 1) of Remarks I11.2.28 in Jacod and Shyriaev [18]
and (2.8).

5.1 Theorem. Let a,b,0,0 € Ry, and o € (1,2). Let (Y;)ier, be the unique strong solution of
the SDE (L) satisfying P(Yyo = yo) =1 with some yo € Ry. Then the MLE by of b is strongly
consistent and asymptotically normal, i.e., by == b as T — oo, and

2
(5.2) VT (by — b) &N(O,%) as T — oc.

With a random scaling,

1 T /2 P
—</ sts> (by —b) — N(0,1) as T — oc.
7 \Jo

Proof. By Proposition [£2] there exists a unique MLE ZT of b for all T € Ry, which has the
form given in [@3)). By (i) of Theorem 23] (Y;);er, has a unique stationary distribution = with
Jo ym(dy) = ¢ € Ryy. By (ii) of Theorem 25, we have %fOTYSds 225 [Cym(dy) as T — oo,
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implying also fOTstS 2% o0 as T — oo. Since the quadratic variation process of the square
integrable martingale ( fg VY, dWy) teR, takes the form ( fg Y, ds) 1R, using (B.I) and Theorem

B we have by 2% b as T — co. Moreover, using Theorem B2 with 7 := (Jo° y7r(dy))1/2 and
Slutsky’s lemma, we have
T
~ % Jo VYsdWy D (fooo y7r(dy))1/2 N(0,1) o?
VT(br —b) = —0 = — —0 5 =N{0, 7=———
LTy, ds Jo ym(dy) Jo ym(dy)
as T — oo, hence, by (2.16]), we obtain (5.2]). Further, Slutsky’s lemma yields
1 T 1/2 R 1/1 T 1/2 \/_ R
= Ysd br —b)=—| = Ysd T(br —b
P ) Gron=g (g ] ) T
1 00 1/2 2
22 ([Tomtan) N (0 ) =0
o \Jo Jo~ ym(dy)
as 1T — oo. O

6 Consistency of the MLE in the critical case

First, we describe the asymptotic behavior of the solution 4, of the differential equation (B.I]) as
t — oo in case of b =0 using a so-called separator technique.

Note that, for b,oc € Ry, d € R;, and « € (1,2), the function R_ 3 2 — R(z) := R(—z) =
C’Q—sz + %a(—:n)o‘ — bz is strictly monotone decreasing, continuous, convex and limg_, o R(z) = +00.
Indeed, R'(z) = o2z —6%(—2)* 1 —b< 0, 2 € R__, and R"(z) = 02 + 6%(a — 1)(—2)* 2 > 0,
x € R__. Hence, for all v € R__, the equation R(—z) = 0—;x2 + %a(—x)o‘ —br=—v, x € R_, has
a unique negative solution, denoted by ¢, € R__. Further, if z € (¢,,0], then R(—z) < —uv, i.e.,
R(—z)+v<0; and if x € (—00,¢,), then R(—x) > —v, ie., R(—z)+v > 0.

6.1 Proposition. Let a € Ry, b=0, c € Ry, d€ Ry, and « € (1,2). Then for all ue€ R_
and v € R__, the unique locally bounded solution 1, of the differential equation [B.1) satisfies
limy o0 Yuo(t) = ¢y Further, y,,(t) € (¢y,0], t€Ry if ¢, <u<0; y,(t) € (—00,¢y), tERY
if w<cy and Py(t) =cy, tE€RL if u=c,.

Proof. Let v € R__ be fixed. By Theorem Bl ,,(t) € R__ forall ¢t € Ryy. Let Q(z) :=
R(—z)4+v = "2—2:52 + & (~2)*+wv, v € R_. Note that @ is continuously differentiable on R__.

Further, Q(z) =0, = € R_, holds if and only if z = ¢,, and Q(z) < 0 for z € (¢,0] and
Q(z) >0 for z € (—00,¢y).

If 4y 4(0) = u = ¢,, then the unique locally bounded solution of the differential equation (3.I)
takes the form 1), ,(t) = ¢,, t € Ry, since in this case 1y, ,(t) =0, t € Ry, and "'—;wu,v(t))2 +
%(—¢u7v(t))o‘ +v= 02—2612} + %a(—cv)o‘ +v=Q(c,) =0, t € Ry, and hence (B.I)) holds.

If 1y,(0) =u > c,, then ,,(t) > ¢, forall t € R;. Indeed, on the contrary, let us suppose

that there exists tp € Ry such that ¢, ,(tg) = ¢, (which can be supposed due to the continuity of
Yup). Then 1, ,(t) = ¢, would hold for all ¢ € Ry, since it is known that if two maximal solutions
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of an autonomous ordinary differential equation (with a continuously differentiable function on the
right hand side) coincide at some points, then their ranges coincide, see, e.g., Arnol’d [3, Corollary
on page 118], and the identically ¢, function is a solution of (Bl (without the initial value). Since
Yuw(0) > ¢y, this leads us to a contradiction. Consequently, by BI), v, ,(t) = Q(¥uu(t)) <0,
t € R4, yielding that 1,, is monotone decreasing. Since %, , is bounded below by ¢,, there
exists an ¢, € R_ such that ¢, > ¢, and limy oo 9y () = ¢,. It remains to check that ¢, = ¢,.
We show that Q(¢,) =0, yielding ¢, = ¢,, since ¢, is the only root of Q(z) =0, x € R_. On
the contrary, let us suppose that Q(¢,) > 0 (the case Q(¢,) < 0 can be handled similarly). Since
@ is continuous at ¢,, there exists x > 0 such that Q(z) > @ for all x € R_ satisfying
|z —¢,| < k. Since limy o0 ¥y (t) = ¢, there exists T°> 0 such that [, ,(t) —¢,| <k for t >T.

Hence _
Q(cv)

w/u,v(t) = Q(wu,v(t)) > 5

Integrating over [T, t], we have

t>1T.

Q(cv)
2

¢u,v(t) - ¢u,v(T) 2 (t - T), t 2 T.

Since, by assumption, Q(¢,) > 0, taking the limit ¢ — oo, we get limy o 1y (t) = 00, yielding us
to a contradiction.

The case 1,,(0) =u < ¢, can be handled similarly, and the other parts of the proposition follow
as well. 0O

6.2 Theorem. Let a € Ry, b=0, 0,6 € Ryy, and o <€ (1,2). Let (Y;)ier, be the unique
strong solution of the SDE (1) satisfying P(Yy = yo) =1 with some yo € Ry. Then the MLE of
b is strongly consistent, i.e., by ~—>b as T — co.

Proof. Since ( fg sts) teR, is monotone increasing P-almost surely, there exists an [0, co]-valued

random variable ¢ such that fg Yods 2% ¢ as t — oo, and consequently, by the dominated
convergence theorem, lim; ., E [eXp {v fg Y, ds}] = E[e”f] for any v € R_. By Theorem [B.I] with
b =0, we have

t t
E [exp {v/ stsH = exp {y0¢07v(7§) + a/ wo,v(s)ds}, teRy, veR_.
0 0

First we check that

t djo,v(t) x
(6.1) / o (s)ds :/ > 5o dz
0 0 G2+ (—x)*+v

2 [

forall t € R44 and v € R__, where the function ), : Ry — R_ is given by (B.I)). Recall that, for
all veR__, ¢, € R__ denotes the unique negative solution of the equation ‘7—22:172 + %(—:E)OH—U =0,
we have U—;xQ + %a(—:n)o‘ +v <0 forall =€ (c¢,0], and, by Proposition 6] v,(t) € (¢,,0] for
all t € Ry. Consequently, by (B1]), the function [0,t] 3 s — g (s) € (¢y,0] 1is strictly decreasing
and continuously differentiable, hence, for all ¢t € Ry, by the substitution z = p,(s) we obtain

t djo,v(t) x
o(s)ds = S
/o‘”"’ () ds /0 i@
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and hence (€.1I), where 1, L denotes the inverse of tg,. By (B, we have

t wo,v(t) €T
E [exp {v/ Y dSH = exp {y0¢0,v(t) + a/ 2 50 dx}
0 0 Gt + T (=) +v

«

for t € R4y and v € R__. Then, by Proposition [6.1] lim¢ o %04(t) = ¢, and hence

X

w(),v(t) T Cy
lim = 5a dz = / — 5o
t=o0 Jo G2+ = (—x)* +v 0 Fa24 S (-x)¥+v

o

dax = —o0.

Here the last step can be checked as follows. We have

LGP R e (R(-2) )~ (R(=a) +v)

= —R/(—¢y) = 0%¢c, — 6%(—c,)* ! <0,
T—>Cy T — Cy T—Cy €T —Cy

ﬁ 2, 8%y
thus there exists 29 € (¢y,0) such that -2 o )l

Hence

2 u—éa —cy a—1
o2c § cv) for all = € (cy,x0).

<

T—Cy

Co T Co T
/ 2 S df]}' g / 2 S dx
0 Fa?+(—x)*+v vo Far?+ S (—x)Y +v

< 210 v 1 d
T = —00
= o2¢, — 0%(—c,) ! zo T —Cy ’

as desired. Hence, since a € Ry;, we have

t
tlim E [exp {v/ stsH = exp {yocy + a(—o0)} =0, veR__,
— 00 0
which yields that E(e"$) =0, v € R__. Since, forall v e R__,
E(e") = E(e" | = 00) P(¢ = 00) + E(e™ | € < 00) P(£ < o0)
=0-P(€ = 00) + E(e¥ | £ < 00) P(£ < o0),

we have 0 =E(e¥|¢ < 00)P(€ < 00), yielding that P(€ < c0) =0, ie., P(é =oc0) =1. That is,
we have proved that fg Y,ds 2% 0o as t — oco. Since the quadratic variation process of the square
integrable martingale ( fg VY, dWy) teR, takes the form ( fg Y, ds) teR, using (B.I) and Theorem

B, we have by =3 b as T — oo, as desired. O

In the critical case the description of the asymptotic behavior of the MLE in question remains
open.

7 Asymptotic behavior of the MLE in the supercritical case

7.1 Theorem. Let ac Ry, beR__, cc Ry, 0c Ry, and a <€ (1,2). Let (Yi)ier, be the
unique strong solution of the SDE (1)) satisfying P(Yo = yo) =1 with some yo € R4.

(i) Then there exists a random variable V with P(V € Ry) =1 such that

t \%
etht 25y and ebt/ Y, du 22 7 as t— oo.
0
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(ii) Moreover, the Laplace transform of V  takes the form

. [T F(2)
(7.1) E(e") = exp{ym/}u + /0 R(2) dz}, ueR_,
where the functions I and R are given in Proposition 21, and 1y = limy_o0 ¥yene o(t),

where the function P, Ry — R_ s given by ([B.1]).

(iii) Purther, 5 =0 and ¢} =K 1(—u) forall ue€R__, where K~' denotes the inverse of
the strictly increasing function K : (0,600) — R4 given by

KO\ = )\exp{/;(% _ %)dz}, X e (0,60),

where 6y =inf{z € Ry : R(z) e Ry} e Ry

(iv) If, in addition, a € R4, then P(V eRyy) =1.
In the next remark we present more properties of v, ue€ R__.

7.2 Remark. (i) For all A\, 6 € (0,6p), we have

£ o [ (g e [ e - {0}

hence
//\O%dz :log<%>.

Consequently, for all A € (0,0y) and uw € R__, we conclude

[ () (i) ()

(ii) Using the formula for the derivative of an inverse function, we have

a1 1 R
W T BRI (Cw) - Ky bRy SR .

Proof of Theorem [T.1l First we check that the function K is well-defined and strictly increasing
on (0,60p). Observe that R(z) = z + 8 L2 4+bzeR__ forall z€(0,6)). Moreover, we have

o? 0 La—1
b 1 S22+ ==z
7.2 ——=_2" a” R 0,6p).
( ) R(Z) > R(Z) € Ryq, z e ( ) 0)
Further, i o Dpte = 8 R hus th i 0,6 h that (2 —
urther, 1mzw(R(z) Z)z = —3— € Ry, thus there exists z; € (0,6p) such that (R(z)
1)227e _25_: for all z € (0,21). Hence [ (R(z 1)dz 25a >~ [ 2*7?dz < oo. The function

(0,6p) > z — R( y E R4y is continuous, thus the mtegral f21 (m — Z)dz exists and finite for
all A € (0,600), and hence the function K is well-defined. Note that the existence and finiteness
of the integral fO)\(R? )

%)dz follows also from Proposition 3.14 and its proof in Li [25], since
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[° zlog(z) m(dz) < oo, where the measure m takes the form m(dz) = 6*Coz™ ' *1g,, (2)dz.
Indeed, by partial integration,

/1wz1°g(z) m(dz) = 6%Cq /1 *log(2) |

ZC!{

= 5°‘C'a<1 L lim log(2) —/ Z dz> = & < 00.
1

— @ z—00 2071 1-« (1—a)?

(7.3)

The function K is strictly increasing on (0,6p), since R?z) —LeRyy forall z€(0,6)), and we

have limyjo K(A) =0 and limypg, K(A) = 400, yielding that the range of the function K is Ry,
hence the inverse K ! is defined on Ryi. Indeed, lim,qg, % = lim_4g, %ﬁ(@o) = R/'(6p). We
have R/'(6p) € Ry, since R(0) =0 and R(6y) = 0 yields the existence of 61 € (0,0y) with
R'(A1) =0, and the function R’ is strictly increasing on Ry. Thus there exists 2 € (0,6p) such

that 5_(23) < 2R/(0y) for all z € (22,6p). Hence, by ([Z2)), for all X\ € (22,60y), we have

by o2 ¢ a—1 by
b 1 522+ 29 / 1
- = > . 2 (e} .
/0 <R(z) Z>dz/ 2R (00) . z_eodz—>+oo as AT 6y

(i) We prove the existence of an appropriate non-negative random variable V. We check that
t
E(Y;| FY) = E(Y;]Y,) = e P79y, + qe® / e v dx
S
for all s,t € Ry with 0 < s <t where FY := o(Ys,s € [0,t]), t € Ry. The first equality

follows from the Markov property of the process (Y;)icr,. The second equality is a consequence of
the time-homogeneity of the Markov process Y and the fact that

t—s
E(Y:|Ys =y0) =E(Yies | Yo = g0) =¢"Jyo +a / edz, teRy,  yoE€Ry,
0
following from Proposition Then
t
E(etht |]:5Y) _ ebSY'S + aeb(8+t)/ e—bx dz > ebsy's
S

for all s, € Ry with 0 < s < ¢, consequently, the process (eth})teR . 1s a non-negative
submartingale with respect to the filtration (F) )icr .- Moreover,

t t o]
a
E(etht):yO+aebt/ e_bxd$:yg+a/ ebxd$<y0+a/ ebxd$:y0—g<oo, teRy,
0 0 0

hence, by the submartingale convergence theorem, there exists a non-negative random variable V
such that

(7.4) My, 25 v as t — oo.

Further, if w € Q such that e"Y;(w) — V(w) as t — oo, then, by the integral Toeplitz lemma (see
Kiichler and Sgrensen [24] Lemma B.3.2]), we have

1 ! 1 !
ti/ Yy(w)dw = ti/ e (Y, (w)) du — V(w) as t — o00.
Joetedu Jo Jo e bedu Jo
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—b
Here fg e tdy = ¢ tb_l, t € Ry, thus we conclude

t 1—et ['y,d ws  V
(7.5) ebt/ Y, du = © {0 ¢oas ¥ as t — oo.
0 —b Jo e tudu b

First proof of (ii), (iii) and (iv). We readily have (TI)) for « = 0, since then the unique locally
bounded solution to the differential equation BI]) is oo(t) = 0, ¢t € Ry, implying 5 = 0.

Convergence e”Y; 2%V as t — oo implies e"Y; LoV oas t— oo, and hence, by the continuity
theorem, lim;_,o, E(exp{ue®’Y;}) = E(e*V) for all u € R_. By Theorem B.I] we have

t
(7.6) E(exp{ue”V;}) = exp {y0¢uebt70(t) + a/o Yot o(8) ds}, teRy,

thus the limit .
tli>m exXp {y(ﬂ/}uebt,o (t) + a/ wuebt,()(s) dS} = E(euv) S (07 1]
o0 0

exists. Note that the functions e, w € R_, do not depend on the values of a and yo.
Consequently, with @ = 0 and with some yg € R, we obtain that the limit lim;_, ., exp {'lpuebtp(t)}
exists, and hence the limit lim; oo 1yeee o(t) = 1y, exists as well. Using R.7) and 9y, 0(s) = —vs(—u)
for all s € Ry and we R_ (see part (i) of Remark B.2]), we obtain

t —tebt o(t) F(2)
ds = d
a/o Vet o) ds /—uobt R z

forall t€ R, and uw € R__ satisfying —ue® € (0,6), which, together with (Z.6)), leads to (Z1)).

If tcRy and ue R__ satisfying —ue’ € (0,6y), then, by the proof of part (iii) of Proposition
2T —tyebt o(t) € (0,60), hence, by Proposition 3.3 in Li [25],

_d}ucbt 0 (t) 1 d
= —t.
[Wt R(z)

It yields that

_wucbtyo(t) b 1 d b _d}ucbt’o(t) 1 d
(77) /—uebt <R(Z) - ;> e /—uebt ; -

The right hand side of (7)) is

_wuebt 0 (t) 1 b
- [ Lz = —bt — (tog(— 0 (1)) — log(—ue®))
(7.8) —ueht i

= lOg(_u) - lOg(_¢uobt,0(t))'

We have already proved that —1),.: o(s) € (0,00) for all s € Ry yielding —y € [0,0p]. Letting
t — oo in (L), we conclude —v € (0,60p). Indeed, 1} =0 is not possible, since then the left hand
side of ((T1]) would tend to 0 and the right hand side of (7)) would tend to +oco (see (.8])). Moreover,
P = —0y is not possible, since then the left hand side of (T.1]) would tend to 090 (% - %)dz = +00
(see the beginning of the proof), and the right hand side of (7)) would tend to log(—u) — log(6p)
(see (8)). Thus —v} € (0,60p), and letting t — oo in (1), we obtain

/O—wii (R?z) _ é)dz = log(—u) — log(—5)
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for all w € R__. This can be written in the form

il ot}

Consequently, v = —K(—1?) for all w € R__. The function K is strictly increasing on (0, 6y),
see the beginning of the proof, hence we conclude ¥ = —K~'(—u) forall u e R__.

Next, we check that if, in addition, « € Ri;, then P(V € Ryy) = 1. The mono-
tone convergence theorem yields E(e*V) | E(lyy—q) = P(V = 0) as u — —oo. We have
limy s — oo ¥} = —limy——co K H(—u) = —6, since limyg, K(\) = 400, see the beginning of the
proof. Consequently, by (Z.1I), we obtain

6o Ia
ug@oo E(e“v) = exp{ — yobo + ; RE;; dz} =0

and hence P(V € Ryy) =1, since foo ;g dz = —oco. Indeed, as at the beginning of the proof,

there ex1sts z9 € (0,6p) such that f_(z()) < 2R/(6p) for all z € (22,6p) with R'(6y) € Ryy, hence
f ’ R(z S Z20 R(z) dz < 2R’(2€o) fzzo z—0o

dz = —c0.

Second proof of (ii), (iii) and (iv). The idea of this proof is due to Clément Foucart. First, we
need to introduce some notations based on Li [25]. For all t € Ry, let 7; := limy_,oo v¢(\), which
exists in (0, 00|, see Li [25, Theorem 3.5], where v;(\), t,\ € Ry, is given in (iii) of Proposition 211

Let 7 :=lim;_,0 7, which exists in Ry, and it is known that 7 is the largest root of the equation
R(z) =0, z€ Ry, see Li [25, Theorem 3.8]. Indeed, Condition 3.6 in Li [25] holds in our case, since

o 0 —2ba\ o1
R(z) 2 bz+ —2%“> —2%>0 for z>< a> =:0>0,
o' 2a

501
and ~
>~ 1 200 [® 200t~
dz< = | z7%e= ———— < 0.
/9 Rz) <5 J; Pla—1)

Further, by Li [25] page 63], 7 = 6y and 6y < (%ﬁ’a)ﬁ. Since R'(0) = b < 0, R'(z) =
02+ 6% a—1)22 >0, z € Ryy, and lim, ,o R(z2) = 0o, we get there is a positive root of
R yielding that 7 =6y > 0. For all t € Ry, let [0,7;) > ¢ — n(q) be the inverse function of
Ry 3 A+ v(N), which exists and is strictly monotone increasing, due to the fact that Ry 3 X — vg(\)
is strictly monotone increasing, see Li [25] Proposition 3.1]. By Li [25] Proposition 3.14], we have

(7.9) im YN C gy eR, e (0.60).

1500 ebt

Indeed, b€ R__, and by [T3), [;* zlog(z)m(dz) < oo, where the measure m takes the form
m(dz) = 0°Caz"'17%1g, , (2)dz. The form of the limit K()\) is

K(\) = )\exp{/o)\<% - %)dz}, e (0,6),

which follows by the proof of Proposition 3.14 in Li [25]. Using (74]) and (79]), we have for all
A€ (07 00)7

(7.10) n(NY; 25 KAV =: Uy, as t — oo.
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Using the same ideas as in the proofs of Theorems 3.13 and 3.15 in Li [25], we show that

S P
(7.11) E(e"™) = exp { —yof(—u,A) + /0 J;Ezi

where f(—u, \) := limy_,o0 v¢(—un(N\)) € [0,00) and, in case of uw e R__, f(—u,\) € (0,6p) and it
satisfies

fl=u) g ~ log(—u)
(7.12) /}\ R0 dz = T

The case u = 0 is trivial, since in this case f(—u,A) = f(0,A) = lim;_,o v:(0) = 0, because of

dz}, weR., Ae(0,60),

v(0) =0, t € Ry for u=0. So we can assume that v € R__.

Note that the integral fof (=) % dz is well-defined. First we check that
0 bo  q
(7.13) /)\ R dz = 400, //\ R0 dz = —o0, A € (0,60).
Indeed, we have lim, o Riz) =0b e R__, thus there exists z3 € (0,\) such that R() < g for all

z € (0,23). Hence ff % dz > fzog % dz = 400. Moreover, as at the beginning of the proof, there

exists zo € (A, 0p) such that f_(zz) < 2R/(0y) for all z € (29,6p) with R/'(fy) € Ri,. Hence
ffo % dz < 21'5”;(90) fi‘) ﬁ dz = —oo. Consequently, f(—u,\) can not be a root of the equation
R(z) =0, ze Ry, ie, f(—u,\) ¢ {0,600}, since otherwise, by (ZI3]), the left hand side of (7.12])
would be =00, but the right hand side of (.12 is a real number. Hence, using the same argument
as in the proof of (7)), we have f(—u,A) € (0,68y). The integrand % is continuous on [0, f(—u, A)],
since in case of a = 0 the integrand is zero, and in case of a € R, ., by the definition of 6y, we

have R(z) <0 for all ze€ (0,09) and hence for all (0, f(—u, )], and lim,|o % =¢teR__.

Next, by (ZI0), we have mn:(\)Y; 2L U, as t— oo forall \e (0,6p), and, by continuity
theorem and ([24), for all w € R_ and X € (0,0y), we get

U, ) ) ve(—une(A)) F(2)
(7.14)  E(e""*) = tlg]&E (exp {un:(N\)Y:}) = tliglo exp{ — yovr(—um(N)) + /_um()\) RC) dz},

since n:(A) L 0 as t — oo (see Li [25] proof of Proposition 3.14]), and hence for all v € R__, we
have —um(X) € (0,7) = (0,6p) for sufficiently large ¢. Recall that, by formula (3.23) in Li [25], if
ne(A) and —un(\) belong to (0,6p) = (0,7), where X € (0,7), then

/Ut(—um(k)) 1 1 /—unt(k) 1 4
z = z.
A R(z) oy R(2)

Since ni(A) 1 0 as t — oo, forall uweR__, we have n(\), —un(\) € (0,7) for sufficiently large
t, and hence for all v € R__,

vt (—une(A)) —un(A) —uni () _ _
lim L .o lim/ EE 1im/ L gs = g 0820 _ log(w)
t—oo [y R(z) t—00 (V) R(z) t—o00 () bz t—00 b b
where we used that lim, g % = 1. The function (0,7) > = — f; ﬁ dz =: G(z) is continuous

and strictly decreasing, hence its inverse is also continuous and strictly decreasing, implying that for
all e R__ and A€ (0,7), the limit

f(=u ) = Jim oy(—um () = Jim GG (~um (V) = G~ (L’g(b—“))
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exists and it satisfies (TI2), where G~! denotes the inverse of G, since, by (ZI3)), the range of G
is R. Consequently, using the continuity of the integral upper limit function, the fact that n(\) ] 0
as t — oo, and (TI4]), we have (ZI]), as desired. Using that K(\) € Ry; and V =Uy/K()\), we
have E(e*V) = E(e*Ux/KMN) 4 ¢ R_, and then (ZII) yields (Z1).

We point out that, in the second proof of (ZII), we were not able to use directly (Z4]), and that’s

why the usage of 7;(\) in the argument above is really essential for us.

Next, we check that if, in addition, a € Ry, then P(V € Ry;) = 1. By the law of total
probability, E(e*U*) =1 -P(e=U» = 1)+ E(e"» [e=Ur £ 1)P(e”Y* # 1), u € R_, and hence, by the
dominated convergence theorem and (Z.I1]),

U—r—00

= eXP{ — yobo + 060 %dZ}

where we used that, by (CI3), limy,—_oo f(—u,A) = lim, G_l(w) = limy 0o G (y) =
0o =T (see also Li [25] proof of Theorem 3.15]). In case of a € Ry4, we have foeo gg; d
(see the end of the first proof of (iv)), and hence P(eY* = 1) = 0. This yields that, in case of
ac€Ryy, PUy=0)=0 and,since K(\) € Ryy, we have P(V =0) =0, ie, P(VeR4y)=1
O

FEwA) p(z) dz}

Ple =1) = lim E(")= lim eXP{ ~yof(=uA) +/ R(2)
U——00 0

zZ = —00

In the next remark we specialize Theorem [Z.1] to the case o = 0.

7.3 Remark. Under the conditions of Theorem [TI] in case of o = 0, using part (ii) of Theorem
[1l we derive the Laplace transform of V', which results in an explicit expression. Recall that the
function ¥y,eee o : Ry — R_ is the unique locally bounded solution to the differential equation

/ o bt
(715) wuebt70(s) = E(_wuebt,O(S))a - bwuebt,O(S)v ERS R-H wuebt,O(O) =ue .
We have to determine the limit lim; oo ¥yere (). If w = 0, then the unique locally bounded
solution of the differential equation (ZIH) is et (s) = 0, s € Ry, and hence in this case

limy 00 Yyebe o(t) = 0. In what follows, let us suppose that w € R__. The unique solution of the
differential equation (7I5]) (which can be transformed into a Bernoulli differential equation) is

1
oo = = (((Cuetyie s D)o 2N e,

ba

and consequently, by part (ii) of Theorem [T.1]

t—o0

5o\ e
¥ = lim «ﬁmbt,o(t):—((—u)l—a——) . ueR__,

and hence



We can derive the above formula for %, w € R__, using part (iii) of Theorem [(]] as well. We have

0y = (_5—1;0‘)ﬁ and, by (2,

A b 1 A 5_O‘Za—2 1 5
- _Z S _a”  dy=— 1 el 1
/0 <R(Z) z>dz /0 8 o=l 1p @ a—1 < 0g< a AT b> 0g(b)>

a

BNl b\ T
=tos| (=55) 7

for all A € (0,6p). Consequently,

1 1

@ Ta—1 504 T—a
K\ = )\<E>\O‘_l + 1> . <_ + )\1“’> T e (0,6),

ba

thus .
v = —K‘l(—u) = —((—u)l_a 0 ) 17&, ueR__.

b
O

7.4 Theorem. Let a c Ry, beR__, 0,0 e Ryy, and a e (1,2). Let (Yi)ier, be the unique
strong solution of the SDE (1) satisfying P(Yy = yo) =1 with some yo € Ry. Then the MLE of
b is strongly consistent and asymptotically mized normal, i.e., by =3 b as T — oo, and

R » v\ 12
T2y —b) = 0Z <—€> as T — oo,

where V' is a positive random variable having Laplace transform given in (1)), and Z is a standard
normally distributed random variable, independent of V.

With a random scaling, we have

1 T /2 P
—</ sts> (by —b) — N(0,1) as T — oc.
0

g

Proof. By Proposition [4.2] there exists a unique MLE ZT of b for all T € Ry, which takes the
form given in (@3)). By Theorem [Z1] e f(f Yods 2% —¥ as t — oo, where P(V € Ryy) =1, and

hence
t t as V
/sts:e_btebt/ Y,ds — 0o - <—€> =00 as t — oo.
0 0

Since the quadratic variation process of the square integrable martingale ( fg VYs dWs) teR, takes

the form (f(f sts)t€R+, using (B.I)) and Theorem [B.Il we have ET 2% b as T — oo. Further, by
EI),

- bT/2 [T/ AW,
e—bT/2(bT —b) = —ae fo T\/_s = TeRyq.
T [ Yods
Again, by Theorem [1] e*” fOTYs ds =% —¥ as T — oo, and using Theorem B2 with 7 := (—%)1/2
and v = —% we have

T 1/2
(7.16) <ebT/2/ \/YSdWS,—%> N <<—%> Z,—%) as T — oo.
0
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_V)—l/2

Consequently, by the continuous mapping theorem, e—7/2 (ET —b) P, oz (T as 1T — oo,

yielding the first assertion.

Applying again (.I0) and the continuous mapping theorem, we obtain

1 T 1/2 T —1/2 T
—</ sts> (bT—b):—<ebT/ sts> ebT/z/ VY, dW,
0 0 0

g
—1/2 1/2
g_<_K> <_K> Z=-Z2N0,1) as T— oo,

as desired. O

7.5 Remark. Under the conditions of Theorem [ 1] in case of a € R, — log(Yg 1), teR,y, and

Y t € Ry, are strongly consistent estimators of b as well. Indeed, by Theorem [[.T] using

_f(f Ysds’
that P(V €eRi1) =1 and ]P’(fot YidseRyy) =1, t € Ryt (see (v) of Proposition 21]), in case of
a < R++7
Yi _beb(t—i_l)n—l—l a.s, —bV
Clog (2L — e il —1 Z) = ¢
og< Y, > og(e I, — —log | e v b as t — oo,
and
Y, MYy as.  V
_t :_bt 7 —>_—V:b as t—)OO
fo Ysds € fo Ysds )
g
Appendices

A Likelihood-ratio process

Based on Jacod and Shiryaev [I8], see also Jacod and Mémin [16], Sgrensen [36] and Luschgy [30],
we recall certain sufficient conditions for the absolute continuity of probability measures induced
by semimartingales together with a representation of the corresponding Radon—Nikodym derivative
(likelihood-ratio process).

Let D(Ry,RY) denote the space of Revalued cadlag functions defined on Ri. Let (n)ier,
denote the canonical process n:(w) := w(t), w € D(RL,RY), t € Ry. Put F/!:=o(ns,s € [0,1]),
t e R+, and

DR, RY):= (] Fl., teRy,  DRy,RY :=0< U f?)-

€€R++ t€R+

Let ¥ C R* be an arbitrary non-empty set, and let Py, v € ¥, are probability measures on the
canonical space (D(R;,R?),D(R,,R%)). Suppose that for each € ¥, under Py, the canonical
process (7;)ier, is a semimartingale with semimartingale characteristics (B W) ¢, v¥)) associated
with a fixed Borel measurable truncation function s : R¢ — R9, see Jacod and Shiryaev [I8] Definition
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I1.2.6 and Remark I1.2.8]. Namely, C; := ((°")®)),, t € Ry, where ({((n°°™)%)),);cr, denotes
the (predictable) quadratic variation process (with values in R?*?) of the continuous martingale part
(n°"®)(®) of 7 under Py, v®) s the compensator of the integer-valued random measure u" on
R, x R? associated with the jumps of 7 under Py given by

P (w, dt,da) = D Liag, @)20}1E(san @) (At dm),  w e D(R,RY),
seR4
where £ ;) denotes the Dirac measure at the point (¢, ) € Ry x R?, and An, :=m—m—, t € Ryq,

Anp:=0, and B®) s the predictable process (with values in R? having finite variation over each
finite interval [0,¢], ¢ € R;) appearing in the canonical decomposition

ne = 1o + Mt(w) + Bt(qm, teR,,

of the special semimartingale (7;);cg, under P, given by

N =1 — Z (ns — h(Ans)), te Ry,
s€[0,t]

where (J\L/(Qp))teﬁg+ is a local martingale with Mé¢) = 0. We call the attention that, by our
assumption, the process C' = (™))} does not depend on 1, although (n°°"*)%) might depend
on . In addition, assume that Py(v¥)({t} x R?) = 0) =1 for every 9 € ¥, t € Ry, and
Py(no = xp) = 1 with some x¢ € R? for every v € W. Note that we have the semimartingale
representation

= To + Bt@) 7o) / /d (1" — v ¥))(ds, dx)
R

// x—h w'(ds, de), teRy,
Rd

of 7 under Py, see Jacod and Shiryaev [I8, Theorem II.2.34]. Moreover, for each % € ¥, let us
choose a nondecreasing, continuous, adapted process (l‘jt(w))te]R+ with Féw) =0 and a predictable
process (cgw))teR . with values in the set of all symmetric positive semidefinite d x d matrices such

that .
Cy = / W) dF®)
0

Py-almost sure for every ¢ € Ry. Due to the assumption Py(v¥)({t} x RY) = 0) = 1 for
every 1 € ¥, t € Ry, such choices of (Ft(w))teR+ and (c,gw))lteR+ are possible, see Jacod and
Shiryaev [I8 Proposition I1.2.9 and Corollary 11.1.19]. Let P denote the predictable o-algebra on
D(Ry, R%) xR,. Assume also that for every ), € ¥, there exist a P @ B(R%)-measurable function
V) :D(R,,RY) xRy x R? -+ R, and a predictable R%valued process ﬁw %) satisfying

(A1) ) (dt, da) = V) (¢, 2)v®) (dt, da),
¢ — y
(A.2) / / (\/ V) (s, x) — 1) v ¥)(ds, dz) < oo
0 Jrd
- ¢ _ t _ _
(A.3) Bt(w = Bt(d’) +/ W) Q) +/ / (V&%) (s, ) — 1)h(x) 1P (ds, de),
0 0 Jrd

t _
(A4) / (BBD)T W) 3B W) < o

0
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Py-almost sure for every ¢ € Ry. Further, assume that for each v € ¥, local uniqueness holds for
the martingale problem on the canonical space corresponding to the triplet (B W) C, 1/“”) with the
given initial value xo with Py as its unique solution. Then for each T'€ Ry, Py 7 is absolutely
continuous with respect to Py.r where Py 1 := Pylp, @, re) denotes the restriction of Py to
Dr(R,,R?) (similarly for P3 +), and, under Pz ., the corresponding likelihood-ratio process takes

P, 17
the form
dP r ~ ~ 1 T ~ _
log " (n) = / (BN T d(nom)#) — < / (B TP g %) dp )
dP¢T 0 2 Jo
T ~ ~
(A.5) + / / (V@) (s, ) — 1) (1" — v P))(ds, dx)
0 R4

T ~ ~
o @) (s 2)) — VP (5 2 s.dx
[ QosV R s,2) VO )4 1) a5, )

for all T € Ry, see Jacod and Shiryaev [I8, Theorem II1.5.34]. A detailed proof of (A5) using
Jacod and Shiryaev [I8] can be found in Barczy et al. [2, Appendix A].

B Limit theorems for continuous local martingales

In what follows we recall some limit theorems for continuous local martingales. We use these limit
theorems for studying the asymptotic behavior of the MLE of b. First we recall a strong law of large
numbers for continuous local martingales.

B.1 Theorem. (Liptser and Shiryaev [28, Lemma 17.4]) Let (Q,]:, (}})teR+,P) be a filtered
probability space satisfying the usual conditions. Let (Mp)ier, be a square-integrable continuous local
martingale with respect to the filtration (Fi)ier, such that P(My = 0) = 1. Let (&)icr, be a
progressively measurable process such that

t
IP’</ ggd<M>u<oo> =1, t € Ry,
0

t
(B.1) / (M), 2 0o as t — oo,
0

where ((M)¢)ier, denotes the quadratic variation process of M. Then

t
u dMu a.s.
Jo € 250

(B.2) o u T
Jo & (M),

as t — oo.

If (My)ier, is a standard Wiener process, the progressive measurability of (&)ier, can be relaved
to measurability and adaptedness to the filtration (Fi)er, -

The next theorem is about the asymptotic behavior of continuous multivariate local martingales,
see van Zanten [37, Theorem 4.1].
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B.2 Theorem. (van Zanten [37, Theorem 4.1]) Let (Q,F,(F)icr,,P) be a filtered probability
space satisfying the usual conditions. Let (M )icr, be a d-dimensional square-integrable continuous
local martingale with respect to the filtration (Fy)ier, such that P(My = 0) = 1. Suppose that
there exists a function Q : [tg,00) — R¥4 with some to € Ry such that Q(t) is an invertible
(non-random) matriz for all t € [tg,00), limy_ ||Q(2)]| =0 and

Q(t)(M), Q(t)T N nnT as t— oo,

where ) is a dxd random matriz. Then, for each RF-valued random vector v defined on (Q, F,P),
we have
(QEU)M1,v) = (nZ,v)  as t— o0,

where Z is a d-dimensional standard normally distributed random vector independent of (n,v).

C Some explicit formulae in case of a = %

First, in the special case of o = %, we make explicit the Laplace transform of the stationary
distribution in the subcritical and critical cases given in Theorem by evaluating the integral in its

expression.

C.1 Example. We calculate the Laplace transform of the unique stationary distribution 7« given in
Theorem in case of a =3. Let u€R__. By Theorem 2]

oo —Uu 1
/ e w(dy) = exp{—a/ R d:n}.
0 0 Zuy 224340

3

By substitution z = y?,

NI

—u 1 (—u) 2
/ : ———dr = / 2 J dy.
0 Fa+22z2 40 0 Ty + B2y 4 b
First we consider the case of b€ Ry; and o € Ry . Then we can write
169 3
2y 2 2y + 5= 892
3ot

o2

2 3 - 3
Y+ Iy +b Yt eyt 2

1 3

(-w)2 gy 4 207 452 2

/ —45% 30° o dy = IOg <y2 + 30_2y + _0_2>
C eyt

Moreover, using

N

455 % (25N % 48
2V T 2T 302

35



we obtain

3
262
1 _Yt5er ; 26°
—— arctan( T +C if be (902,00),
o2 904 o2 9054
1 . 2463
462 2b yt+3.7
VP syt 7 5 .
1 y+%— ii—% 253
mlog j:;% ZZS zb + C lf b € (0, W),
Zar V32TV 9eT 752

where C eR. If be (S%B;, 00) and o € Ryy then, applying the formula arctan(u) — arctan(v) =
u—v

arctan(m), u,v € Ry, we get

(~u)?
L o

49
Yt 3

2 4
= = arctan z ; % = |
2b 46 b 1 52
o T 907 2 (—u)"z + 2%
and hence
. a 3 3
oo 2 25% —3—2 8ad 2 lg _ 4;;4_
/ e r(dy) = (%(—u) + e (—u)% + 1> exp Agarctam ? - i 3
If b=2% and o€ R, then
1
(-w)? 1 . 1 1 (—wr 1
0 9, 453 » U 1958 + 253 Lg% 253 _1’
Y+ 3yt o2 (—wz+5z 5z (Cwrtiz 1+5z(-u)7

and hence

00 4 2 -2 8a6%
/ e m(dy) = gi(—u) + i(—u)% +1 exp 307 .

If be (0,2) and o€ Ry, then

g o
3
) g 202 463 2b 202 463 2b
_ 1 1 ( u)2 + 302 90t o2 1 302 904 o2
T T w | 8 L 953 R 153 2
50T ~ o (—u)? + 557 + 1\ 501 — 52 307 T\ 007 ~ 52
3
_ab (i [ %)
1 ) ( u) 302 + = ol B
o 3 08 1 3 3 ’
46° 20 (_u)2 202 [48° 2 _|_2_b
954 o2 302 954 o2 o



and hence

L /o3

* 2ot N E (OB B
[T eratan = (G + Bt +1) 7

0 (0 ( - i - %)+ 2

Next we consider the case of b€ Ry, and o =0.

2y 3 35
-3 T 3 3b
Fyb 07 VTR
thus
1
w2z 9 3 9 3b 3b
/ Ly = St g (g (w4 2 ) —1og( 1))
0 %sz"'b 42 262 2
3 1 9b 202 1
— Sk - g tos( (b 1),
and hence

3 9ba

[oe) 2 2 553

/ euyw<dy>=exp{—3—3<—u>%}<1+ 2 (—u) )
0 o2 3b

Next we consider the case of b=0 and o € Ry;. Let uw € R_. By Theorem 25

o0 —Uu 1
/ e r(dy) = exp{—a/ _ da:}.
0 0o o2 202 .5

PR

D=

By substitution z = y?,

1 1
—u 1 (—u)2 2y (—u)2 92
/0 2 2% 1 dv = /0 o2 253 dy = /0 o2 255 dy.
7Y T T y+ 3

TrE g 7Y+ 5y T
Consequently,
1 . —(—
/(—u)? 2 d 4 g< +45§> y=(-u)?2 1g<( )%+453> A
——dy= | slogly+ —5 =—1lo u S —
0 02_2y_|_§ o? 302 o 2 302 o?
4 302 .
= L rog (3T a+1>,
g2 ()
hence

Finally, by the proof of Theorem 25l if b =0, ¢ = 0 and a = %,

exp{—%(—u)l/z}, u€eR_.
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C.2 Example. Now we formulate a special case of Theorem Bl giving the Laplace transform of Y; in
case of a = 3. Let (Y;);er. be the unique strong solution of the SDE (I1]) satisfying P(Yy = o) = 1
with some yg € Ry, with a€e Ry, beR, 0 € Ry, € R,y and a= % Then, by Theorem 311
for all uweR_,

¢
(C.1) E(e“yt) = exp {wu70(t)yo + a/o y,0(s) ds} , te Ry,

where the function 1,0 : Ry — R_ is the unique locally bounded solution to the differential equation

3

(©2) W) = Tvhuo® + 2 (o)}~ bold). tERs, tho(0) =
In case of u = 0, the unique locally bounded solution of (C2) is oo(t) =0, t € Ry. Let us
consider the function g,(t) := (—¢u70(t))% € Ryy, t € Ry. Then we have 1, 0(t) = —gu(t)?,

Yuo(t)? = gu(®), (~uo(®)? = gu(t)® and ¢ (t) = —20u(t)gl(t) forall t € R, and ueR__,
hence (C.2)) yields

2 3
o 3 02

©3) =T~ S S, teR. g(0)= (i

3 2
In case of b€ R,, (C3) has a constant solution if and only if u =0, and then go(t) = oo(t) =0
for all t € Ry. Incase of beR__, (C3) has a constant solution if and only if =0 or

' 262 [45%  2b\?
U =1uy:= — —302+ 91 o2 )

and then g¢o(t) = voo(t) =0 forall t € Ry or g, (t) = (—uo)%, and hence 1y, 0(t) = up for all
t € Ry. In the sequel, we suppose that u € R__, and in case of b € R__, in addition, we suppose

that u # ug. Then, by separation of variables, we have

1 2
. dg, = —=-dt.
(92 + 2590+ 2)gu
If b#0, then
2 o2 26%
1 _c B 2 9u + R
3 - 2 3
(2+220,+B)ge T 2+ +3
2 o 6% 5%
o %9t 3 3

T g, 2 : ’
P2+ + S R+ Lot S

and we have

3
2 a? 52 2 2
o _ 0 9u t 3 da. — 0_1 _ 0_1
/ 2bg. 453 » | 9T % 0(/9u]) 1 08

92+ T gut 5

, 462 2b
Jut 320t —

)+

>-+<j

021 - 463 L2
= —_—— O J— -
& 302g, 0%g2




where C' € R. Moreover, using

, 462 2 255\% 2b 463
9u + 352 9u + =%
g g

302 0?2 904’
we obtain
3 255
52
=30 JutT 5 . 263
3b 30 <0
e arctan<72_b_ﬁ> +C it b> 55,
o2 904 o2 904
3 3
62 §2
30 B ; 263
4 [ =y 0=,
9 467 26 Jut 22
9u + 302 Gu + o2 302 5
ﬁ gu+%_ ii_% 3
L Jog 507 Vool o271 |\ 4 (0 if h< 20,
463 _ 2D 262 153 2b 9
904" 52 Guts Tty g, 7703

904

Consequently, if b > 20 then

902>
o’ 463 2b % Gu(t) + ?%%z o2
——log( 1+ + — arctan | ——=2 | = ——1t + C, teR,,
4b g< 302gu(t) 029u(t)2> 2% _ 0% 2 _ 453 4 i
o 90 o 90

with some C € R;. Using the initial value g, (0) = (—u)%, we obtain

3 3
2 3 52 1 262
o 462 2b & —u)? + 55
C:——10g<1+71_7>—373rctan ()7302 ,
4b o2(—u)2 O°u 26 483 20 483
o 904 02 904
and hence, by g,(t) = (—¢u70(t))%, we conclude
3
1 462 o 2b
i 5o 70
~7 108 3
4b 14 462 2%
302(—w)? T
52 L 252 L 252 2
02 — t))2 + —u)2 +
+ —=3b [ arctan (=Yuo®) 30% | _ arctan | ——— 37" = —t.
2 458 2 _ 458 2 458 4
o2 904 o2 904 o2 904
. . 243
In a similar way, if b= 5, then
o? 463 2b il o?
——log(1 3b =——t+0C, t e Ry,
4b g( - 302g,(t) + a2gu(t)2> * 253 it *
gu(t) + 557

with some C € Ri. Using the initial value ¢,(0) = (—u)z, we obtain

2 452 2 o
C = —U—log<1—|—721— T) N | —
4b 30’2(—'&)5 g (_u)
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and hence, by g,(t) (—T/Ju70(t))%7 we conclude

2 46% 1 2 2 6% 6%
2 o e E R 3 LW
4b : 1 3 1 3
1+3;(Z)1 - (“uolt)? +3 (-wt+ 3
Further, if b#0 and b < 2 o 207 then
o? o , 463 2b
% Og(gu( )) - E 0g ( ) + 30_2.gu(t) + )
(C.5) 3 25% 165 _ 2b
% log 9ull) + 50 ~\oet ot _ JQH—C’ teR
- 3 - _Z ) +
ot \|W+ 5 - B
with some C € R. Using the initial value g¢,(0) = (—u)%, we obtain
2 2 3
o 1 o 462 1 2b
¢ = T tox((—u)¥) - T log(|-ut g+ B
3 1 3
R B (S S
1 3 - ’
B2 \[cwl e BB
and hence, by g, (t) = ( ¢u70(t))%, we conclude
2 2
o 1 452 1 2b
— o7 1og((—uo(t))2) + —10g —Pu0(t) + 5 (—tuo(t))? + —
2b 30 o
2 2 3
o 1 o 462 1 2b
+ o) = Toou(|-ut (-t + )
3 1 3 3
(©6) N N (SO S
1 3
Vor =% \|(uo®)z + 37 + 50 - 2
3 1 3 3
(e vEE -
- 3 - v
Vir-2 \[cwiv i)
Finally, if b =0, then, by separation of variables, we have
1 2
dgy = —%dt,
(gu + fijf,i)gu
where oo oo
1 69 _ 16w, 30
3 = 3 3,0
(0u+3557)9%  gutier T A0
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hence

1 904 463 904 o?
/ dgu log (gu + > g(gu) ——=—+C
3 3 2 3 3
(gu n %%)gg 166 30 166 2
904 462 302
27 og(1+ e
166° < 3029u> 45%gu
yielding
904 463 302 o?
log| 1 - — =——t+4+C teR
1653 g( N 3029u(t)> 463 g (1) P €&+
with some C' € R. Using the initial value g,(0) = (—u)%, we obtain
904 463 302
C= log| 1+ — ,
1667 g( 302(—u)%> 462 (—u)?
and hence, by g,(t) = (—¢u70(t))%, we conclude
3
457
904 L 302 (—thuo(t)) 2 302 1 1 o?
1653 log 3 = o T | = _Zt'
14202 462 \ (=up(t)?  (-u)?
302 (-u)?2

C.3 Example. We derive an explicit formula for the Laplace transform of V given in Theorem

[Tl in case of «a = % In fact, we present two detailed calculations, the first one is based on the

representation of ) given in part (iii) of Theorem [TI] and the second one is based on part (ii) of
Theorem [T1]

Calculations based on part (iii) of Theorem [Z.]l We have

- 1
E(euV) :exp{yowz—i-a/ ; - dw}, ueR_,
0 Zrt mxz +b

with 15 =0 and ¢} = —K~!(—u) for u € R__, where K~! is the inverse of the strictly increasing
function K : (0,6p) — Ry given by

K(\) = )\exp{—/())\

where we used (2] and

_1
2

1\3|q

Mo« 0-7‘ NG

+* dx}, X € (0,60),
L2204y

l\'}\b—‘

_l’_

‘7_
2T

2

3
202
Oy = inf{:n eRyt: T g + 723:% + bz € R+} = <—

263 453 2b>2
. .

302 901 o2
By substitution x = y?, for all A€ (0,6p), we have

3 1 3
A o 202 —1 A2 2 452
5 + ST 2 oY + —=5—
2 3 _ 3
/0 S 3 dx —/0 3 dy.




First we consider the case of o € Ry.. Then we can write

3
a:n+4‘§f B 2:n+—§f,§ | 47 1
a9z
EE I EIEELL SR S R S| P

As in Example [C.I] we have

1
A2 23:_1_462 2 3
5] o 202 1
/ 4523" d$—log<2b)\—|— e )\2+1>
0 2
xre + .Z'+—2‘
302
and .
1 L1 /952 453 2b 2b
Az 1 1 Az(er W_UT)+?
45% dv= 453 2b log | — 253 155 2b % |’
Ottt B 90T ~ o2 M(s?‘ W—F)+?
and hence
3
_ 30
/\l 253 453 2 2 453 _ 2b
)\ N5 tor —52) T2 901 o2
K\ =
) 1 1/(95% 5% 2b 2%
)\+ )\2+1 A2 352 90 T o2 +0'_2
3 3
462 452

|
_
|
O |
e
|
Q ‘l\)
e
7N
| =%}
[N}
|
(«%)
w
|
| Q
[\
+
>
=
N———
L
+
© |
q [
1
|
9 ‘w
VS

B (5% N 63 02_1_)\_%
-\ 3 92 2

Note that an explicit formula for K~! is not available. Next we consider the case of o = 0.
Remark [[.3] we have 6y = Zgi,

3 —2 2
26 9
K(\) = < 3; +A—%> . ae < 453>

thus .
3

and hence

I CUR RS - I
E(euv) = €Xpy —Yo (_u)_% - 20° +a ” % dz s ueR__.
3 0 202 1
3

By substitution 2 =2, for all v € R__, we have

3. _9o 3\-1
/((—u)% 2‘;—3) 1 d /(_“)%_Qg_b?) 2y d
—3, dr= —— dy.
0 20203 4 b 0 B2y 4b
As in Example [C.T] we can write
9b
2y 3 3@
3 =3 3b
2ry+b 02 UTOT



thus

_9_b1 (— )—%_25% _1+ 3b
263 \ " 30 953

) -l
—log 3
262

))

and hence
3\ 2 3\ -1 3 Sba
) cafon(cer ) eof (- 28) Y- )’
for ue R__.

Calculations based on part (ii) of Theorem[Z1l By (), it is enough to know 1% to have an explicit
formula for the Laplace transform of V. We carry out this calculation only in case of ¢ € Ry,. By
[CH), for all t € Ry and u € R__ with ue® # ug, we obtain

2 1 2 463 1 b
G108~ o(0)8) + 5 108 | o0) + Gy (ol +

2 2 3
o btyiy 9 b, 402 byt 20
+ () - T tog(|-uet 4 3 (a4 2
53 1 953 455 2
% ] (—Yuert 0(1))2 + 507 =\ 51 — 2
- R 1, 283 453 26
907 ~ o7 (=Wuerr 0(1)2 + 352 + 1/ g1 — 52
58 bk 253 [a8 o )
R (—ue™)? + 525 90T o7 .
- Og 3 = —
3 5 3 4
VB2 \[Cete e /2

Using 2—2 log((—uebt)%) = 4—2 log(—u) + %t, we conclude that ) satisfies the equation

2 2 3 2 2
N o . 46z o1l 20 o o 2b
— —log(—v;) + T log< —,, + F(—?ﬁu)? + 52 > + T log(—u) — T 10g<—§>

(©.7) 53 (—gr)h 422 _ [155 4 2 _ 2%
3 u 302 904 o? 904 o2 302

+ T log - 3 = = - log = - 3 =0.
4 2 %)\ 5 2 g c 2
90% o2 (_¢U)2 + 202 + 304 - 52 V 304 o (32 ?’)02

3
By Theorem [Tl R(—%) < 0. We have R(—1) = U—;(—wz + é‘%(—lbi)% + Z)(=y3), where
3
—k € (0,6p), hence —ibk + é‘%(—zﬂ;)% + 3—12’ < 0. Moreover,

463 .1 2b L1200 [483 2 L1202 [483 2
(—3) +—2=<(—¢u)5+—— ———2><(—¢u)5+—+ ——2>,

302 o 302 90t o

[V

i+




3 1 3 3
where (—T,Z)u) + ?;;3 + \/% — 3_—2 >0, thus (—¢f)2 + 2‘% - % - 2—2 < 0. Consequently,
satisfies the equation

o? o 02 . 463 ol 20 o? o? 2b
- T tog(-ut) + o (01— (vt - )+ Tios-w - G o~ %)

o 4 2
(C8) 53 465 2 (_yeyy 208 48 b 2%
+ 3 IOg 904 02 u 302 IOg 904 o2 302 —0
45 2b 158 +(1/})§+25% @_@Jrza% '
902 o2 9ot u o2 904 o2 302

Note that, by Theorem [T (C) is equivalent to K(—v%) = —

We show another way to derive this equation. By Theorem [T.1], for all sufficiently small A € Ry,

/—w:: 1 | /f(K(’;),) Ly 11g< u >
- z = z = — 10 N
Noogia gl A R(z) b K(\)

1 1 1 b
= —log(—u) — = log(K = —log(— l .
+log(—u) — 7 log(K () = 3 log(—u) — 3 log(\) — / (-3
By substitution z = y?, and using (CH),

—Y5 1 (=¥7) 2
/ — dz :/ dy
A2y %TEZ% + bz VA B

(C.9)

NI

8 25% 165 _ 2b y=vi?
2 1 455 2 s Y+ 37—\ 9gT T o7
= glog(]y\) - glog v+ 3—y+ — log
o 453 2b Y+ 262 45%  2b
90t o2 302 904 o2 y=vX
3 3
. 1 1 , 462 w1l 20 1 462 2b
= Elog( Pr) — glog()\) - glog<‘—1,bu + 302(—¢u)2 + 2 > + Elog(‘)ﬁ— 302\/X—|- 2 >
163 a1 203 165 _ 2 U 288 165 _ 2b
_ 3% log (—¥0)2 + 357 — o1 — 2 log At 37—\ 9er — 52
1 3 - B
g2\ \cwivdovE-2)) A /e 2

Moreover,

3
/A b1 dz:/A b 1 dz:_/A e dz
o \[(z) = 0 0_22 263 3 z 0 o2 253 '

By substitution z = y?,

We can write




hence, by (C4),

A b 1 \/X o y_|_ 452
——|dz=— dy
o \R(z) = 0 25§y+b

T “y? + 3
3 453 263 w m\17?
O'2 2 202 352 Y + 302 907 o2
=— |log| |5y + —Sy+b | + —==—=log 3
2 3 453 2b 252 45 2
904 o2 y+ o2 + 902 o2
y=0
:—10g< )\+—\/_+b'> + log(—b)
53 253 4% 2b 45° 2 283
37 VA5 — e — 9T~ 2 T 307
log — log

- 3 3
4% 2b 253 455 2 [453 _ 2b | 283
904 o2 \/X + 302 + 904 o2 904 02 + 302

Consequently, (C.9) yields again that 1 satisfies equation (C.1), and hence, equation (C.8]).
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