Abderrahmane Nitaj 
email: abderrahmane.nitaj@unicaen.fr
  
Emmanuel Fouotsa 
email: emmanuelfouotsa@yahoo.frwww.emmanuelfouotsa-prmais.org
  
A New Attack on RSA and Demytko's Elliptic Curve Cryptosystem

Keywords: RSA, Cryptanalysis, Coppersmith's method, Elliptic Curve Method, Demytko's scheme

Let N = pq be an RSA modulus and e be a public exponent. Numerous attacks on RSA exploit the arithmetical properties of the key equation ed -k(p -1)(q -1) = 1. In this paper, we study the more general equation eu -(p -s)(q -r)v = w. We show that when the unknown integers u, v, w, r and s are suitably small and p -s or q -r is factorable using the Elliptic Curve Method for factorization ECM, then one can break the RSA system. As an application, we propose an attack on Demytko's elliptic curve cryptosystem. Our method is based on Coppersmith's technique for solving multivariate polynomial modular equations.

Introduction

In 1976, Diffie and Hellman [START_REF] Diffie | New directions in cryptography[END_REF] invented the concept of the public-key cryptosystem. Since then, various schemes have been proposed as public-key cryptosystems.

In 1978, Rivest, Shamir, and Adleman [START_REF] Rivest | A Method for Obtaining digital signatures and public-key cryptosystems[END_REF] proposed RSA, the most widely used public-key cryptosystem. The public parameters in RSA are the modulus N = pq and the public exponent e satisfying gcd(e, (p -1)(q -1)) = 1 where p, q are large prime numbers of the same bit-size. The decryption exponent is the integer d such that ed ≡ 1 (mod (p -1)(q -1)).

In 1985, Koblitz [START_REF] Koblitz | Elliptic curve cryptosystems[END_REF] and Miller [START_REF] Miller | Use of elliptic curves in cryptography[END_REF] independently suggested the use of elliptic curves in cryptography, mainly for the Diffie-Hellman [START_REF] Diffie | New directions in cryptography[END_REF] key exchange protocol and the El Gamal cryptosystem [START_REF] El Gamal | A public key cryptosystem and signature scheme based on discrete logarithms[END_REF]. Elliptic curves have been also used for primality testing, factorisation, construction of many novel protocols [START_REF] Kakelli | New secure routing protocol with elliptic curve cryptography for military heterogeneous wireless sensor networks[END_REF]. Several models of elliptic curves exist such as Weierstrass model, Edward model, or level four theta model [START_REF] Fouotsa | The Theta model of Elliptic Curve[END_REF]. Some models are really interesting due to their suitability for computing pairings in an efficient way [START_REF] Fouotsa | Parallelizing pairings on Hessian elliptic curves[END_REF]. Let p > 3 be a prime number and a, b be two integers such that gcd(4a 3 + 27b 2 , p) = 1. The elliptic curve E p (a, b) over the field F p is the set of points P = (x, y) such that y 2 ≡ x 3 + ax + b (mod p) together with the point at infinity. The number of points in E p (a, b) is #E p (a, b) = p + 1 -t p where t p is an integer satisfying the Hasse bound |t p | ≤ 2 √ p. Elliptic curves can be extended over the ring Z/nZ

where n is a composite integer. Such elliptic curves can serve to find small prime factors of n as in the Elliptic Curve Method (ECM) for factorization [START_REF] Lenstra | Factoring integers with elliptic curves[END_REF].

In 1994, Demytko [START_REF] Demytko | A new elliptic curve based analogue of RSA[END_REF] developed a cryptosystem using an elliptic curve E N (a, b) over the ring Z/N Z where N = pq is an RSA modulus. In the Demytko system, the public parameters are N , a, b together with a public exponent e satisfying gcd e, p 2 -t 2 p q 2 -t 2 q = 1. The decryption exponent is an integer d satisfying ed ≡ 1 (mod lcm(p + 1 ± t p , q + 1 ± t q )) where t p = p + 1 -#E p (a, b) and t q = q + 1 -#E q (a, b).

The RSA cryptosystem is deployed in many commercial systems for providing privacy and authenticity. If RSA is deployed in a device with small computing power, it is desirable to use a small public exponent e or a small private exponent d. Unfortunately, in 1990, Wiener [START_REF] Wiener | Cryptanalysis of short RSA secret exponents[END_REF] showed that RSA is insecure if d < 1 3 N 1 4 . In 1999, Boneh and Durfee [START_REF] Boneh | Cryptanalysis of RSA with private key d less than N 0.292[END_REF] improved this bound up to d < N 0.292 . Their method is based on Coppersmith's method [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF] for solving modular polynomial equations and uses the RSA key equation ed -k(p -1)(q -1) = 1. Afterwards, many attacks on RSA or variants of RSA have been presented using Coppersmith's method or other techniques (see [START_REF] Hinek | Cryptanalysis of RSA and its variants[END_REF], [START_REF]Using LLL-reduction for solving RSA and factorization problems: a survey[END_REF], [START_REF] Blömer | A generalized Wiener attack on RSA[END_REF]).

In this paper, using a variant RSA equation, we present a new attack on RSA by combining Coppersmith's method and the Elliptic Curve Method for factorization ECM. Let B be a positive integer. An integer n is said to be Bsmooth if all prime factors are less than B. We say that B is an efficiency bound for ECM if every prime factor less than B of an integer n can be found by ECM.

Suppose that the public exponent e = N β satisfies a variant equation of the form eu -(p -s)(q -r)v = w with suitably small unknown integers 0 < u < N δ , 0 < v, |w| < N γ , |r| < N α and |s| < N α with α < 1 4 . We show that the RSA modulus N = pq can be factored under two conditions. The first condition is that p -s is B-smooth for some efficiency bound B of ECM and the second condition is that δ satisfies the following inequality

δ < 7 6 + 1 3 α -γ - 1 3 (2α + 1)(2α + 6β -6γ + 1) -ε,
where ε is a small positive constant. Our method is based on combining Coppersmith's method and ECM. We use Coppersmith's method to find the small solutions (u, v, w, (p -s)(q -r)) of the equation eu -(p -s)(q -r)v = w and ECM to factor (p -s)(q -r) and to extract the value of p -s from the B-smooth part of (p -s)(q -r). Finally reusing Coppersmith's method, we can find p from the value of p -s.

and that p + 1 ± t p or q + 1 ± t q is B-smooth. Then applying the new method as for RSA, one can factor the RSA modulus N = pq. The rest of this paper is organized as follows. In Section 2, we review Coppersmith's method, the theory of elliptic curves, Demytko's elliptic curve cryptosystem and the Elliptic Curve Method ECM for factorization. In Section 3, we present the new attack on RSA, and in Section 4, we present the new attack on Demytko's scheme. We conclude in Section 5.

Preliminaries

The following classical result is useful for the proof of our new attack (see [START_REF] Nitaj | Another generalization of Wiener's attack on RSA[END_REF]).

Lemma 1. Let N = pq be an RSA modulus with q < p < 2q. Then √ 2 2

√ N < q < √ N < p < √ 2 √ N .

Coppersmith's method

In 1996, Coppersmith [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF] describes a technique to find small modular roots of univariate polynomials and small integer roots of bivariate polynomials. This method has been extended to more variables and has many surprising results in cryptanalysis. A typical example is the following result [START_REF] May | New RSA Vulnerabilities using Lattics Reduction Methods[END_REF].

Theorem 1 (Coppersmith). Let N = pq be an RSA modulus with q < p < 2q. Let S be an approximation of an unknown multiple pr of p with r = q and |pr -S| < N 1 4 . Then one can factor N in polynomial time.

Let h(x, y, z) ∈ Z[x, y, z] be a polynomial with ω monomials of the form

h(x, y, z) = i,j,k a i,j,k x i y j z k .
The Euclidean norm of h(x, y, z) is defined as

h(x, y, z) = i,j,k a 2 i,j,k .
Under some conditions, a modular polynomial equation can be solved over the integers as presented in the following result [START_REF] Howgrave-Graham | Finding small roots of univariate modular equations revisited[END_REF].

Theorem 2 (Howgrave-Graham). Let e be a positive integer and h(x, y, z) ∈ Z[x, y, z] be a polynomial with at most ω monomials. Suppose that h (x 0 , y 0 , z 0 ) ≡ 0 (mod e m ) and h(xX, yY, zZ) < e m √ ω ,

where |x 0 | < X, |y 0 | < Y , |z 0 | < Z.
Then h (x 0 , y 0 , z 0 ) = 0 holds over the integers.

To find polynomials with small coefficients that can be used in Howgrave-Graham's Theorem 2, Coppersmith's method uses a lattice and a lattice reduction algorithm such as the LLL algorithm [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF]. This reduction algorithm can be applied to find a basis of lattice vectors with relatively small norms (see [START_REF] May | New RSA Vulnerabilities using Lattics Reduction Methods[END_REF]).

Theorem 3 (LLL). Let L be a lattice spanned by a basis (u 1 , . . . , u ω ), then the LLL algorithm produces a new basis

(b 1 , . . . , b ω ) satisfying b 1 ≤ . . . ≤ b i ≤ 2 ω(ω-1)
4(ω+1-i) det(L)

1 ω+1-i , i = 1, . . . , ω -1.
Under the condition of Howgrave-Graham's Theorem, some modular polynomial equations derived from the reduced basis can be transformed to polynomial equations over the integers. For multivariate modular equations, solving the system of these polynomials is heuristic and depends on some extra assumptions such as the following one.

Assumption 1 Let h 1 , h 2 , h 3 ∈ Z[x, y, z] be the polynomials that are found by Coppersmith's method. Then the ideal generated by the polynomial equations h 1 (x, y, z) = 0, h 2 (x, y, z) = 0, h 3 (x, y, z) = 0 has dimension zero.

Under this assumption, a system of polynomials sharing the root can be solved by using Gröbner basis computation or resultant techniques (see [START_REF] Bauer | Toward a rigorous variation of Coppersmith's algorithm on three variables[END_REF] for more details).

Elliptic curves

Let N = pq be an RSA modulus and let a and b be two integers such that gcd(4a

3 + 27b 2 , N ) = 1. An elliptic curve E N (a, b) is the set of points (x, y) such that y 2 ≡ x 3 + ax + b (mod N ),
together with the point at infinity O. It is well known that chord-and-tangent method in the case of elliptic curves E p (a, b) defined over the finite filed F p still hold for E n (a, b) unless the inversion of a non-zero number Q does not exist modulo N . This case would lead to find a factor of N by computing gcd(Q, N ).

When the prime factors p, q in N = pq are large, then with overwhelming probability the inversion of a non-zero number will exist modulo N . Let p be a prime number. Under modulo p, the cardinality of E p (a, b) is denoted #E p (a, b) and satisfies the following result (see [START_REF] Silverman | The Arithmetic of Elliptic Curves[END_REF], p. 131).

Theorem 4 (Hasse). The order of an elliptic curve

E p (a, b) over F p is given by #E p (a, b) = p + 1 -t p , where |t p | ≤ 2 √ p.
When the prime number p and the elliptic curve E p (a, b) are given, one can find the value of t p using computational methods such the Schoof-Elkies-Atkin algorithm (SEA) (see [START_REF] Schoof | Counting points on elliptic curves over finite fields[END_REF]). Conversely, let p be a prime number and t an integer with |t| < 2 √ p. Let H(d) denote the Kronecker class number (see Section 1.6

of [START_REF] Lenstra | Factoring integers with elliptic curves[END_REF]). Deuring's theory of CM-elliptic curves implies that there are H(t 2 -4p) elliptic curves on Z/pZ having p+1-t points. Note that when |t| < √ p, H(t 2 -4p)

satisfies the following inequalities (see Proposition 1.9 of [START_REF] Lenstra | Factoring integers with elliptic curves[END_REF])

c 1 √ p log p < H(t 2 -4p) < c 2 √ p(log p)(log log p) 2 ,
where c 1 and c 2 are effectively computable positive constants. This shows that the number of elliptic curves with known cardinality is non negligible. Let p be a prime number and E p (a, b) be an elliptic curve with equation

y 2 ≡ x 3 + ax + b (mod p) and cardinality #E p (a, b) = p + 1 -t p . The twist of E p (a, b) is the elliptic curve E p (a, b) defined by the equation cy 2 ≡ x 3 + ax + b (mod p) where c is a fixed quadratic non-residue modulo p. Then the cardinality of E p (a, b) is #E p (a, b) = p + 1 + t p .

Demytko's elliptic curve cryptosystem

In 1994, Demytko [START_REF] Demytko | A new elliptic curve based analogue of RSA[END_REF] proposed a new cryptosystem defined over the field Z/N Z where N = pq is an RSA modulus such that p ≡ q ≡ 2 (mod 3). Demytko's scheme uses fixed integers a and b and a fixed modulus N . Demytko's scheme uses only the x-coordinate of a point P = (x, y) ∈ E N (a, b) to compute a multiple eP ∈ E N (a, b) (see Lemma 2 in [START_REF] Kurosawa | Low exponent attack against elliptic curve RSA, Low exponent attack against elliptic curve RSA[END_REF]). Demytko's scheme can be summarized as follows.

Key Generation:

• Choose two distinct prime numbers p and q of similar bit-length.

• Compute N = pq.

• Select two integers a, b < p such that gcd n, 4a 3 + 27b 2 = 1.

• Choose e such that gcd e, p 2 -t 2 p q 2 -t 2 q = 1. • Keep p, q secret and publish N, e, a, b.

Encryption:

• Transform the message m as the x-coordinate of a point P = (m x , m y ) on the elliptic curve

E N (a, b). • Compute the ciphertext point C = eP = (c x , c y ) = e(m x , m y ) on the elliptic curve y 2 = x 3 + ax + b (mod N ). 3. Decryption: • Compute u = c 3 x + ac x + b (mod N ).
• Compute the Legendre symbols u p = u p and u q = u q .

• If (u p , u q ) = (1, 1), then compute d ≡ e -1 (mod lcm(p+1-t p , q+1-t q )).

• If (u p , u q ) = (1, -1), then compute d ≡ e -1 (mod lcm(p + 1 -t p , q + 1 + t q )). • If (u p , u q ) = (-1, 1), then compute d ≡ e -1 (mod lcm(p + 1 + t p , q + 1t q )). • If (u p , u q ) = (-1, -1), then compute d ≡ e -1 (mod lcm(p + 1 + t p , q + 1 + t q )). • Compute m as the x-coordinate of dC = deP = P = (m x , m y ) on the elliptic curve

y 2 = x 3 + ax + b (mod N ).
A variant of Demytko's scheme is to consider d ≡ e -1 (mod (p+1±t p , q+1±t q )) instead of modulo lcm(p + 1 ± t p , q + 1 ± t q ). Then e and d satisfy an equation of the form

ed -k (p -s) (q -r) = 1, s = ∓t p -1, r = ∓t q -1.
This equation matches the RSA variant key equation that will be studied in this paper.

The Elliptic Curve Method

An integer m is said to be B-smooth if all the prime factors of m are less than or equal to B. Smooth numbers are used in cryptography by many factoring and discrete logarithm algorithms (see [START_REF] Lenstra | Factoring integers with elliptic curves[END_REF] and [START_REF]The Development of the Number Field Sieve[END_REF]). The counting function of B-smooth numbers in an interval [1, x] is defined as

ψ(x, B) = # {m : 1 ≤ m ≤ x, m is B-smooth} .
In the particular case x = B u , Hildebrand [START_REF] Hildebrand | On the number of positive integers ≤ x and free of prime factors ≤[END_REF] gave the asymptotic formula ψ(x, B) = xρ(u) where ρ(u) is the Dikman rho-function defined as the solution of the differential equation uρ (u) = -ρ(u -1) for u ≥ 1 with the initial condition ρ(u) = 1 for 0 ≤ u ≤ 1. For 1 ≤ u ≤ 2, the Dikman function satisfies ρ(u) = 1 -log u so that ψ(x, B) = x(1 -log u). The Elliptic Curve method (ECM) is a probabilistic method for integer factorization and was discovered by H.W. Lenstra [START_REF] Lenstra | Factoring integers with elliptic curves[END_REF] in 1987. It is a fast partially factoring algorithm, especially for finding small prime factors p, in a heuristic running time O exp c(log p) 1/2 log log p) 1/2 , for some constant c > 0. The ECM algorithm is based on the property of the Chinese Remainder Theorem, that is, for

any elliptic curve E(a, b), if n = p e1 1 p e2 2 • • • p e k k , then E (Z/nZ) = E (Z/p e1 1 Z) × E (Z/p e2 2 Z) × • • • × E (Z/p e k k Z) .
Suppose that the order of E (Z/p e1 1 Z) is B-smooth and let m be a multiple of |E (Z/p e1 1 Z)|, typically m = lcm(2, . . . , B). Then, for every P ∈ E (Z/nZ), we have mP = (0 : 1 : 0) (mod p 1 ). Consequently, computing mP where P ∈ E (Z/nZ), using the addition formulas on E (Z/nZ), we must get mP = (x : y : z) = (0 : 1 : 0) (mod p 1 ). This implies that z ≡ 0 (mod p 1 ) and that gcd(z, n) = p r 1 for some positive integer r which will reveal p 1 .

3 The Attack on RSA

In this section, we present an attack on RSA when the public key (N, e) satisfies an equation eu -(p -s)(q -r)v = w with suitably small parameters u, v, w, r, s under the condition that one of the factors (p -s) or (q -r) is B-smooth for some ECM-efficiency bound B.

The attack

Theorem 5. Let N = pq be an RSA modulus and e = N β be a public exponent.

Suppose that e satisfies the equation eu

-(p -s)(q -r)v = w with |r|, |s| < N α < N 1 4 , 0 < u < N δ , 0 < v and |w| < N γ . If δ < 7 6 + 1 3 α -γ - 1 3 (2α + 1)(2α + 6β -6γ + 1) -ε,
where ε is a small positive constant, then, under assumption (1), one can find (p -s)(q -r) in polynomial time.

Proof. Suppose that N = pq is an RSA modulus and e is a public exponent satisfying eu -(p -s)(q -r)v = w. Since (p -s)(q -r) = N -pr -qs + rs, then -v(N -pr -qs + rs) -w ≡ 0 (mod e), which can be rewritten as v(pr + qsrs) -N v -w ≡ 0 (mod e). Consider the polynomial f (x, y, z) = xy -N x + z, Then (x, y, z) = (v, pr + qs -rs, -w) is a solution of the modular polynomial equation f (x, y, z) ≡ 0 (mod e). The small solutions of this modular equation can be found by applying Coppersmith's method [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF]. Let m and t be two positive integers. Consider the polynomials

G k,i1,i2,i3 (x, y, z) = x i1-k z i3 f (x, y, z) k e m-k , for k = 0, . . . m, i 1 = k, . . . , m, i 2 = k, i 3 = m -i 1 , H k,i1,i2,i3 (x, y, z) = y i2-k z i3 f (x, y, z) k e m-k , for k = 0, . . . m, i 1 = k, i 2 = k + 1, . . . , i 1 + t, i 3 = m -i 1 .
Let L denote the lattice spanned by the coefficient vectors of the polynomials G k,i1,i2,i3 (Xx, Y y, Zz) and H k,i1,i2,i3 (Xx, Y y, Zz). We can get a left triangular matrix if the ordering of the rows follows the ordering of the k's and the ordering of the the monomials of a polynomial follows the natural ordering following the i 1 's, then the i 2 's, then the i 3 's. Hence, using the triangular form of the matrix, the determinant of L is in the form det(L) = e ne X n X Y n Y Z n Z . For m = 2 and t = 1, the coefficient matrix for L is presented in Table 1. The non-zero elements are marked with an ' '. Table 1. The coefficient matrix for the case m = 2, t = 1.

To find the values of the exponents, define S(x) to be

S(x) = m k=0 m i1=k k i2=k m-i1 i3=m-i1 x + m k=0 k i1=k i1+t i2=k+1 m-i1 i3=m-i1
x.

Using the construction of the polynomials G and H, we get

n e = S(m -k) = 1 6 m(m + 1)(2m + 3t + 4), n X = S(i 1 ) = 1 6 m(m + 1)(2m + 3t + 4), n Y = S(i 2 ) = 1 6 (m + 1) m 2 + 3mt + 3t 2 + 2m + 3t , n Z = S(i 3 ) = 1 6 m(m + 1)(m + 3t + 2), ω = S(1) = 1 2 (m + 1)(m + 2t + 2).
(

) 1 
Let t = τ m for some positive τ to be optimized later. The dominant terms of the exponents in [START_REF] Bauer | Toward a rigorous variation of Coppersmith's algorithm on three variables[END_REF] are

n e ≈ 1 6 (3τ + 2)m 3 + o(m 3 ), n X ≈ 1 6 (3τ + 2)m 3 + o(m 3 ), n Y ≈ 1 6 3τ 2 + 3τ + 1 m 3 + o(m 3 ), n Z ≈ 1 6 (3τ + 1)m 3 + o(m 3 ), w ≈ 1 6 (6τ + 3)m 2 + o(m 2 ).
(

) 2 
Applying the LLL algorithm 3 to the lattice L, we get a reduced basis where the three first vectors h i , i = 1, 2, 3 satisfy

h 1 ≤ h 2 ≤ h 3 ≤ 2 ω(ω-1) 4(ω-2) det(L) 1 ω-2 .
To apply Howgrave-Graham's Theorem 2 to h 1 , h 2 and h 3 , we set 2 ω(ω-1)

4(ω-2) det(L) 1 ω-2 < e m √ ω .
This can be transformed to

det(L) < 2 -ω(ω-1) 4 1 ( √ ω) ω-2 e m(ω-2) ,
or equivalently

e ne X n X Y n Y Z n Z < 2 -ω(ω-1) 4 1 ( √ ω) ω-2 e m(ω-2) . (3) 
Suppose that e = N β , 0 < u < N δ , |w| < N γ and max(|r|, |s|)

< N α < N 1 4 . Since q < p < √ 2 √ N by Lemma 1, then p|r+q|s+|rs| < 3 max(p|r|, q|s|, |rs|) < 3 max √ 2 √ N • N α , N 2α = 3 √ 2N 1 2 +α .
This gives

(p -r)(q -s) = N -pr -qs + rs > N -(p|r + q|s + |rs|) > N -3 √ 2N 1 2 +α > 1 2 N.
Using 0 < v and |w| < eu < N β+δ , we get

0 < v = eu -w (p -s)(q -r) < eu + |w| (p -s)(q -r) < 2eu 1 2 N < 4N β+δ-1 , (4) 
Let X = 4N β+δ-1 , Y = 3 √ 2N 1 
2 +α and Z = N γ . Then the target solution (x, y, z) satisfies |x| < X, |y| < Y and |z| < Z. Using the approximations of n e , n X , n Y , n Z and ω given in (2), the inequality (3) can be transformed into

(3τ +2)β+(3τ +2)(β+δ-1)+ 3τ 2 + 3τ + 1 1 2 + α +(3τ +1)γ < (6τ +3)β-ε 1 ,
where ε 1 collects all constant terms in e, X, Y and Z. It is a small positive constant that depends only on N . The optimal value for τ is

τ 0 = 1 -2δ -2α -2γ 2(1 + 2α) ,
and, plugging this value in the former inequality, we obtain

4α 2 + 16αβ + 8αδ -8αγ -12δ 2 -24δγ -12γ 2 -4α + 8β + 28δ + 20γ -15 < -ε 2 ,
where ε 2 is another small positive constant. The former equation is valid for

δ < 7 6 + 1 3 α -γ - 1 3 (2α + 1)(2α + 6β -6γ + 1) -ε,
where ε is a small positive constant. Under this condition, the LLL algorithm applied to the lattice L outputs three vectors v i , i = 1, 2, 3. These vectors represent the coefficients of three polynomials h i (Xx, Y y, Zz), i = 1, 2, 3 sharing the root (x, y, z) = (v, pr + qs + rs, -w). Then, applying Gröbner basis computations, we get the expected solution, from which we deduce (p-s)(q-r) = N -(pr+qs+rs). Since all the former steps can be done in polynomial time, then the method is a polynomial time algorithm. This terminates the proof.

Remark 1. If r = s = w = 1, then the equation eu -(p -s)(q -r)v = w is the classical RSA key equation ed -(p -1)(q -1)k = 1 with d < N δ . Using α = 0, β = 1 and γ = 0, the bound of Theorem 5 gives δ < 7 6 - √ 7 
3 . This retrieves the classical bound on the private exponent d (see [START_REF] Boneh | Cryptanalysis of RSA with private key d less than N 0.292[END_REF]).

Using [START_REF] Demytko | A new elliptic curve based analogue of RSA[END_REF], we get log

√ N -N α < ω(p-s) i=1 x i log p i < log √ 2N + N α .
The former inequalities can be solved by applying linear programming algorithms such as PSLQ [START_REF] Ferguson | A polynomial time, numerically stable integer relation algorithm[END_REF] and LLL [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF], and using a solution (x 1 , . . . , x ω(p-s) ), we compute d = ω(p-s) i=1

p xi i which is then a candidate for p -s. Since |s| < N α < N 1 4 , then d is an approximation of the prime factor p of N with an error term less than N 1 4 . Hence, using Theorem 1, this leads to the exact value of p if d is the good candidate. Repeating this process sequentially for the factors d of (p -s)(q -r) in the range √ N -N α < d < √ 2N + N α , we will find p and then get q = N p . This achieves the factorization of the RSA modulus.

A numerical example for RSA

We experimented our method with various sizes. In all cases, the assumption (1) was true and the method was successful to find the factorization of the RSA modulus.

As a numerical example, consider the following RSA 265 bit-size modulus N with the public exponent e, N =431152655066872264361967287569597072664021583942612947594581 39340520129183826747, e =442910968337832163537316435435954401939549665933793683113289 7706681971178351139.

Suppose that N = pq with unknown factorization and e satisfies an equation eu -(p -s)(q -r)v = w with the suitably small unknown parameters u, v, w, r and s. Then applying the method of Theorem 5 to solve the equation eu -(p -s)(q -r)v = w, with the bounds

u < N δ = N 0.15 , |w| < N γ = N 0.15 , |r|, |s| < N α = N 0.15 , e = N β = N 0.987 , we get v =8330878683394 w =2516643, ps + qr -rs =45624103499453346715225639044829688941453657147, Since (p -s)(q -r) = N -(pr + qs -rs), we get (p -s)(q -r) =4311526550668722643619672875695966164229865894091457953 3819094510831187730169600.
Then, using the Elliptic Curve Method with the bound B = N 1 10 ≈ 91931238, we get the factorization

(p -s)(q -r) = 2 8 • 3 • 5 2 • 13 • 23 • 53 • 89 • 181 • 1663 • 2833 • 2969 • 5197 • 5233• 6481 • 12007 • 18439 • 36973 • 435876180528100336114933071348569.
Using the factorization of (p -s)(q -r), we can find the set of the factors

d such that √ N -N α < d < √ 2N + N α .
Such divisors are candidate for p -s, that is p -s = d for one of these factors. Then by applying Coppersmith's Theorem 1, we can find p using the correct candidate. For the divisor d = 6672224014662340178579721474326728185600, we apply Coppersmith's Theorem 1 and find p = 6672224014662340178579721474326734152749. Then q = N p = 6461903169309154483833797011785886506503.

Application to Demytko's Scheme

In this section, we show how to apply the technique of Theorem 5 and Theorem 6 to break the Demytko scheme in some situations and provide a numerical example.

The attack on Demytko's Scheme

In Demytko's scheme, the RSA modulus is N = pq and the elliptic curve E N (a, b) is such that #E p (a, b) = p + 1 -t p and #E q (a, b) = q + 1 -t q where, according to Hasse Theorem, |t p | < 2 √ p and |t q | < 2 √ q. Also, the public exponent e and the private exponent d satisfy one of the four equations eu -(p + 1 ± t p )(q + 1 ± t q )v = w.

These equations can be transformed into one of the form eu -(p -s)(q -r)v = w where s = ∓t p -1 and t = ∓t q -1, which can be studied using the technique of Theorem 5 and Theorem 6. 4 , 0 < u < N δ , < v and |w| < N γ . Let B be an ECM-efficiency bound for the Elliptic Curve Method. If p + 1 ± t p or q + 1 ± t q is B-smooth and

(p + 1 ± t p )(q + 1 ± t q )v = w with | ± t p -1|, | ± t q -1| < N α < N 1 
δ < 7 6 + 1 3 α -γ - 1 3 (2α + 1)(2α + 6β -6γ + 1) -ε,
then, under assumption (1), one can find p and q in polynomial time.

Proof. Since the equation eu -(p + 1 ± t p )(q + 1 ± t q )v = w can be transformed into eu -(p -s)(q -r)v = w with s = ∓t p -1 and t = ∓t q -1, then this equation can be solved under the conditions of Theorem 5 and Theorem 6 when |t p -1| < N α and |t q -1| < N α . We suppose that e satisfies the equation eu -(p + 1 ± t p )(q + 1 ± t q )v = w with t p , t q < N α = N 0. 

Conclusion

In this paper, we consider an instance of RSA where the public exponent satisfies a generalized key equation with many unknown parameters. Under suitable conditions, we combine Coppersmith's method and the Elliptic Curve Method for factorization ECM, we solve the equation and find the prime factors of the RSA modulus. We apply the same technique to launch an attack on Demytko's Elliptic Curve Cryptosystem when the secret parameters are suitably small.

Corollary 1 .

 1 Let (N, e, a, b) the public parameters of a Demytko's instance where N = pq. Suppose that e = N β satisfies an equation of the form eu -

4. 2 A

 2 numerical example for Demytko Let us consider the Demytko public parameters (N, e, a, b) where N is an 510-bit RSA modulus with the elliptic curve E N (a, b) with equation y 2 ≡ x 3 +9 (mod N ).

1 . 2 •

 12 Then applying the method of Theorem 5 to solve the equation eu -(p -s)(q -r)v = w where s = ∓t p -1 and r = ∓t p -1, we get fore = N β ≈ N , u < N δ = N 0.1 , |w| < N γ = N 0.1 v =6889077569105,w =2916646, pr + qs -rs =7843579993396182200943116363500139031658267071337633, 244222164466922717093026565590439040792, Then N -(pr + qs -rs) = (p -s)(q -r) Curve Method for factorization with the bound B = 2 80 ≈ N 0.16 , we get the factorization(p -s)(q -r) =3 6 • 5 2 • 7 2 • 13 3 • 43 2 • 103 2 • 277 • 674 2 • 1021 • 4177 • 15061 • 21737 2 • 27109 2 • 52291 2 • 84991 • 90841 • 132661 • 347329 3834631 • 29327821 • 69689551 • 30404961633073956301 • 305196537135675591605491.Any divisor d of (p -s)(q -r) is a candidate for p -s or q -r. Using the divisord =3 3 • 13 2 • 277 • 1021 • 15061 • 21737 2 • 27109 2 • 52291 2 • 90841 • 305196537135675591605491,as a candidate for p -s in Coppersmith's Theorem 1, we get p and then q = factorization of N .
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Theorem 6. Let N = pq be an RSA modulus and e = N β be a public exponent. Suppose that e satisfies the equation eu -(p -s)(q -r)v = w with |r|, |s| < N α < N 1 4 , 0 < u < N δ , 0 < v and |w| < N γ . Let B be an ECM-efficiency bound for the Elliptic Curve Method. If (p -s) or (q -r) is B-smooth and

then, under assumption (1), one can find p and q in polynomial time.

Proof. Suppose that, in the equation eu

and that the exponent parameters satisfy δ < 7 6

Then, by applying Theorem 5, we can find the exact value of (p-s)(q -r). Next, suppose that (p -s) is B-smooth where B is a bound for the efficiency of the Elliptic Curve Method (ECM). Hence, ECM will reveal a partial factorization of (p -s)(q -r) as

were ω((p -s)(q -r) is the number of distinct prime factors of (p -s)(q -r) less than B and M is such that M = 1 or all prime factors of M are greater than B. The average order of the number of prime factors of an integer n is ω(n) ≈ log n log log n (see [START_REF] Hardy | An Introduction to the Theory of Numbers[END_REF], pp. 355). Since |r|, |s| < N α and

Hence, the average number of the prime factors of (p -s)(q -r) satisfies

On the other hand, according to the factorization

the number of distinct divisors of p -s is exactly ω(p-s) i=1

(e i + 1). However, the average number of divisors of an integer n is log n (see Theorem 319 of [START_REF] Hardy | An Introduction to the Theory of Numbers[END_REF]). Hence, the average number of divisors of p -s is approximately log(p -s) ≈