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Introduction

In 1978, Rivest, Shamir and Adleman [START_REF] Rivest | A Method for Obtaining digital signatures and public-key cryptosystems[END_REF] invented the RSA cryptosystem. Nowadays, it is the most widely used public key cryptosystem and serves for encryption and signature. The security of RSA is based on the difficulty of factoring specific large integers, called RSA moduli. An RSA modulus is in the form N = pq where p and q are large prime numbers of the same size. The public exponent in RSA is an integer e satisfying gcd(e, (p -1)(q -1)) = 1 while the private exponent is the integer d satisfying ed ≡ 1 (mod (p -1)(q -1)). Since its invention, the RSA cryptosystem has been intensively studied for vulnerabilities. Many attacks on RSA exploit the RSA key equation ed -k(p -1)(q -1) = 1. A few attacks are based on the continued fraction algorithm such as Wiener's attack [START_REF] Wiener | Cryptanalysis of short RSA secret exponents[END_REF] and most of the attacks are based on lattice reduction techniques, introduced by Coppersmith [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF] (see [START_REF] Boneh | Twenty years of attacks on the RSA cryptosystem[END_REF][START_REF] Boneh | Cryptanalysis of RSA with private key d less than N 0.292[END_REF][START_REF] Hinek | Cryptanalysis of RSA and its Variants[END_REF][START_REF] May | New RSA Vulnerabilities Using Lattice Reduction Methods[END_REF]). Combining both techniques, Blömer and May [START_REF] Blömer | A generalized Wiener attack on RSA[END_REF] presented an attack using the generalized key equation ex + y = k(p -1)(q -1) for suitably small integers x, k and y.

Many variants of RSA have been proposed for improving the security or reducing the encryption or the decryption time (see [START_REF] Boneh | Fast Variants of RSA[END_REF][START_REF] Takagi | Fast RSA-type cryptosystem modulo p k q[END_REF][START_REF] Quisquater | Fast Decipherment Algorithm for RSA Public-Key Cryptosystem[END_REF]). The variants of RSA in [START_REF] Smith | LUC: a new publickey cryptosystem[END_REF][START_REF] Kuwakado | A new RSA-type scheme based on singular cubic curves y 2 = x 3 +bx 2 (mod n)[END_REF][START_REF] Elkamchouchi | Extended RSA cryptosystem and digital signature schemes in the domain of Gaussian integers[END_REF][START_REF] Castagnos | An efficient probabilistic public-key cryptosystem over quadratic field quotients[END_REF]] make use of a public exponent e and a private exponent d satisfying the equation ed -k p 2 -1 q 2 -1 = 1.

(1)

In [START_REF] Bunder | A new attack on three variants of the RSA cryptosystem[END_REF], Bunder et al. proposed an attack on these variants by using the continued fraction algorithm approach. Setting e = N β , they showed that one can solve the equation 1 and find the prime factors p and q if d = N δ and δ < 1 2 (3 -β). This was recently improved to δ < 2 -√ β by Peng et al. [START_REF] Peng | An improved analysis on three variants of the RSA cryptosystem[END_REF] and by Zheng et al. [START_REF] Zheng | Cryptanalysis of RSA variants with modified Euler quotient[END_REF] by using lattice reduction techniques and Coppersmith's method.

In this paper we consider the generalized equation

eu -p 2 -1 q 2 -1 v = w. (2) 
This equation can be transformed into the modular equation

v(p + q) 2 -(N + 1) 2 v -w ≡ 0 (mod e). (3) 
We set e = N β , u = N δ , w = N γ and using lattice reduction techniques and Coppermith's method, we show that one can solve the equation ( 3) and find the prime factors p and q under the condition

δ < 7 3 -γ - 2 3 1 + 3β -3γ -ε, (4) 
where ε is a small positive constant. Observe that the key equation ( 1) is a special case of the equation (3) where w = 1 and γ = 0. In this special case, the condition (4) becomes

δ < 7 3 - 2 3 1 + 3β -ε,
which is slightly worst than the condition δ < 2 -√ β derived by the method of Peng et al. [START_REF] Peng | An improved analysis on three variants of the RSA cryptosystem[END_REF]. Apart this special case, our method supersedes the method of Peng et al. since their method works only for w = 1 while our method works for any w = N γ under the condition (4).

In [START_REF] Bunder | A generalized attack on RSA type cryptosystems[END_REF], Bunder et al. studied the equation ( 2) using a combination of the continued fraction algorithm and Coppersmith's method. They showed that this equation can be solved whenever

uv < 2N -4 √ 2N 3 4 and |w| < (p -q)N 1 4 v.
The first condition implies the following one

δ < 3 -β 2 ,
which is worst than our condition with γ = 0. As a consequence, our new method can be seen as an extension of the method of Bunder et al. [START_REF] Bunder | A generalized attack on RSA type cryptosystems[END_REF]. The rest of the paper is organized as follows. In Section 2, we briefly describe the RSA variants that use exponents satisfying ed ≡ 1 (mod p 2 -1 q 2 -1 ). We also recall some facts on Coppersmith's method and lattice basis reduction. In Section 3, we present our attack. In section 4, we present a comparison with existing attacks. We conclude the paper in Section 5.

Preliminaries

In this section, we briefly present some variants of the RSA cryptosystem that use the key equation ed ≡ 1 (mod p 2 -1 q 2 -1 ). We also present Coppersmith's method and lattice basis reduction.

LUC cryptosystem

LUC cryptosystem, introduced by Smith and Lennon [START_REF] Smith | LUC: a new publickey cryptosystem[END_REF] in 1993 is based on Lucas functions. A related cryptosystem was propose by Castagnos [START_REF] Castagnos | An efficient probabilistic public-key cryptosystem over quadratic field quotients[END_REF] in 2007. Both cryptosystems use an RSA modulus N = pq, a public exponent e, and a private exponent satisfying a key equation ed -k p 2 -1 q 2 -1 = 1 which can be generalized by the equation eu -p 2 -1 q 2 -1 v = w.

RSA type schemes based on singular cubic curves

In 1995, Kuwakado, Koyama, and Tsuruoka [START_REF] Kuwakado | A new RSA-type scheme based on singular cubic curves y 2 = x 3 +bx 2 (mod n)[END_REF] proposed a new cryptosystem based on the singular cubic with equation

y 2 = x 3 + bx 2 mod N.
where N = pq is an RSA modulus. In this cryptosystem, the encryption and the decryption keys satisfy an equation of the form ed

-k p 2 -1 q 2 -1 = 1. A generalization of this equation is eu -p 2 -1 q 2 -1 v = w.

RSA with Gaussian primes

A variant of RSA was introduced in 2002 by Elkamchouchi, Elshenawy and Shaban [START_REF] Elkamchouchi | Extended RSA cryptosystem and digital signature schemes in the domain of Gaussian integers[END_REF]. It is an extension of the RSA cryptosystem to the domain of Guassian integers. Gaussian integers are complex number of the form z = a + bi where a and b are integers and i 2 = -1. The norm of a Gaussian integer is |a + bi| = √ a 2 + b 2 . In the RSA variant with Gaussian integers, the modulus is N = P Q, a product of two Gaussian integer primes P and Q and the public and private exponents satisfy ed

-k |P | 2 -1 |Q| 2 -1 = 1. If P = p and Q = q are integer primes, then ed -k p 2 -1 q 2 -1 = 1. This can be generalized as eu -p 2 -1 q 2 -1 v = w.

Coppersmith's method

In 1996, Coppersmith [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF] proposed two methods related to finding small modular roots of univariate polynomials and small integer roots of bivariate polynomials. Since then, many techniques have been proposed for more variables (see [START_REF]Using LLL-reduction for solving RSA and factorization problems: a survey[END_REF]). Let h(x, y, z)

= i,j,k a i,j,k x i y j z k ∈ Z[x, y, z],
be a polynomial with ω monomials. Its Euclidean norm is

h(x, y, z) = i,j,k a 2 i,j,k .
The following result was proposed by Howgrave-Graham [START_REF] Howgrave-Graham | Finding small roots of univariate modular equations revisited[END_REF] to find the small modular roots of a polynomial.

Theorem 1. Let e be a positive integer and h(x, y, z) ∈ Z[x, y, z] be a polynomial with at most ω monomials. Suppose that h(xX, yY, zZ) < e m √ ω and h (x 0 , y 0 , z 0 ) ≡ 0 (mod e m ),

where |x 0 | < X, |y 0 | < Y , |z 0 | < Z.
Then h (x 0 , y 0 , z 0 ) = 0 holds over the integers.

Coppersmith's method enables to find several polynomials that can be used in Howgrave-Graham's Theorem 1. This is possible by applying a lattice reduction technique such as the LLL algorithm [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF] to a lattice with a given basis. In general, the LLL algorithm produces a reduced basis with relatively small norms such as in the following result (see [START_REF] May | New RSA Vulnerabilities Using Lattice Reduction Methods[END_REF]).

Theorem 2 (LLL). Let L be a lattice spanned by a basis (u 1 , . . . , u ω ). Then the LLL algorithm outputs a new basis (b 1 , . . . , b ω ) satisfying

b 1 ≤ . . . ≤ b i ≤ 2 ω(ω-1) 4(ω+1-i) det(L) 1 ω+1-i , i = 1, . . . , ω -1,
where det(L) is the determinant of the lattice.

We assume that if h 1 , h 2 , h 3 ∈ Z[x, y, z] are three polynomials produced by Coppersmith's method, then the ideal generated by the polynomial equations h 1 (x, y, z) = 0, h 2 (x, y, z) = 0, h 3 (x, y, z) = 0 has dimension zero. Then, a system of polynomials sharing the root can be solved by using Gröbner basis computation or resultant techniques.

3 The attack Theorem 3. Let N = pq be an RSA modulus and e = N β be a public exponent.

Suppose that e satisfies the equation eu -

p 2 -1 q 2 -1 v = w with u < N δ and |w| < N γ . If δ < 7 3 -γ - 2 3 1 + 3β -3γ -ε,
then one can factor N in polynomial time.

Proof. Let N = pq be an RSA modulus. Let e be a public exponent satisfying eu -p 2 -1 q 2 -1 v = w with |w| < eu. Suppose that e = N β , u < N δ and |w| < N γ . Then

v = eu -w (p 2 -1) (q 2 -1) < eu + |w| (p 2 -1) (q 2 -1) < 2N β+δ-2 ,
where we used

p 2 -1 q 2 -1 ≈ N 2 . It follows that the solution (u, v, w) of the equation eu -p 2 -1 q 2 -1 v = w satisfies u < N δ , v < 2N β+δ-2 and |w| < N γ . We set X = 2N β+δ-2 , Y = 3N 1 2 , Z = N γ . ( 5 
)
This means that the solution (u, v, w) satisfies u < N δ , v < X and |w| < Z. Moreover, since p and q are of the same size, then we have p + q < 3N 1 2 = Y . Transforming the equation eu -p 2 -1 q 2 -1 v = w, we get a modular one, namely -v (N + 1) 2 -(p + q) 2 -w ≡ 0 (mod e). This can be rewritten as

v(p + q) 2 -(N + 1) 2 v -w ≡ 0 (mod e).
Consider the polynomial

f (x, y, z) = xy 2 + a 1 x + z,
where a 1 = -(N + 1) 2 . Then (x, y, z) = (v, p + q, -w) is a solution of the polynomial modular equation f (x, y, z) ≡ 0 (mod e). To find the small solutions of the equation f (x, y, z) ≡ 0 (mod e), we apply Coppersmith's method combined with the extended strategy of Jochemsz and May [START_REF] Jochemsz | A strategy for finding roots of multivariate polynomials with new applications in attacking RSA variants[END_REF] for finding small modular roots.

Let m and t be positive integers to be specified later. For 0 ≤ k ≤ m, define the set

M k = 0≤j≤t {x i1 y 2i2+j z i3 x i1 y 2i2 z i3 is a monomial of f m (x, y, z) and x i1 y 2i2 z i3 (xy 2 ) k is a monomial of f m-k }.
A straightforward calculation shows that f m (x, y, z) is

f m (x, y, z) = m i1=0 i1 i2=0 m i 1 i 1 i 2 a i1-i2 1 x i1 y 2i2 z m-i1 .
Hence, x i1 y 2i2 z i3 is a monomial of f m (x, y, z) if

i 1 = 0, . . . , m, i 2 = 0, . . . , i 1 , i 3 = m -i 1 .
Similarly, x i1 y 2i2 z i3 is a monomial of f m-k (x, y, z) if

i 1 = 0, . . . , m -k, i 2 = 0, . . . , i 1 , i 3 = m -k -i 1 .
From this, we deduce that for 0

≤ k ≤ m, if x i1 y 2i2 z i3 is a monomial of f m (x, y, z), then x i 1 y 2i 2 z i 3 (xy 2 ) k is a monomial of f m-k (x, y, z) if i 1 = k, . . . , m, i 2 = k, . . . , i 1 , i 3 = m -i 1 .
This leads to a characterization of the set M k . For 0 ≤ k ≤ m, we obtain

x i1 y i2 z i3 ∈ M k if i 1 = k, . . . , m, i 2 = 2k, . . . , 2i 1 + t, i 3 = m -i 1 .
Replacing k by k + 1, we get

x i1 y i2 z i3 ∈ M k+1 if i 1 = k + 1, . . . , m, i 2 = 2k + 2, . . . , 2i 1 + t, i 3 = m -i 1 .
For 0 ≤ k ≤ m, define the polynomials

g k,i1,i2,i3 (x, y, z) = x i1 y i2 z i3 (xy 2 ) k f (x, y, y) k e m-k with x i1 y i2 z i3 ∈ M k M k+1 .
Since for t ≥ 1, we have

x i1 y i2 z i3 ∈ M k M k+1 if i 1 = k, . . . , m, i 2 = 2k, 2k + 1, i 3 = m -i 1 , or i 1 = k, i 2 = 2k + 2, . . . , 2i 1 + t, i 3 = m -i 1 ,
then the polynomials g k,i1,i2,i3 (x, y, z) reduce to the polynomials G k,i1,i2,i3 (x, y, z) and H k,i1,i2,i3 (x, y, z) where

G k,i1,i2,i3 (x, y, z) = x i1-k y i2-2k z i3 f (x, y, z) k e m-k , for k = 0, . . . m, i 1 = k, . . . , m, i 2 = 2k, 2k + 1, i 3 = m -i 1 , H k,i1,i2,i3 (x, y, z) = y i2-2k z i3 f (x, y, z) k e m-k , for k = 0, . . . m, i 1 = k, i 2 = 2k + 2, . . . , 2i 1 + t, i 3 = m -i 1 .
Observe that for the target solution (x, y, z) = (v, p + q, -w), the former polynomials satisfy

G k,i1,i2,i3 (x, y, z) ≡ H k,i1,i2,i3 (x, y, z) ≡ 0 (mod e m ).
Let L denote the lattice spanned by the coefficient vectors of the polynomials G k,i1,i2,i3 (xX, yY, zZ) and H k,i1,i2,i3 (xX, yY, zZ) where X, Y and Z are positive integers to be defined later. The ordering of rows is such that any polynomial G k,i1,i2,i3 (xX, yY, zZ) is prior to any polynomial H k,i1,i2,i3 (xX, yY, zZ). Inside each type of polynomial, the ordering of the tuples (k, i 1 , i 2 , i 3 ) follows rule

(k, i 1 , i 2 , i 3 ) ≺ (k , i 1 , i 2 , i 3 ) if          k < k , k = k , i 1 < i 1 k = k , i 1 = i 1 , i 2 < i 2 , k = k , i 1 = i 1 , i 2 = i 2 , i 3 < i 3 .
Similarly, the monomials x i1 y i1 z i1 in the columns are ordered following the rule

x i1 y i1 z i1 ≺ x i 1 y i 2 z i 3 if      i 1 < i 1 i 1 = i 1 , i 2 < i 2 , i 1 = i 1 , i 2 = i 2 , i 3 < i 3 .
This leads to a left triangular matrix. As an example, for m = 2 and t = 3, the matrix is presented in the following triangular table where the non-zero terms are denoted * . Since the matrix is triangular, then only the diagonal terms contribute to the determinant. On the other hand, only e, X, Y and Z contribute to the determinant and we get the form

det(L) = e ne X n X Y n Y Z n Z . (6) 
Using the construction of the polynomials G k,i1,i2,i3 (x, y, z) and H k,i1,i2,i3 (x, y, z), the exponents n e , n X , n Y , n Z , and the dimension ω of the lattice are as follows

n e = m k=0 m i1=k 2k+1 i2=2k m-i1 i3=m-i1 (m -k) + m k=0 k i1=k 2i1+t i2=2k+2 m-i1 i3=m-i1 (m -k) = 1 6 m(m + 1)(4m + 3t + 5), n X = m k=0 m i1=k 2k+1 i2=2k m-i1 i3=m-i1 i 1 + m k=0 k i1=k 2i1+t i2=2k+2 m-i1 i3=m-i1 i 1 = 1 6 m(m + 1)(4m + 3t + 5), n Y = m k=0 m i1=k 2k+1 i2=2k m-i1 i3=m-i1 i 2 + m k=0 k i1=k 2i1+t i2=2k+2 m-i1 i3=m-i1 i 2 = 1 6 (m + 1) 4m 2 + 6mt + 3t 2 + 5m + 3t , n Z = m k=0 m i1=k 2k+1 i2=2k m-i1 i3=m-i1 i 3 + m k=0 k i1=k 2i1+t i2=2k+2 m-i1 i3=m-i1 i 3 = 1 6 m(m + 1)(2m + 3t + 1). ω = m k=0 m i1=k 2k+1 i2=2k m-i1 i3=m-i1 1 + m k=0 k i1=k 2i1+t i2=2k+2 m-i1 i3=m-i1 1 = (m + 1)(m + t + 1). (7) 
For t = τ m and sufficiently large m, we can approximate the exponents n e , n X , n Y , n Z by their leading term and get

n e = 1 6 (3τ + 4)m 3 + o(m 3 ), n X = 1 6 (3τ + 4)m 3 + o(m 3 ), n Y = 1 6 (3τ 2 + 6τ + 4)m 3 + o(m 3 ), n Z = 1 6 (3τ + 2)m 3 + o(m 3 ), ω = (τ + 1)m 2 + o(m 2 ). (8) 
Applying the LLL algorithm to the lattice L, we get a reduced basis where the three first vectors h i (Xx, Y y, Zz), i = 1, 2, 3 satisfy the conditions h 1 (Xx, Y y, Zz) ≤ h 2 (Xx, Y y, Zz) ≤ h 3 (Xx, Y y, Zz) , and

h 3 (Xx, Y y, Zz) ≤ 2 ω(ω-1) 4(ω-2) det(L) 1 ω-2 .
For comparison, Theorem 1 can be applied if

h 3 (Xx, Y y, Zz) < e m √ ω .
To this end, we set 2 ω(ω-1)

4(ω-2) det(L) 1 ω-2 < e m √ ω , or equivalently det(L) < 2 -ω(ω-1) 4 ( √ ω) ω-2 e m(ω-2) .
Hence, using (6), we get

e ne-mω X n X Y n Y Z n Z < 2 -ω(ω-1) 4 ( √ ω) ω-2 e -2m , (9) 
where the right side term is a small constant depending only on e and m. Plugging the values of n e , n X , n Y , n Z and ω from (8) as well as the values e = N β , X = 2N β+δ-2 , Y = 3N 3 )γm 3 +o(m 3 ) ,

2 -ω(ω-1) 4 ( √ ω) ω-2 e -2m = N -2βm-ε3 ,
where ε 1 , ε 2 and ε 3 are small positive constants depending on m, and N . It follows that the inequality (9) can be rewritten in terms of the exponents as

- 1 2 τ - 1 3 β + 1 2 τ + 2 3 (β + δ -2) + 1 2 1 2 τ 2 + τ + 2 3 + 1 2 τ + 1 3 γ < -2βm -ε 3 -ε 1 -ε 2 m 3 .

Conclusion

In this paper, we have studied the equation eu-p 2 -1 q 2 -1 v = w which is a generalization of the equation ed -k p 2 -1 q 2 -1 = 1. The latter equation is the key equation of some variants of the RSA cryptosystem with modulus N = pq, public exponent e and private key d. We have showed that, under some conditions, it is possible to solve the equation eu -p 2 -1 q 2 -1 v = w and break the cryptosystem. The attack is based on applying Coppersmith's method to a multivariate modular equation and can be seen as an extension of former attacks on such cryptosystems.

1 2 , 1 2 τ - 1 3 1 2 τ + 2 3 1 2 τ + 2 3 )m 3 +o(m 3 )= N ( 1 2 τ + 2 3 1 2 ( 1 2 τ 2 +τ + 2 3 1 2 τ 2 + 1 2 τ + 1 6 1 2 τ 2 +τ + 2 3 1 2 τ + 1
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Setting -2βm-ε3-ε3-ε1ε2 m 3 = -ε 4 and rearranging, we get 3τ 2 + 6(δ + γ -1)τ + 4β + 8δ + 4γ -12 < -12ε 4 .

(

The left side of [START_REF] Hinek | Cryptanalysis of RSA and its Variants[END_REF] is optimal for τ 0 = 1 -δ -γ. Plugging τ 0 in [START_REF] Hinek | Cryptanalysis of RSA and its Variants[END_REF], we get

This inequality is valid if

where ε is a small positive constant depending on m and N . This terminates the proof.

Comparison with existing results

In [START_REF] Bunder | A generalized attack on RSA type cryptosystems[END_REF], Bunder et al. combined the continued fraction algorithm and Coppersmith's method to study the equation eu-

In terms of e = N β , u = N δ and |w| = N γ , the first condition implies the following one

For γ = 0, that is w = 1, the bound of Theorem 3 becomes

Neglecting the ε term, the difference between the former bound and the bound of [START_REF] Bunder | A generalized attack on RSA type cryptosystems[END_REF] is

A straightforward calculation shows that δ 1 ≥ 0. This shows that the bound of Theorem 3 is better than the bound of [START_REF] Bunder | A generalized attack on RSA type cryptosystems[END_REF].

In [START_REF] Peng | An improved analysis on three variants of the RSA cryptosystem[END_REF], Peng et al. proposed a lattice based method to solve the equation ed -k p 2 -1 q 2 -1 = 1 under the condition δ < 2 -√ β and β > 1. This is a special case of the general equation eu -p 2 -1 q 2 -1 v = w. In this special case, we have w = N γ = 1 and γ = 0, and the difference between the bound of Theorem 3 and the bound of [START_REF] Peng | An improved analysis on three variants of the RSA cryptosystem[END_REF] is

Again, a straightforward calculation shows that δ 2 ≥ 0. This means that the condition of Theorem 3 is not better than Peng al.'s bound. Nevertheless, our method is more general and can solve a variety of equations with w = 1.