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The elliptic curve cryptography plays a central role in various cryptographic schemes and protocols. For efficiency reasons, Edwards curves and twisted Edwards curves have been introduced. In this paper, we study the properties of twisted Edwards curves on the ring Z/nZ where n = p r q s is a prime power RSA modulus and propose a new scheme and study its efficiency and security.

Introduction

In 2007, Edwards [START_REF] Edwards | A normal form for elliptic curves[END_REF] introduced a new normal form of elliptic curves over a field K with characteristic not equal to 2. He showed that any elliptic curve over K is birationally equivalent over some extension of K to a curve with an equation of the form x 2 + y 2 = c 2 1 + x 2 y 2 , c ∈ K, c 5 = c.

Bernstein and Lange [START_REF] Bernstein | Faster addition and doubling on elliptic curves[END_REF] generalized the former form to the short form

E d : x 2 + y 2 = 1 + dx 2 y 2 ,
where d ∈ K -{0, 1}. The addition law for Edwards curves is given by

(x 1 , y 1 ) + (x 2 , y 2 ) = x 1 y 2 + y 1 x 2 1 + dx 1 y 1 x 2 y 2 , y 2 y 1 -x 2 x 1 1 -dx 1 y 1 x 2 y 2 ,
and the same formulas can also be used for doubling. For this law, the point (0, 1) is the neutral element and the negative of a point (x, y) is (-x, y). Moreover, it is shown in [START_REF] Bernstein | Faster addition and doubling on elliptic curves[END_REF] that when d is not a square in K, then the sum of any two points (x 1 , y 1 ), (x 2 , y 2 ) is always defined.

In [START_REF] Bernstein | Twisted Edwards curves[END_REF], Bernstein et al. introduced the twisted Edwards curves with an equation E a,d :

ax 2 + y 2 = 1 + dx 2 y 2 ,
where a, d ∈ K are non zero and distinct. The addition law is defined on E a,d by the rule (x 1 , y 1 ) + (x 2 , y 2 ) = x 1 y 2 + y 1 x 2 1 + dx 1 y 1 x 2 y 2 , y 2 y 1 -ax 2 x 1 1 -dx 1 y 1 x 2 y 2 .

For this law, the identity is still (0, 1) and the negative of a point (x, y) is (-x, y).

The operations on twisted Edwards curves are more efficient than for most of the other forms of elliptic curves and the discrete logarithm problem is hard to solve. This makes twisted Edwards curves suitable for cryptographic applications.

In this paper, we study various properties of the twisted Edwards curves. We first give a study of the twisted Edwards curves on the finite field Z/pZ where p ≥ 5 is a prime number, and generalize it to the rings Z/p r Z and Z/p r q s Z. Then, using the arithmetic properties of the twisted Edwards curves on the ring Z/p r q s Z, we propose a new public key scheme and study its efficiency and its security. The new scheme generalizes two former schemes, namely the KMOV cryptosystem [START_REF] Koyama | New public-key schemes based on elliptic curves over the ring Zn[END_REF] with a modulus of the form n = pq and an elliptic curve with equation y 2 ≡ x 3 + b (mod n) and its extension to a prime power RSA modulus n = p r q s with a similar equation [START_REF] Boudabra | A new generalization of the KMOV cryptosystem[END_REF]. The new scheme uses a prime power RSA modulus n = p r q s and a twisted Edwards curve with equation

-dx 2 + y 2 ≡ 1 + dx 2 y 2 (mod n).
The use of a prime power RSA in cryptography has been proposed for some cryptographic applications (see [START_REF] Takagi | Fast RSA-type cryptosystem modulo p k q[END_REF][START_REF] Fujioka | ESIGN: An efficient digital signature implementation for smard cards[END_REF][START_REF] Okamoto | A New public key cryptosystem as secure as factoring[END_REF]). The security of such moduli was studied in [START_REF]Cryptography Using Compaq MultiPrime Technology in a Parallel Processing Environment[END_REF] where it is recommended to use moduli of the form p r q s where p, q are large prime numbers with the same size and r, s are small exponents satisfying the conditions of Table 1.

Modulus size in bits Form of the modulus 2048 pq, p 2 q 3072 pq, p 2 q 3584 pq, p 2 q 4096 pq, p 2 q, p 3 q 8192 pq, p 2 q, p 3 q, p 3 q 2 Table 1. Optimal number of prime factors for a specific modulus size [START_REF]Cryptography Using Compaq MultiPrime Technology in a Parallel Processing Environment[END_REF].

The rest of the paper is organized as follows. In Section 2, we study various arithmetical properties of a twisted Edwards curve on the finite field Z/pZ. In Section 3, we extend the former properties to the ring Z/p r Z. Similarly, we extend the properties to Z/p r q s Z in Section 4. In section 5, we present our new scheme. We study its efficiency and security in Section 6. We conclude the paper in Section 6.

Twisted Edwards Curves over the Field Z/pZ

In this section, we present various results on the Edwards curves over a finite field F p = Z/pZ where p ≥ 5 is a prime number and give an explicit estimation for the number of points on a twisted Edwards curve when p ≡ 3 (mod 4) and p ≡ 11 (mod 12).

Let a be an integer. The Legendre symbol of a modulo p, denoted by . p , is defined as

a p =      0 if a ≡ 0 mod p, 1 if a is a quadratic residue modulo p, -1 if a is a non-quadratic residue modulo p.
The following classical result concerns the Legendre symbol for -1 (see [START_REF] Bressoud | Factorization and Primality Testing[END_REF], Chapter 7).

Lemma 1. Let p be an odd prime. Then

-1 p = (-1) p-1 2 = 1 if p ≡ 1 (mod 4), -1 if p ≡ 3 (mod 4), 2 p = 2 p-1 2 = 1 if p ≡ ±1 (mod 8), -1 if p ≡ ±3 (mod 8), 3 p = 3 p-1 2 = 1 if p ≡ ±1 (mod 12), -1 if p ≡ ±5 (mod 12),
A special case for the theory of Edwards curves is when the field K is the finite field F p . Let a and d be integers such that d is not a square in Z/pZ. The following result states the addition law on the twisted Edwards curve E a,d,p with the equation E a,d,p : ax 2 + y 2 ≡ 1 + dx 2 y 2 (mod p). Theorem 1. Let p > 2 be a prime number and a and d be integer such that a is a square and d is not a square in Z/pZ. Let (x 1 , y 1 ) and (x 2 , y 2 ) be two points on E a,d,p . Then the addition law

(x 1 , y 1 ) + (x 2 , y 2 ) = x 1 y 2 + y 1 x 2 1 + dx 1 y 1 x 2 y 2 , y 2 y 1 -ax 2 x 1 1 -dx 1 y 1 x 2 y 2 ,
is always defined on the twisted Edwards curve E a,d,p .

Proof. The proof of the theorem is presented in Appendix A

Observe that the condition that a is a square is necessary for the possibility of the addition. Indeed, let p = 23, a = 19 and d = 14. Then a and d are not squares in Z/pZ. The points (x 1 , y 1 ) = (1, 9) and (x 2 , y 2 ) = (4, 12) are on the curve E a,d,p with 1 + dx 1 x 2 y 1 y 2 ≡ 0 (mod p) which implies that the sum (x 1 , y 1 ) + (x 2 , y 2 ) is not defined on E a,d,p . In the following results, we suppose that a and d are arbitrary integers satisfying ad(a -d) ≡ 0 (mod p) Lemma 2. Let p ≥ 5 be a prime number and a, d be integers such that ad(ad) = 0. Then the twisted Edwards curve E a,d,p with equation ax 2 + y 2 ≡ 1 + dx 2 y 2 (mod p) is birationally equivalent to the short Weierstrass form W a,d,p with equation

v 2 ≡ u 3 - 1 3 a 2 + 14ad + d 2 u - 2 27 (a + d) a 2 -34ad + d 2 (mod p),
with the transformation modulo p

(x, y) → (u, v) =        O if (x, y) = (0, 1) 2 3 (a + d), 0 if (x, y) = (0, -1) 5a-d+(a-5d)y 3(1-y) , 2(a-d)(1+y) (1-y)x if (x, y) = (0, 1).
Proof. The proof of the theorem is presented in Appendix B

The following result gives the inverse transformation of Lemma 2.

Lemma 3. Let p ≥ 5 be a prime number and a and d be integers such that ad(a -d) = 0. The short Weierstrass form W a,d,p with the equation

v 2 ≡ u 3 - 1 3 a 2 + 14ad + d 2 u - 2 27 (a + d) a 2 -34ad + d 2 (mod p),
is birationally equivalent to the twisted Edwards curve E a,d,p with the transformation

(u, v) → (x, y) =        (0, 1) if (u, v) = O (0, -1) if (u, v) = 2 3 (a + d), 0 2(3u-2a-2d) 3v , 3u-5a+d 3u+a-5d if u = -1 3 (a -5d) and v = 0.
If ad is a square in Z/pZ, then the points 

(u, v) = -1 3 a + d ± 6 √ ad , 0 ∈ W a,d,p are not mapped into E a,d,p . If d is a square in Z/pZ, then the points (u, v) = -1 3 (a -5d), ±2 √ d(a -d) ∈ W a,
√ 3 ≡ 3 p+1 4 (mod p). Next suppose that a d ≡ -7 ± 4 √ 3 (mod p). Then a ≡ -7 ± 4 √ 3 d ≡ -2 ∓ √ 3 2 d (mod p).
Since p ≡ 3 (mod 4), then by Lemma 1, -1 is not a square in Z/pZ. Hence

a p = -2 ∓ √ 3 2 d p = - d p ,
and a and d are of different shapes.

The following result deals with the integers a and d such that 

a ≡ 17 ± 12 √ 2 d ≡ 3 ± 2 √ 2 2 d It follows that a p = 3 ± 2 √ 2 2 d p = d p ,
and a and d are of the same shape.

Let p ≥ 5 be a prime number and E p (a 4 , a 6 ) be an elliptic curve with the equation

y 2 ≡ x 3 + a 4 x + a 6 (mod p),
where 4a 3 4 + 27a 2 6 ≡ 0 (mod p). In some cases, it is easy to find the number of points of the curve E p (a 4 , a 6 ). The following result gives an explicit value for the number of points on the curve E p (a 4 , a 6 ) (see [START_REF] Washington | Elliptic Curves: Number Theory and Cryptography, Second Edition[END_REF][START_REF] Ireland | A Classical Introduction to Modern Number Theory[END_REF][START_REF] Schmitt | Elliptic Curves: A Computational Approach[END_REF] for more details). Lemma 8. Let E p (a 4 , a 6 ) be an elliptic curve over F p with the equation the y 2 ≡ x 3 +a 4 x+a 6 (mod p). The number of points on E p (a 4 , a 6 ) is #E p (a 4 , a 6 ) = p+1 if a 4 = 0, a 6 = 0, p ≡ 2 (mod 3) or a 4 = 0, a 6 = 0, p ≡ 3 (mod 4).

Combining Lemma 2, Lemma 3 and Lemma 8, we get three families of twisted Edwards curve E a,d,p such that #E a,d,p = p + 1. Lemma 9. Let p ≥ 5 be a prime number. Let E a,d,p be a twisted Edwards curve over Z/pZ. Then for a d (mod 

p) ∈ -1, -7 ± 4 √ 3 , the number of points on E a,d,p is #E d,p = p + 1 if one of the following condition is fulfilled 1. p ≡ 3 (mod 4), a d ≡ -1 (mod p),
a 4 = - 1 3 a 2 + 14ad + d 2 , a 6 = - 2 27 (a + d) a 2 -34ad + d 2 .
First, suppose that a d ≡ -1 (mod p). Then a 6 ≡ 0 (mod p). If a is a square and p ≡ 3 (mod 4), then by Lemma 5, d is not a square. Hence, by Lemma 

(p + 1)(x, y) = (0, 1)
if a is a square in Z/pZ, (0, 1)or undefined if a is not a square in Z/pZ.

Proof. Suppose that a d ≡ -1 (mod p) and a is a square in Z/pZ, then by Lemma 5, d is not a square and by Lemma 1, the addition is always defined. Since by Lemma 9 we have #E a,d,p = p + 1, then (p + 1)(x, y) = (0, 1) for any point (x, y) ∈ E a,d,p . If a is not a square, then d is a square and (p + 1)(x, y) could not be defined on E a,d,p . When (p + 1)(x, y) is defined, then since E a,d,p is mapped to W a,d,p and #W a,d,p = p + 1, then (p + 1)(x, y) = (0, 1).

The following result deals with the situation where 

(p + 1)(x, y) = (0, 1)
if a is a square in Z/pZ, (0, 1)or undefined if a is not a square.

Proof. Suppose that a d ≡ -7 ± 4 √ 3 (mod p) and a is a square in Z/pZ, then by Lemma 6, d is not a square and by Lemma 1, the addition is always defined. Since by Lemma 4 we have #E a,d,p = p + 1, then (p + 1)(x, y) = (0, 1) for any point (x, y) ∈ E a,d,p . If a is not a square, then d is a square and (p + 1)(x, y) could not be defined on E a,d,p . When (p + 1)(x, y) is defined, then since E a,d,p is mapped to W a,d,p and #W a,d,p = p + 1, then (p + 1)(x, y) = (0, 1).

Twisted Edwards Curves over the Ring Z/p r Z

In this section, we define the notion of Edwards curves over the ring Z/p r Z where p ≥ 5 is a prime number and r ≥ 2. We give an explicit estimation for the number of points on a twisted Edwards curve when p ≡ 3 (mod 4) and p ≡ 11 (mod 12).

Let r ≥ 2 be an integer and p a prime number. Let a and d be integers. We consider the twisted Edwards curve E a,d,p r over the ring Z/p r Z with the equation E a,d,p r : ax 2 + y 2 ≡ 1 + dx 2 y 2 (mod p r ).

Corollary 1. Let p > 2 be a prime number and d be a positive integer such that d is not a square in Z/pZ. Let (x 1 , y 1 ) and (x 2 , y 2 ) be two points on E a,d,p r . If a is a square in Z/pZ, then the addition law 

(x 1 , y 1 ) + (x 2 , y 2 ) = x 1 y 2 + y 1 x 2 1 + dx 1 y 1 x 2 y 2 , y 2 y 1 -ax 2 x 1 1 -dx 1 y 1 x
= p r-1 #E a,d,p . Proof. Consider the polynomial f (x, y) = ax 2 + y 2 -1 -dx 2 y 2 . Then E a,d,p is the set of zeros of f (x, y). The derivative of f (x, y) is df (x, y) = ∂f ∂x (x, y), ∂f ∂y (x, y) = 2 x a -dy 2 , y 1 -dx 2 .
Hence, the singular points (x, y) of E a,d,p (K) are the points satisfying the system of equations

   x a -dy 2 ≡ 0 (mod p), y 1 -dx 2 ≡ 0 (mod p), ax 2 + y 2 -1 -dx 2 y 2 ≡ 0 (mod p).
Since d is not a square in Z/pZ, then the second equation implies that y = 0. Plugging in the first equation, we get x = 0 which contradicts the third equation. This implies that E a,d,p has no singular points. Thus, using the generalized Hensel Lemma (see [START_REF] Boudabra | A new generalization of the KMOV cryptosystem[END_REF]), to the polynomial f (x, y), we deduce that #E a,d,p r = p r-1 #E a,d,p .

Combining Theorem 2 and Lemma 9, we get the following result.

Corollary 2. Let p ≥ 5 be a prime number. Let E a,d,p r be a twisted Edwards curve over the ring Z/p r Z with ad(a -d) ≡ 0 (mod p). Then the number of points on E a,d,p is #E a,d,p r = p r-1 (p + 1) if one of the following condition is fulfilled 

1. p ≡ 3 (mod 4), a d ≡ -1 (mod p),

Twisted Edwards Curves over the ring Z/nZ

In this section we define the twisted Edwards curve over the ring Z/nZ where n is an odd composite number, specifically in the form n = p r q s . Let a and d be integers. We consider the twisted Edwards curve E a,d,n with the equation

E a,d,n : ax 2 + y 2 ≡ 1 + dx 2 y 2 (mod n).
The following result states the possibility of adding two points on E a,d,n . Theorem 3. Let n > 2 be an od integer and d a positive integer such that d is not a square in all the fields Z/pZ where p is a prime factor of n. Let a be a square in Z/nZ. Let (x 1 , y 1 ) and (x 2 , y 2 ) be two points on E a,d,p r . Then the addition law

(x 1 , y 1 ) + (x 2 , y 2 ) = x 1 y 2 + y 1 x 2 1 + dx 1 y 1 x 2 y 2 , y 2 y 1 -ax 2 x 1 1 -dx 1 y 1 x 2 y 2 ,
is always defined on E a,d,n .

Proof. Let d be an integer such that d is not a square in all fields Z/pZ where p is a prime factor of n. Let a be a square in Z/nZ. Let (x 1 , y 1 ) and (x 2 , y 2 ) be two points of the twisted Edwards curve E a,d,n . Suppose that 1 ± dx 1 y 1 x 2 y 2 is not invertible modulo n. Then there exists a prime factor p of n such that 1 ± dx 1 y 1 x 2 y 2 ≡ 0 (mod p). Hence, by applying Lemma 1, d is a square in Z/pZ, which is a contradiction.

Observe that the condition that d is not a square in all the fields Z/pZ where p is a prime factor of n is necessary condition. A typical counter-example holds for n = 7 Combining the Chinese Remainder Theorem and Corollary 3, we get the following result that gives an explicit value for #E a,d,n when n = p r q s and p, q are distinct prime factors.

Corollary 5. Let p ≥ 5 and q ≥ 5 be two distinct prime numbers. For n = p r q s , let E a,d,n be a twisted Edwards curve over the ring Z/nZ with ad(a -d) ≡ 0 (mod p) and ad(a -d) ≡ 0 (mod q). Then the number of points on E a,d,n is #E a,d,n = p r-1 q s-1 (p + 1)(q + 1) if one of the following condition is fulfilled 1. p ≡ 3 (mod 4), q ≡ 3 (mod 4), a d ≡ -1 (mod n), and a is a square in Z/nZ, 2. p ≡ 11 (mod 12), q ≡ 11 (mod 12), a d ≡ -7 ± 4 √ 3 (mod n), and a is a square in Z/nZ.

Similarly, using the Chinese Remainder Theorem and Corollary 3, we get the following result. Corollary 6. Let p ≥ 5 and q ≥ 5 be prime numbers. For n = p r q s , let E a,d,n be a twisted Edwards curve. If p ≡ 3 (mod 4), q ≡ 3 (mod 4) and a d ≡ -1 (mod n), then for any point (x, y) ∈ E a,d,n , we have

p r-1 q s-1 (p+1)(q+1)(x, y) = (0, 1) if a is a square in Z/nZ, (0, 1)or undefined if a is not a square in Z/nZ.
Finally, using the Chinese Remainder Theorem and Corollary 4, we get the following result. Corollary 7. Let p ≥ 5 and q ≥ 5 be prime numbers. For n = p r q s , let E a,d,n be a twisted Edwards curve with a d ≡ -7 ± 4 √ 3 (mod n). If p ≡ 11 (mod 12) and q ≡ 11 (mod 12), then for any point (x, y) ∈ E a,d,n , we have

p r-1 q s-1 (p+1)(q+1)(x, y) = (0, 1)
if a is a square in Z/nZ, (0, 1)or undefined if a is not a square in Z/nZ.

The New Scheme

In [START_REF] Koyama | New public-key schemes based on elliptic curves over the ring Zn[END_REF], Koyama et al. introduced a variant of the RSA cryptosystem based on an RSA modulus n = pq and an elliptic curve with equation y 2 ≡ x 3 + b (mod n). This was recently extended by Boudabra and Nitaj [START_REF] Boudabra | A new generalization of the KMOV cryptosystem[END_REF] using a prime power modulus n = p r q s .

In this section, we give another extension of the KMOV system by using a twisted Edwards curve with an equation ax 2 + y 2 ≡ 1 + dx 2 y 2 (mod n) where n = p r q s is a prime power modulus.

The new system

Key generation.

1. Choose two large primes p and q such that (a) p ≡ 3 (mod 4), (b) p + 1 = 4u where u is a prime number, (c) q ≡ 3 (mod 4), (d) q + 1 = 4v where v is a prime number, 2. Compute the modulus n = p r q s . The exponents r and s should be chosen according to Table 1 3. Choose an integer e coprime to p r-1 (p + 1) q s-1 (q + 1). The pair (n, e) represents the public key. 4. Compute the secret key k satisfying ke ≡ 1 (mod p r-1 (p + 1) q s-1 (q + 1)).

In other words k is the inverse of e (mod p r-1 (p + 1) q s-1 (q + 1)).

Encryption scheme. To encrypt a message M , we proceed as follows.

1. Transform M as M = (x M , y M ) ∈ (Z/nZ) 2 with x M = 0 and y M = ±1.

Compute

d ≡ y 2 M -1 (y 2 M + 1) x 2 M (mod n). 3. Compute C = (x C , y C ) = e(x M , y M ) on the twisted Edwards curve E -d,d,n with the equation -dx 2 + y 2 ≡ 1 + dx 2 y 2 (mod n). 4. The ciphertext is C = (x C , y C ).
Decryption scheme. To decrypt, we proceed as follows.

Compute

d ≡ y 2 C -1 (y 2 C + 1) x 2 C (mod n).

Using the private key

k, compute M = (x M , y M ) = k(x C , y C ) on the twisted Edwards curve E -d,d,n with the equation -dx 2 + y 2 ≡ 1 + dx 2 y 2 (mod n). 3. The plaintext is M = (x C , y C ).

Correctness of the cryptosystem.

Since ke ≡ 1 (mod p r-1 (p + 1)q s-1 (q + 1)), then there exists an integer λ such that ke = 1 + λp r-1 (p + 1) q s-1 (q + 1). Thus

k(x C , y C ) = ke(x M , y M ) = 1 + λp r-1 (p + 1)q s-1 (q + 1) (x M , y M ) = (x M , y M ) + λp r-1 (p + 1)q s-1 (q + 1)(x M , y M ) = (x M , y M ).
Notice that if d is a square, then a is not a square and the scalar multiplication C = (x C , y C ) = e(x M , y M ) can be not possible. As we will see, this scenario is negligible with an overwhelming probability.

A numerical example

As an example, consider the following prime numbers, the modulus and the public key

p = 1654301903279, q = 3471055860911, n = p 2 q = 9499289901726403159477938905275387151, e = 9829.
The message is M = (x M , y M ) with

x M = 8984939678606826113554578314107108314, y M = 1216075007499613461088673405898076188,
Then, we get the coefficient d of the twisted Edwards curve

d ≡ y 2 M -1 (y 2 M + 1) x 2 M ≡ 9443990400308670878704729113362891679 (mod n), k ≡ e -1 ≡ 3626140574962791478917541101758042989 (mod n).
For the encryption, we compute the ciphertext (x C , y C ) = e(x M , y M ), and get

x C = 6662581353370847822246329606179278781, y C = 3036967194425528298134904269360797204.
To decrypt, we use the private key k and compute (x M , y M ) = k(x C , y C ). Indeed, the computation gives

x M = 8984939678606826113554578314107108314, y M = 1216075007499613461088673405898076188.
This shows that the decryption is correct.

Efficiency and Security Analysis

In this section, we discuss the efficiency and the security of our proposed cryptosystem by studying the possibility of factoring of the modulus, impossible inversion, finding the order of the twisted Edwards curve E -d,d,n , solving the discrete logarithm problem on E -d,d,n and solving the key equation ek -u p r-1 (p + 1)q s-1 (q + 1) = 1.

Efficiency

There are many forms for representing points on an Edwards curve such as affine form, projective form and inverted form (see [START_REF] Bernstein | Explicit-formulas database[END_REF] for various representations and additions). For such forms, the addition law is suitably efficient for use in cryptography. For example, in the projective form, the twisted Edwards curve is represented by an equation with three variables

aX 2 Z 2 + Y 2 Z 2 = Z 4 + dX 2 Y 2 , (X : Y : Z) ∈ P 2 ,
where P 2 is the projective space. In [START_REF] Bernstein | Faster addition and doubling on elliptic curves[END_REF], it is shown that adding two points takes 10M + 1S + 1A + 1D operations with 10 multiplications, 1 squaring, 1 multiplication by a, and 1 multiplication by d. Doubling a point is also efficient as it takes only 3M + 4S + 1A. As a consequence, the operations involved in our new schemes can be efficiently performed using a suitable representation of the twisted Edwards curve with affine equation -dx 2 + y 2 ≡ 1 + dx 2 y 2 (mod n).

Factoring the modulus

It is widely believed that factoring a modulus of the form n = p r q s directly by existing algorithms is infeasible when p, q are large prime numbers and r, s satisfy the conditions of Table 1. The most powerful method are the Number Field Sieve [START_REF]The Development of the Number Field Sieve[END_REF] and the Elliptic Curve Method [START_REF] Lenstra | Factoring integers with elliptic curves[END_REF]. When p and q are large enough, such methods are ineffective.

Impossible inversion

In our scheme, the parameter d is computed using the original message (x M , y M ) as

d ≡ y 2 M -1 (y 2 M + 1) x 2 M (mod n).
It might be a square in Z/nZ, and so we could face a non defined inversion in the ring Z/nZ when gcd(n, 1+dx 1 y 1 x 2 y 2 (mod n)) = 1 for some points (x 1 , y1), (x 2 , y 2 ) on the twisted Edwards curve E -d,d,n . This will lead to the factorisation of n as in the elliptic curve method for factorization [START_REF] Lenstra | Factoring integers with elliptic curves[END_REF]. This scenario is unlikely to happen for the following reasons.

-The elliptic curve method is inefficient when the prime factors p, q are sufficiently large and r, s are chosen according to Table 1. -In Z/nZ, the number of terms of the form 1 ± dx 1 y 1 x 2 y 2 (mod n) satisfying gcd(n, 1 ± dx 1 y 1 x 2 y 2 (mod n)) = 1 is at most n -φ(n) where φ(n) = p r-1 q s-1 (p -1)(q -1) is the Euler totient function. Hence, the probability that d is a square in Z/nZ and 1 ± dx 1 y 1 x 2 y 2 (mod n) is not invertible modulo n is upper bounded by

n -φ(n) n = p r q s -p r-1 q s-1 (p -1)(q -1) p r q s = p + q -1 pq . ( 1 
)
Moreover, if p and q are of the same bit-size, then p ≈ q, and we get the approximation n = p r q s ≈ p r+s ≈ q r+s , from which we deduce

p ≈ q ≈ n 1 r+s .
Hence, the probability (1) becomes

n -φ(n) n ≈ 2n 1 r+s n 2 r+s = 2 n 1 r+s
. This is a negligible probability when n is sufficiently large.

Finding the order of E -d,d,n

Our new scheme uses a prime power RSA modulus of the form n = p r q s where p and q are prime numbers satisfying p ≡ q ≡ 3 (mod 4). By Corollary 7, for such primes, the order of the twisted elliptic curve E -d,d,n is p r-1 q s-1 (p + 1)(q + 1). It follows that finding the order of E -d,d,n leads to factoring n. This can be done by computing g = gcd n, p r-1 q s-1 (p + 1)(q + 1) = p r-1 q s-1 , and h = p r-1 q s-1 (p + 1)(q + 1) p r-1 q s-1 = (p + 1)(q + 1).

Then combining the equations h = (p+1)(q+1) and p r q s = n, one can find p and q. On the hand, it is obvious that factoring n leads immediately to finding the order of E -d,d,n . As a consequence, finding the order of E -d,d,n is equivalent to factoring the modulus n. This situation is similar to the RSA modulus N = pq for which finding the Euler totient function φ(N ) = (p-1)(q -1) is computationally equivalent to factoring N .

Solving the discrete logarithm problem on E -d,d,n

The security of the elliptic curve cryptography is based on the difficulty of solving the elliptic curve discrete logarithm: given two points P and Q on an elliptic curve such that Q = tP , find t. In our scheme, the public equation is C = (x C , y C ) = eM = e(x M , y M ) where the unknown is the point M = (x M , y M ) on the twisted Edwards curve E -d,d,n . This is not vulnerable to the discrete logarithm attacks.

On the other hand, assume that an attacker knows a point P on E -d,d,n and a value u such that C = uP . Then M satisfies M = vP for some unknown v. This gives C = eM = evP and the problem transforms to finding ev (mod p r-1 q s-1 (p + 1)(q + 1)). This is not possible under the hardness of elliptic discrete logarithm.

Solving the key equation

In our scheme, the publik key is e and the private key is k. They are related by the key equation is ek -up r-1 q s-1 (p + 1)(q + 1) = 1, in the unknown parameters k, u, p, q. This equation is similar to the key equations in some variants of RSA and could be solved by the continued fraction algorithm or by Coppersmith's method when k is suitably small (see [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF][START_REF] Boneh | Factoring N = p r q for large r[END_REF][START_REF] Nitaj | New attacks on RSA with moduli N = p r q[END_REF][START_REF] Sarkar | Revisiting prime power RSA[END_REF]). To avoid small key attacks, it is preferable to use sufficiently large private key.

Conclusion

We have studied the arithmetical properties of the twisted Edwards curves on the finite field Z/pZ and generalized them to the rings Z/p r Z and Z/p r q s Z. Using these properties, we have proposed a new public key scheme which can be seen as a generalization of two former public key schemes: the KMOV cryptosystem [START_REF] Koyama | New public-key schemes based on elliptic curves over the ring Zn[END_REF] with an RSA modulus and its generalization to a prime power RSA modulus [START_REF] Boudabra | A new generalization of the KMOV cryptosystem[END_REF].

Hence, since δ 2 ≡ 1 (mod p) and ax 2 1 + y 

d ≡ (bx 1 -δy 1 ) 2 x 2 1 y 2 1 (bx 2 -y 2 ) 2 (mod p)
, is a square which is a contradiction. It follows that bx 2 + y 2 ≡ 0 (mod p) and bx 2 -y 2 ≡ 0 (mod p), from which we deduce x 2 ≡ 0 (mod p) and y 2 ≡ 0 (mod p). This is also a contradiction. As a consequence, we have always δ ≡ ±1 (mod p) and the denominators in the addition law never vanish. This terminates the proof.

B Proof of Lemma 2

Let (x, y) be a point on the curve ax 2 +y 2 ≡ 1+dx 2 y 2 (mod p) with ad(a-d) = 0. If x = 0, then y = ±1 and 1 -y 2

x 2 ≡ a -dy 2 (mod p).

Since d = a and y = ±1, then multiplying both sides by 4(1+y)

(1-y) 3 (a-d) , we get

4(1 + y) 2 (1 -y) 2 (a -d)x 2 ≡ 4 a -dy 2 (1 + y) (1 -y) 3 (a -d) (mod p).
Setting Y ≡ 2(1+y) (1-y)x (mod p) and transforming the right side, we get

1 a -d Y 2 ≡ (1 + y) 3 (1 -y) 3 + ((a + 3d)y + 3a + d)(1 + y) (1 -y) 2 (a -d) (mod p).
Setting X ≡ 1+y 1-y (mod p) and plugging it in the right side of the former equality, we get

1 a -d Y 2 ≡ X 3 + 2(a + d) a -d X 2 + X (mod p).
Multiplying by (a -d) 3 , we get

(a -d) 2 Y 2 ≡ (a -d) 3 X 3 + 2(a + d)(a -d) 2 X 2 + (a -d) 3 X (mod p).
Setting U ≡ (a -d)X (mod p) and V ≡ (a -d)Y (mod p), this transforms to V 2 = U 3 + 2(a + d)U 2 + (a -d) 2 U (mod p) which can be rewritten as 

V 2 ≡

C Proof of Lemma 3

Since O and (0, 1) are the neutral elements in W a,d,p and E a,d,p respectively, then they correspond to each other. For u = 5d-a 3 and v = 0, we can invert (3) to get

(x, y) = 2(3u -2a -2d) 3v , 3u -5a + d 3u + a -5d . ( 4 
)
Observe that (4) is not defined for v = 0 and for 3u + a -5d ≡ 0 (mod p). The first root of ( 5) is u = 2 3 (a + d). Plugging this in the second coordinate of (4), we get y = -1. Plugging y = -1 in the equation ax 2 + y 2 = 1 + dx 2 y 2 of E a,d,p , we get ax 2 = dx 2 . Since a = d, then x = 0. Therefore the point ( 23 (a + d), 0) ∈ W a,d,p is mapped to (0, -1) ∈ E a,d,p .

In the case ad is a square in Z/pZ, then the second and third roots of ( 5) are Second, for 3u + a -5d ≡ 0 (mod 0) we have u ≡ -1 3 (a -5d) (mod p). Suppose that there exists v such that (u, v) = - 

( 3 )

 3 Now, if x = 0, then y 2 = 1 and y = ±1. If y = 1, then the transformations (3) are not valid and the point (0, 1) is transformed to the point at infinity O. If y = -1, then u ≡ 2 3 (a + d) (mod p). Plugging this in the equation (2), we get v = 0. Hence, the point (0, -1) on E a,d,p is transformed to the point2 3 (a + d), 0 on the equation (2). This terminates the proof.

  First, for v = 0, suppose that (u, 0) ∈ W a,d,p . Then u satisfies the equation

u = -1 3 a + d ± 6 √ 3 a + d ± 6 √

 636 ad . Then the second coordinate of (4) isy = 3u -5a + d 3u + a -5d = ± a d . Plugging y = ∓ a d inthe equation of E a,d,p , we get ax 2 + a d = 1 + ax 2 and a d = 1. Since a = d, then this is impossible. Therefore the points (u, v) = -1 ad , 0 ∈ W a,d,p are not mapped in E a,d,p .

  1 3 (a -5d), v ∈ W a,d,p . Then v satisfies v 2 ≡ 4d(a -d) 2 (mod p). Hence, if d is a square in Z/pZ, then v ≡ ±2 √ d(a -d) (mod p). Plugging (u, v) = -1 3 (a -5d), ±2 √ d(a -d)in the first coordinate of (4), we get x = ∓ √ d d . Plugging this in the equation of W a,d,p , we get a d + y 2 = 1 + y 2 and a d = 1, which is impossible since a = d. Consequently, the points (u, v) = -1 3 (a -5d), ±2 √ d(a -d) ∈ W a,d,p are not mapped on the twisted Edwards curve E a,d,p .

  d,p are not mapped into E a,d,p . Proof. The proof of the theorem is presented in Appendix C Combining Lemma 2 and Lemma 3, we easily get the following result regarding the number of points of the twisted Edwards curve E a,d,p in terms of the number of points of the Weierstrass curve W a,d,p .Proof. First, suppose that d and ad are not squares in Z/pZ. Then by Lemma 2 and Lemma 3, the curves E a,d,p and W a,d,p are isomorphic.

										This implies that
	#E a,d,p = #W a,d,p .							
	Second, suppose that both ad and d are squares in Z/pZ. Then by Lemma 3, the points (u, v) = -1 √ ad , 0 ∈ W a,d,p as well as the points 3 a + d ± 6 (u, v) = -1 3 (a -5d), ±2 √ d(a -d) ∈ W a,d,p are not mapped in E a,d,p . Then
	#E a,d,p = #W a,d,p -4.							
	Next, suppose that ad is a square in Z/pZ but d is not a square. Then by Lemma 3, the two points (u, v) = -1 3 a + d ± 6 √ ad , 0 ∈ W a,d,p are not
	mapped in E a,d,p . Hence #E a,d,p = #W a,d,p -2.		
	Finally, suppose that d is a square in Z/pZ but ad is not a square. Then by Lemma 3, the two points (u, v) = -1 3 (a -5d), ±2 √ d(a -d) ∈ W a,d,p are not
	mapped in E a,d,p . This gives #E a,d,p = #W a,d,p -2.	
	The following result deals with two integers a and d such that a d ≡ -1 (mod p).
	Lemma 5. Let p be a prime number such that p ≡ 3 (mod 4). If a d ≡ -1
	(mod p), then one of the integers a or d is a square in Z/pZ and the other is a
	non square.								
	Proof. Suppose that p ≡ 3 (mod 4). Then by Lemma 1, -1 is not a square in
	Z/pZ. Hence, if a								
		a p	=	-d p	=	-1 p	d p	= -	d p	.
	Lemma 4. Let p ≥ 5 be a prime number and a and d be integers such that
	ad(a -d) = 0. Then							
	#E a,d,p =	  #W a,d,p  #W a,d,p -4 if ad and d are squares in Z/pZ, if d and ad are not squares in Z/pZ,
		  #W a,d,p -2 if ad or d is a square in Z/pZ.

d ≡ -1 (mod p), then a ≡ -d (mod p) and It follows that a and d are of different shapes. The following result concerns two integers a and d such that a d ≡ -7 ± 4 √ 3 (mod p). Lemma 6. Let p be a prime number such that p ≡ 11 (mod 12). If a d ≡ -7 ± 4 √ 3 (mod p), then one of the integers a or d is a square in Z/pZ and the other is a non square. Proof. Suppose that p ≡ 11 (mod 12). Then by Lemma 1, √ 3 exists in Z/pZ and can be computed as

  Let p be a prime number such that p ≡ 7 (mod 8). If a d ≡ 17 ± 12 √ 2 (mod p), then a and d are both squares or non squares in Z/pZ.

	a d ≡ 17 ± 12	√	2
	(mod p).		
	Lemma 7. Proof. Suppose that p ≡ 7 (mod 8). Then puted as √ 2 ≡ 2 p+1 4 (mod p). Now, suppose that a √ 2 exists in Z/pZ and can be com-d ≡ 17 ± 12 √ 2 (mod p). Then

  If a is a square in Z/pZ, then by Lemma 6, d is not a square and by Lemma 4 and Lemma 8, we have #E a,d,p = #W a,d,p = p + 1. As a consequence of Lemma 9, we have the following result. Let E a,d,p be a twisted Edwards curve. If p is prime with p ≡ 3 (mod 4) and a d ≡ -1 (mod p), then for any point (x, y) ∈ E a,d,p , we have

	4 and
	Lemma 8, we get #E a,d,p = #W a,d,p = p + 1. Next, suppose that a d ≡ -7 ± 4 √ 3 (mod p). Then a 4 ≡ 0 (mod p) and by Lemma 1, a condition that √ 3 exists modulo p is that p ≡ ±1 (mod 12). If
	moreover p ≡ 2 (mod 3), then p ≡ 11 (mod 12). Under this condition, we have √ 3 ≡ 3 p+1 4 (mod p). Lemma 10.

  Next, combining Theorem 2 and Lemma 10, we get the following result. Let E a,d,p r be a twisted Edwards curve. If p is a prime number with p ≡ 3 (mod 4) and a d ≡ -1 (mod p r ), then for any point (x, y) ∈ E a,d,p r , we have )or undefined if a is not a square in Z/pZ. Finally, combining Theorem 2 and Lemma 11, we get the following result. Let E a,d,p r be a twisted Edwards curve with a If p is a prime number with p ≡ 11 (mod 12), then for any point (x, y) ∈ E a,d,p r , we have

	2. p ≡ 11 (mod 12), a d ≡ -7 ± 4	√	and a is a square, 3 (mod p), and a is a square.
	(0, 1) (0, 1) (0, 1Corollary 4. p r-1 (p + 1)(x, y) = Corollary 3. p r-1 (p + 1)(x, y) = (0, 1)or undefined if a is not a square. if a is a square in Z/pZ, if a is a square in Z/pZ,

d ≡ -7±4 √ 3 (mod p r ).

  • 13 • 19, a = 4 and d = 183. We can check that (x 1 , y 1 ) = (70, 335) and (x 2 , y 2 ) = (108, 525) are two points on the curve E a,d,n but the sum (x 1 , y 1 ) + (x 2 , y 2 ) is not defined. Indeed we have

gcd(1 + dx 1 y 1 x 2 y 2 (mod n), n) = gcd(1352, 7 • 13 • 19) = 13,

and the inverse (1 + dx 1 y 1 x 2 y 2 ) -1 (mod n) does not exist. In this example, d is a square in the fields Z/7Z and Z/13Z but not in the field Z/19Z.

  If bx 2 + y 2 ≡ 0 (mod p), then, since x 1 y 1 = 0 (mod p), we have gcd(x 1 y 1 (bx 2 + y 2 ), p) = 1, and (bx 2 + y 2 ) 2 (mod p), is a square which is a contradiction. Similarly, we have (bx 1 -δy 1 ) ≡ dx2 1 y 2 1 (bx 2 -y 2 ) 2 (mod p). If bx 2 -y 2 ≡ 0 (mod p), then gcd(x 1 y 1 (bx 2 -y 2 ), p) = 1, and

		2 1 ≡ dx 2 1 y 2 1 ax 2 2 + y 2 2	(mod p), we get
	(bx 1 + δy 1 ) 2 = b 2 x 2 1 + y 2 1 + 2bδx 1 y 1
	≡ dx 2 1 y 2 1 ax 2 2 + y 2 2 + 2bdx 2 1 y 2 1 x 2 y 2 (mod p)
	≡ dx 2 1 y 2 1 b 2 x 2 2 + y 2 2 + 2bx 2 y 2	(mod p)
	≡ dx 2 1 y 2 1 (bx 2 + y 2 ) 2 (mod p).
	d ≡	(bx 1 + δy 1 ) 2 x 2 1 y 2 1

A Proof of Theorem 1

Let p > 2 be a prime number. Suppose that d is a non-square in Z/pZ and a a square with a ≡ b 2 (mod p). Let (x 1 , y 1 ), (x 2 , y 2 ) be two points on the curve E a,d,p . Suppose that dx 1 y 1 x 2 y 2 ≡ δ ≡ ±1 (mod p). Then x 1 y 1 x 2 y 2 = 0 (mod p) and