

D-serine contributes to β -amyloid-dependant pathophysiology in Alzheimer's disease

J-M Billard, E Ploux, L. Gorisse, T Freret

▶ To cite this version:

J-M Billard, E Ploux, L. Gorisse, T Freret. D-serine contributes to β -amyloid-dependant pathophysiology in Alzheimer's disease. 11th FENS Forum of Neuroscience, Jun 2018, Berlin, Germany. hal-02331264

HAL Id: hal-02331264 https://normandie-univ.hal.science/hal-02331264

Submitted on 24 Oct 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

D-SERINE CONTRIBUTES TO β-AMYLOID-DEPENDENT PATHOPHYSIOLOGY IN ALZHEIMER'S DISEASE Inserm

Billard J-M, Ploux E, Gorisse-Hussonnois L and Freret T Normandie Univ, UNICAEN, INSERM, COMETE, 14000 Caen, France

Key regulators of the structural and functional brain plasticity, the N-methyl-Daspartate subtype of glutamate receptors (NMDARs) requires the binding of the coagonist D-serine to be activated. In Alzheimer's disease (AD), soluble oligomers of the beta-amyloid peptide (Aßo) affect NMDARs possibly through mechanisms involving changes in D-serine levels since Aßo stimulate in vitro the production of the co-agonist. In this study, we asked whether D-serine contributes in vivo to morpho-functional NMDAR-related deregulations mediated by Aßo. Behavioral analysis combined to electrophysiological recordings at CA1/CA3 hippocampal synapses have been thus conducted in the 5xFAD transgenic mice model of amyloïdogenesis displaying marked increase in Aßo rates and compared to 5xFAD animals in which the homozygous gene of the serine racemase (SR) that synthesizes D-serine, has been jointly invalidated.

EXPERIMENTAL PROCEDURES

- resumed for 60 min after HFS.

Our results therefore show that deletion of serine racemase prevents memory-related behavioral deficits observed in mice with prominent features of amyloidogenesis as well as impairment of NMDAR-dependent functional plasticity, suggesting a significant contribution of D-serine in NMDAR-dependent β-amyloid-related pathophysiology of Alzheimer's disease.

1) Behavioral analysis: 8-min spontaneous alternation test was performed in a Y maze apparatus to assess working memory performances in 10-12 months of aged mice. Successive entry of the three arms of the maze was considered as an alternation. The percentage of alternation was calculated as follows: number of alternations / (total number of arms visited -2) x 100.

2) Electrophysiology: Hippocampal slices (400 µm thickness) were cut from two groups of WT, 5xFAD/SR^{+/+} and 5xFAD/SR^{-/-} mice aged 3-4 or 10-12 months. Field excitatory postsynaptic potentials (fEPSPs) and presynaptic fiber volley (PFV) were extracellularly recorded in CA1 stratum radiatum after electrical stimulation of Schaffer collaterals. Input/output curves of the fEPSP/PFV ratio of isolated NMDAr-mediated fEPSPs were constructed in a low magnesium medium supplemented with the non-NMDAr antagonist NBQX (10µM) before and 15 min after addition of D-serine (100 µM). High frequency (HFS)-induced long-term potentiation (LTP) was studied in control medium after tetanic stimulation consisting in one train at 100 Hz delivered for 1 sec. Testing stimulation was then

Semi-quantitative immunoblotting analysis: Hippocampal tissue was homogenized in protein lysis buffer. The membranes were probed with antibodiesaginst GluN1 (1:750), GluN2A (1:2500), GluN2B (1:800), GluA2 (1:500), serine racemase (1:400) or ß-actin (1:7000). Proteins bands of interest were analyzed by scanning densitometry and normalized to ß-actin density.

and 5xFAD/SR^{-/-} mice (B)

Protein expression

Total protein expression for each NMDAR subunit is not significantly affected in 5xFAD mice although it is slightly decreased for GluN2B as compared to WT and 5xFAD/SR^{-/-} mice