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2Université de Caen, France, abderrahmane.nitaj@unicaen.fr
3Centre for Computer and Information Security Research,

School of Computing and Information Technology, University
of Wollongong, Australia, [wsusilo,joseph tonien]@uow.edu.au

Abstract

In 1995, Kuwakado, Koyama and Tsuruoka presented a new RSA-
type scheme based on singular cubic curves y2 ≡ x3 + bx2 (mod N)
where N = pq is an RSA modulus. Then, in 2002, Elkamchouchi,
Elshenawy and Shaban introduced an extension of the RSA scheme
to the field of Gaussian integers using a modulus N = PQ where
P and Q are Gaussian primes such that p = |P | and q = |Q| are
ordinary primes. Later, in 2007, Castagnos’s proposed a scheme over
quadratic fields quotients with an RSA modulus N = pq. In the three
schemes, the public exponent e is an integer satisfying the key equation
ed − k

(
p2 − 1

) (
q2 − 1

)
= 1. In this paper, we apply the continued

fraction method to launch an attack on the three schemes when the
private exponent d is sufficiently small. Our attack can be considered
as an extension of the famous Wiener attack on RSA.
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1 Introduction

The public key cryptosystem RSA was introduced by Rivest, Shamir and
Adleman [10] in 1978. It is the most popular and widely used public-key
cryptosystem. The RSA operations system are based on modular arithmetic.
Let p and q be two large primes. The product N = pq is called the RSA
modulus and the product φ(N) = (p−1)(q−1) is the Euler Totient function.
In RSA, the public exponent e and the private exponent d are integers sat-
isfying ed ≡ 1 (mod φ(N)). A message m is encrypted as c ≡ me (mod N)
and decrypted using m ≡ cd (mod N).

Since its introduction in 1978 by Rivest, Shamir and Adleman [10], the RSA
cryptosystem has been generalized in various ways, including extensions to
singular elliptic curves and Gaussian integers.

In 1995, Kuwakado, Koyama and Tsuruoka [8] presented a new RSA-type
scheme based on singular cubic curves with equation y2 ≡ x3 + bx2 (mod N)
where N = pq is an RSA modulus and b ∈ Z/NZ. The public exponent is an
integer e such that gcd (e, (p2 − 1) (q2 − 1)) = 1 and the decryption exponent
is the integer d ≡ e−1 (mod (p2 − 1) (q2 − 1)). From this, we deduce that e
and d satisfy a key equation of the form ed− k (p2 − 1) (q2 − 1) = 1 where k
is a positive integer.

In 2002, Elkamchouchi, Elshenawy and Shaban [5] introduced an extension
of RSA to the ring of Gaussian integers. A Gaussian integer is a complex
number of the form a + ib where both a and b are integers and i is such
that i2 = −1. The set of all Gaussian integers is denoted Z[i]. A Gaus-
sian prime number is a Gaussian integer that can not be be represented
as a product of non-unit Gaussian integers. The only unit Gaussian in-
tegers are ±1, ±i. Let P = a + ib and Q = a′ + ib′ be two Gaussian
primes. Consider the Gaussian integer N = PQ and the Euler totient func-
tion φ(N) = (|P | − 1) (|Q| − 1) = (a2 + b2 − 1) (a′2 + b′2 − 1). Let e be an
integer such that d ≡ e−1 (mod φ(N)) exists. Then, in the RSA scheme
over the domain of Gaussian integers, a message m ∈ Z[i] is encrypted using
c ≡ me (mod N) and decrypted using m ≡ cd (mod N). We note that,
in this RSA variant, the key equation is ed − k (|P | − 1) (|Q| − 1) = 1 for
N = PQ ∈ Z[i]. In the situation that N = pq is an ordinary RSA modulus,
the key equation becomes ed−k (p2 − 1) (q2 − 1) = 1, which is the same than
in the Kuwakado-Koyama-Tsuruoka elliptic curve variant of RSA.
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In 2007, Castagnos [3] proposed a probabilistic scheme based on an RSA
modulus N = pq and using arithmetic operations in quadratic field quotients.
Let e be a integer such that gcd (e, (p2 − 1) (q2 − 1)) = 1. For any integer
r, let Ve(r) be the eth term of the Lucas sequence defined by V0(r) = 2,
V1(r) = r and Vk+2 = rVk+1(r)− Vk(r) for k ≥ 0. In this scheme, a message
m ∈ Z/NZ is encrypted using c ≡ (1 + mN)Ve(r) (mod N2) where r is a
random integer with 2 ≤ r ≤ N − 2. Then some arithmetic properties, one
can decrypt c to get the original message m. Similarly to the Kuwakado-
Koyama-Tsuruoka elliptic curve variant of RSA and RSA with Gaussian
intgers, Castagnos scheme leads to the key equation ed−k (p2 − 1) (q2 − 1) =
1.

The security of the RSA cryptosystem and its variants are based on the
difficulty of factoring large integers of the shape N = pq. Nevertheless, in
some cases, the modulus N can be factored by algebraic methods that are not
based on factoring algorithms. For example, in 1990, Wiener [11] showed how
to break RSA when the decryption exponent d satisfies d < 1

3
N0.25. Wiener’s

method is based on solving the key equation ed − k(p − 1)(q − 1) = 1 by
applying the continued fraction algorithm to the public rational fraction e

N
.

When d is small enough, k
d

is one of the convergents of the continued fraction
expansion of e

N
. Later, Boneh and Durfee [1] applied lattice reduction and

Coppersmith’s technique [4] and extended the bound to d < N0.292.

The complexity of the encryption and decryption algorithms are based on the
size of the encryption key e and the size of decryption key d, respectively. In
a cryptosystem with a limited resource such as a credit card, it is desirable
to have a smaller value of d. In some scenario, for convenience, e is set to a
small constant, such as e = 3.

In this paper, we consider one of the following scenarios where N = pq is the
product of two large primes and the public exponent e satisfies an equation
ed− k (p2 − 1) (q2 − 1) = 1 with suitably small secret exponent d.

• an instance of the Kuwakado-Koyama-Tsuruoka cryptosystem [8],

• an instance of the RSA over Gaussian integers [5],

• an instance of Castagnos scheme [3].

Our attack works for certain small sizes of d. We show that when d is

sufficiently small, namely d <
√

2N3−18N2

e
, then one can find p and q an
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then factor the modulus N . Our method is based on the continued fraction

algorithm as in Wiener’s attack. Under the condtion d <
√

2N3−18N2

e
, we

show that one can find k
d

among the covergents of the continued fraction
expansion of the public rational number e

N2− 9
4
N+1

.

The paper is organized as follows. In Section 2, we present the Kuwakado-
Koyama-Tsuruoka RSA-type scheme, the RSA scheme over Gaussian integers
and Castagnos scheme. In Section 3, we review some facts and lemmas used
in our attack. In Section 4, we present our new attack with a numerical
example. We conclude the paper in Section 5.

2 Preliminaries

In this section, we present the two variants of the RSA cryptosystem for
which our attack works, namely the Kuwakado-Koyama-Tsuruoka RSA-type
scheme, the RSA scheme over Gaussian integers and Castagnos scheme.

2.1 The Kuwakado-Koyama-Tsuruoka RSA-type scheme

The Kuwakado-Koyama-Tsuruoka RSA-type scheme is based on the use of
an RSA modulus N = pq as the modulus of a singular elliptic curve. Let
ZN = Z/NZ be the ring of integers modulo N and Fp be the finite field.
Let a and b be integers with gcd(ab,N) = 1 and gcd(4a3 + 27b2, N) = 1.
A singular elliptic curve EN(a, b) over the ring ZN is the concatenation of
a point ON , called the point at infinity, and the set of points (x, y) ∈ Z2

N

satisfying the Weierstrass equation

y2 + axy ≡ x3 + bx2 (mod N).

If we consider this form modulo p, we get an elliptic curve Ep(a, b) over Fp

Ep(a, b) : y2 + axy ≡ x3 + bx2 (mod p),

with the point at infinity Op. It is well known that the chord-and-tangent
method defines an addition law on singular elliptic curves, as for all elliptic
curves on Fp. The addition law can be summarized as follows.
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• For any point P ∈ Ep(a, b), P +Op = Op + P = P .

• If P = (x, y) ∈ Ep(a, b), then −P = (x,−ax− y).

• If P = (x, y), then 2P = P3 = (x3, y3) with

x3 =

(
3x2 + 2bx− ay

2ay + ax

)2

+ a

(
3x2 + 2bx− ay

2ay + ax

)
− b− 2x,

y3 = −
(

3x2 + 2bx− ay
2ay + ax

+ a

)
x3 −

−x3

2ay + ax
.

• If P1 = (x1, y1) and P2 = (x2, y2) with P1 6= ±P2, then P1 + P2 = P3 =
(x3, y3) with

x3 =

(
y2 − y1
x2 − x1

)2

+ a

(
y2 − y1
x2 − x1

)
− b− x1 − x2,

y3 = −
(
y2 − y1
x2 − x1

+ a

)
x3 −

y1x2 − y2x1
x2 − x1

.

The addition law can be extended to the elliptic curve EN(a, b) in the same
way as the addition in Ep(a, b) by replacing computations modulo p by com-
putations modulo N . In EN(a, b), a specific problem can occur. Sometimes,
the inverse modulo N does not exist. In this case, this could lead to finding a
prime factor of N , which is unlikely to happen when p and q are large. Note
that this is one of the principles of Elliptic Curve Method of factorization [9].

In 1995, Kuwakado, Koyama and Tsuruoka [8] proposed a system based on
singular elliptic curves modulo an RSA modulus, which can be summarized
as follows.

1. Key Generation:

• Choose two distinct prime numbers p and q of similar bit-length.

• Compute N = pq.

• Choose e such that gcd (e, (p2 − 1) (q2 − 1)) = 1.

• Compute d = e−1 (mod (p2 − 1) (q2 − 1)).

• Keep p, q, d secret and publish N, e.
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2. Encryption:

• Transform the message as m = (mx,my) ∈ ZN × ZN .

• Compute b =
m2

y−m3
x

m2
x

(mod N).

• Compute the ciphertext point (cx, cy) = e(mx,my) on the elliptic
curve y2 = x3 + bx2 (mod N).

3. Decryption:

• Compute b =
c2y−c3x
c2x

(mod N).

• Compute the plaintext point (mx,my) = d(cx, cy) on the elliptic
curve y2 = x3 + bx2 (mod N).

Observe the modular inverse d = e−1 (mod (p2 − 1) (q2 − 1)) can be trans-
formed as a key equation

ed− k
(
p2 − 1

) (
q2 − 1

)
= 1,

which will be the starting equation of our new attack.

2.2 RSA over the domain of Gaussian Integers

We now focus on how to extend the RSA cryptosystem to the ring of Gaussian
integers. We begin by reviewing the main properties of Gaussian integers.

A Gaussian integer is a complex number of the form a + bi where a, b ∈ Z
and i is such that i2 = −1. The set of all Gaussian integers is the ring Z[i].
Let α and β 6= 0 be two Gaussian integers. We say that β divides α if there
exists a Gaussian integer γ such that α = βγ. The norm of a Gaussian
integer a + bi is |a + bi| = a2 + b2. A Gaussian prime is a Gaussian integer
which is divisible only by a unit. The units in Z[i] are ±1 and ±i and have
norm 1. As a consequence, if a2 + b2 is a prime number in Z, then a + ib is
a Gaussian prime. Conversely, if p ∈ Z is an ordinary prime number, then
Gaussian integers p and pi are Gaussian primes if and only if p ≡ 3 (mod 4).
The existence of prime factorization in Z[i] allows us to consider Gaussian
integers of the form N = PQ where P and Q are Gaussian primes with large
norm. Similarly, the existence of Euclidean division and Euclidean algorithm
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in Z[i] allow us to consider arithmetic operations modulo N . On the other
hand, if P is a Gaussian prime, then α|P |−1 ≡ 1 (mod P ) whenever α 6≡ 0
(mod P ). Similarly, if N = PQ is the product of two Gaussian primes,
then α(|P |−1)(|Q|−1) ≡ 1 (mod N) whenever α 6≡ 0 (mod N). In particular, if

N = pq ∈ Z is the product of two ordinary primes, then α(p2−1)(q2−1) ≡ 1
(mod N) whenever α 6≡ 0 (mod N).

Using the arithmetic operations on the ring Z[i], Elkamchouchi, Elshenawy
and Shaban [5] proposed an extension of the RSA cryptosystem to Gaussian
integers. The scheme can be summarized as follows.

1. Key Generation:

• Choose two distinct Gaussian primes P and Q of similar norm.

• Compute N = PQ.

• Choose e such that gcd(e, (|P | − 1)(|Q| − 1)) = 1.

• Determine d = e−1 (mod (|P | − 1)(|Q| − 1))).

• Keep P,Q, d secret, publish N, e.

2. Encryption:

• Transform the message as a Gaussian integer M ∈ Z[i].

• Compute C ≡M e (mod N).

3. Decryption:

• Compute M ≡ Cd (mod N).

When N = pq ∈ Z where p and q are ordinary prime numbers of the form
4m + 3, the modular inverse of e becomes d = e−1 (mod (p2 − 1) (q2 − 1))
and can be rewritten as

ed− k
(
p2 − 1

) (
q2 − 1

)
= 1.

This is the same key equation that comes up in the Kuwakado-Koyama-
Tsuruoka RSA-type scheme.
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2.3 Castagnos scheme

Castagnos scheme [3] was proposed in 2007 and uses an RSA modulus N =
pq and a public exponent e such that gcd (e, (p2 − 1) (q2 − 1)) = 1. The
encryption and the decryption algorithms make use of the Lucas series. Let
r be an integer. Define V0(r) = 2 and V1(r) = r. For k ≥ 0, the k+ 2th term
of the Lucas sequence is defined by Vk+2 = rVk+1(r)−Vk(r). The Lucas series
can be computed efficiently by the square and multiply algorithm. Castagnos

scheme can be summarized as follows, where
(

x
p

)
is the Jacobi symbol.

1. Key Generation:

• Choose two distinct prime numbers p and q of similar bit-length.

• Compute N = pq.

• Choose e such that gcd (e, (p2 − 1) (q2 − 1)) = 1.

• Keep p, q secret and publish N, e.

2. Encryption:

• Transform the message as an integer m ∈ Z/NZ.

• Choose a random integer r ∈ [2, n− 2].

• Compute the ciphertext c ≡ (1 +mN)Ve(r) (mod N2).

3. Decryption:

• Compute ip =
(

c2−4
p

)
and d(p, ip) ≡ e−1 (mod p− ip).

• Compute iq =
(

c2−4
q

)
and d(q, iq) ≡ e−1 (mod q − iq).

• Compute rp ≡ Vd(p,ip) (mod p) and rq ≡ Vd(q,iq) (mod q).

• Compute p′ ≡ p−1 (mod q) and r = rp + p(rp − rq)p′ (mod N).

• Compute tp ≡ c
Ve(r)

(mod p2) and mp ≡ tp−1
p
· q−1 (mod p).

• Compute tq ≡ c
Ve(r)

(mod q2) and mq ≡ tq−1
q
· p−1 (mod q).

• Compute the plaintext m ≡ mp + p(mq −mp)p
′ (mod N).

Despite the inverse d ≡ e−1 (mod (p2 − 1) (q2 − 1)) is not used directly in
the scheme, we use the key equation ed − k (p2 − 1) (q2 − 1) = 1 to launch
an attack on Castagnos scheme when d is suitably small.
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3 Useful Lemmas

In this section, we review the main properties of the continued fractions and
state a useful lemma that will be used in the attack.

A continued fraction is an expression of the form

a0 +
1

a1 +
1

a2 +
1

. . .

The continued fraction expansion of a number is formed by subtracting away
the integer part of it and inverting the remainder and then repeating this
process again and again. For example,

2015

444
= 4 +

239

444
= 4 +

1
444
239

= 4 +
1

1 +
205

239

= 4 +
1

1 +
1
239
205

= 4 +
1

1 +
1

1 +
34

205

= 4 +
1

1 +
1

1 +
1
205
34

= 4 +
1

1 +
1

1 +
1

6 +
1

34

As we have seen above, the coefficients ai of the continued fraction of a
number x are constructed as follows:

x0 = x, an = [xn], xn+1 =
1

xn − an

We use the following notation to denote the continued fraction

x = [a0, a1, . . . , an] = a0 +
1

a1 +
1

. . . +
1

an
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If k ≤ n, the continued fraction [a0, a1, . . . , ak] is called the kth convergent
of x. The following theorem gives us the fundamental recursive formulas to
calculate the convergents.

Theorem 1. The kth convergent can be determined as

[a0, . . . , ak] =
pk
qk

where the sequences {pn} and {qn} are specified as follows1:

p−2 = 0, p−1 = 1, pn = anpn−1 + pn−2, ∀n ≥ 0,

q−2 = 1, q−1 = 0, qn = anqn−1 + qn−2, ∀n ≥ 0.

Theorem 2. Let p, q be positive integers such that p
q
6∈ N and (p, q) = 1. If

0 <

∣∣∣∣x− p

q

∣∣∣∣ < 1

2q2

then p
q

is a convergent of the continued fraction of x.

Proofs of Theorem 1 and Theorem 2 can be found in most of standard text-
books on number theory such as [6].

Now, we present a useful result that will be used throughout the paper.

Lemma 1. Let N = pq be an RSA modulus with q < p < 2q. Let φ1 =
N2 + 1− 5

2
N and φ2 = N2 + 1− 2N . Then

φ1 < (p2 − 1)(q2 − 1) < φ2.

Proof. Suppose that q < p < 2q. Then 1 < p
q
< 2, so since the function

f(x) = x+ 1
x

is increasing on [1,+∞), we get f(1) < f
(

p
q

)
< f(2), that is

2 <
p

q
+
q

p
<

5

2
.

1The convergents start with p0

q0
, but it is a convention to extend the sequence index to

−1 and −2 to allow the recursive formula to hold for n = 0 and n = 1
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Multiplying by N , we get

2N < p2 + q2 <
5

2
N.

Since (p2 − 1) (q2 − 1) = N2 + 1− (p2 + q2), we get

N2 + 1− 5

2
N < (p2 − 1)(q2 − 1) < N2 + 1− 2N,

that is φ1 < (p2 − 1)(q2 − 1) < φ2. This terminates the proof.

4 A New Attack on RSA Variants Based on

Continued Fractions

In this section, we propose a new attack on the Kuwakado-Koyama-Tsuruoka
cryptosystem as well as RSA over the Gaussian integer domain and Castagnos
scheme in the situation that the key equation ed − k(p2 − 1)(q2 − 1) = 1 is
satisfied with a suitably small secret exponent d.

Theorem 3. Let (N, e) be a public key in the Kuwakado-Koyama-Tsuruoka
cryptosystem or in the RSA cryptosystem with Gaussian integers or in Castag-
nos scheme with N = pq and q < p < 2q. If e < (p2 − 1) (q2 − 1) satisfies
an equation ed− k (p2 − 1) (q2 − 1) = 1 with

d <

√
2N3 − 18N2

e
,

then one can factor N in polynomial time.

Proof. Let φ1 = N2+1− 5
2
N and φ2 = N2+1−2N . Then N ′ = N2− 9

4
N+1

is the midpoint of the interval [φ1, φ2]. Since (p2 − 1) (q2 − 1) ∈ [φ1, φ2], then∣∣(p2 − 1
) (
q2 − 1

)
−N ′

∣∣ < 1

2
(φ2 − φ1) =

1

4
N. (1)

Using the equation ed− k (p2 − 1) (q2 − 1) = 1, we get∣∣∣∣ eN ′ − k

d

∣∣∣∣ ≤ e

∣∣∣∣ 1

N ′
− 1

(p2 − 1) (q2 − 1)

∣∣∣∣+

∣∣∣∣ e

(p2 − 1) (q2 − 1)
− k

d

∣∣∣∣
= e
|(p2 − 1) (q2 − 1)−N ′|
N ′ (p2 − 1) (q2 − 1)

+
1

(p2 − 1) (q2 − 1) d

11



Then, using d =
k(p2−1)(q2−1)+1

e
and (1), we get∣∣∣∣ eN ′ − k

d

∣∣∣∣ < eN

4N ′ (p2 − 1) (q2 − 1)
+

e

(p2 − 1) (q2 − 1) (k (p2 − 1) (q2 − 1) + 1)
.

Now, using Lemma 1, we get∣∣∣∣ eN ′ − k

d

∣∣∣∣ < eN

4φ2
1

+
e

φ2
1

<
e(N + 4)

4(φ1 − 1)2
=

e(N + 4)

4
(
N2 − 5

2
N
)2 . (2)

A straightforward calculation shows that

N + 4

4
(
N2 − 5

2
N
)2 < 1

4N3 − 36N2
.

Combining this with (2), we get∣∣∣∣ eN ′ − k

d

∣∣∣∣ < 1

4N3 − 36N2
.

If d <
√

2N3−18N2

e
, then

∣∣ e
N ′ − k

d

∣∣ < 1
2d2

and by Theorem 2, k
d

is a convergent

of the continued fraction expansion of e
N ′ . Using k and d, we get

(
p2 − 1

) (
q2 − 1

)
=
ed− 1

k
.

Combining with N = pq, we get the values of p and q which leads to the
factorization of N . Observe that every step in the proof can be done in
polynomial time. This terminates the proof.

Remark 1. Observe that in most of the cases, the public exponent e is full-
sized, that is e ≈ N2. Then our method of Theorem can be applied to factor
N whenever d <

√
2N − 18 ≈

√
2
√
N .

Remark 2. Since e satisfies the key equation ed − k (p2 − 1) (q2 − 1) = 1,
then ed > (p2 − 1) (q2 − 1) > N2 + 1− 5

2
N . In connection with Theorem 3,

to ensure d <
√

2N3−18N2

e
, the exponent e should satisfy

e >
N2 + 1− 5

2
N√

2N3−18N2

e

,
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from which we deduce the lower bound for e

e >

(
N2 + 1− 5

2
N
)2

2N3 − 18N2
≈ 1

2
N.

Consequently, our method can not be applied for small values of e such as
e = 3.

4.1 A numerical example

In connection with Theorem 3, we present an experimental result. We con-
sider the RSA modulus N and the public exponent e as follows.

N = 2617939220553315302745462091,

e = 5656039332305952436559424461831783955572872351157004185.

The first partial quotients of e
N2− 9

4
N+1

are

0, 1, 4, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 46, 3, 5, 1, 1, 2, 26, 2, 2, 39, 1, 3, 2, 3, 1, 23104, 1, 9,

1, 1, 2, 1, 3, 2, 2, ....

We can see that the 29th partial quotient is more larger than the previous
ones. This means that the 28th convergent is a promising candidate for k

d
.

Indeed, using k
d

= 981582747476
1189415557289

, we get

(
p2 − 1

) (
q2 − 1

)
=
ed− 1

k
= 6853605762511300064473195588212095096351361928469816064.

Combining with the equation N = pq, we get

p = 68410308889243,

q = 38268197630737.

which completes the factorization of N . In this example, we can check that

the condition d <
√

2N3−18N2

e
is satisfied as required in Theorem 3.
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5 Conclusion

We have proposed an attack on three variants of the RSA cryptosystem,
namely the Kuwakado-Koyama-Tsuruoka extension for singular elliptic curves,
Elkamchouchi et al.’s extension of RSA to the Gaussian integer ring and
Castagnos scheme. For the three extensions, we showed that the RSA mod-
ulus N = pq can be factored in polynomial time if the public exponent e is
related to a suitably small secret exponent d. The attack is based on the
theory of continued fractions and can be seen as an extension of Wiener’s
attack on RSA and Bunder-Tonien’s [2] attacks on the RSA.
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