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Abstract. In 1995, Kuwakado, Koyama and Tsuruoka presented a new
RSA-type scheme based on singular cubic curves y2 ≡ x3 +bx2 (mod N)
where N = pq is an RSA modulus. Then, in 2002, Elkamchouchi,
Elshenawy and Shaban introduced an extension of the RSA scheme to
the field of Gaussian integers using a modulus N = PQ where P and
Q are Gaussian primes such that p = |P | and q = |Q| are ordinary
primes. Later, in 2007, Castagnos proposed a scheme over quadratic field
quotients with an RSA modulus N = pq based on Lucas sequences. In
the three schemes, the public exponent e is an integer satisfying the
key equation ed− k

(
p2 − 1

) (
q2 − 1

)
= 1. In this paper, we apply the

continued fraction method to launch an attack on the three schemes when
the private exponent d is sufficiently small. Our experiments demonstrate
that for a 1024-bit modulus, our method works for values of d of up to
520 bits. We also examine the effect of dropping the usual assumption
that p and q have the same bit size.

Keywords: RSA, elliptic curves, continued fractions.

? This paper is the extended version of “A new attack on three variants of the RSA
cryptosystem” [2] presented at ACISP 2016
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1 Introduction

The public key cryptosystem RSA was introduced by Rivest, Shamir and Adle-
man [11] in 1978. It is the most popular and widely used public-key cryptosystem.
The RSA operations system are based on modular arithmetic. Let p and q be two
large primes. The product N = pq is called the RSA modulus and the product
φ(N) = (p − 1)(q − 1) is the Euler totient function. In RSA, the public expo-
nent e and the private exponent d are integers satisfying ed ≡ 1 (mod φ(N)).
A message m is encrypted as c ≡ me (mod N) and decrypted using m ≡ cd

(mod N).
Since its introduction, the RSA cryptosystem has been generalized in various

ways, including extensions to singular elliptic curves and Gaussian integers.
In 1995, Kuwakado, Koyama and Tsuruoka [9] presented a new RSA-type

scheme based on singular cubic curves with equation y2 ≡ x3 + bx2 (mod N)
where N = pq is an RSA modulus and b ∈ Z/NZ. The public exponent is an
integer e such that gcd

(
e,
(
p2 − 1

) (
q2 − 1

))
= 1 and the decryption exponent is

the integer d ≡ e−1 (mod
(
p2 − 1

) (
q2 − 1

)
). From this, we deduce that e and

d satisfy a key equation of the form ed − k
(
p2 − 1

) (
q2 − 1

)
= 1 where k is a

positive integer.
In 2002, Elkamchouchi, Elshenawy and Shaban [6] introduced an extension

of RSA to the ring of Gaussian integers. A Gaussian integer is a complex number
of the form a + ib where both a and b are integers and i2 = −1. The set of all
Gaussian integers is denoted Z[i]. A Gaussian prime number is a Gaussian integer
that cannot be represented as a product of non-unit Gaussian integers. The only
unit Gaussian integers are ±1, ±i. Let P = a + ib and Q = a′ + ib′ be two
Gaussian primes. Consider the Gaussian integer N = PQ and the Euler totient
function φ(N) = (|P | − 1) (|Q| − 1) =

(
a2 + b2 − 1

) (
a′2 + b′2 − 1

)
. Let e be an

integer such that d ≡ e−1 (mod φ(N)) exists. Then, in the RSA scheme over
the domain of Gaussian integers, a message m ∈ Z[i] is encrypted using c ≡ me

(mod N) and decrypted using m ≡ cd (mod N). We note that, in this RSA
variant, the key equation is ed − k (|P | − 1) (|Q| − 1) = 1 for N = PQ ∈ Z[i].
In the situation that N = pq is an ordinary RSA modulus, the key equation
becomes ed− k

(
p2 − 1

) (
q2 − 1

)
= 1, which is the same than in the Kuwakado-

Koyama-Tsuruoka elliptic curve variant of RSA.
In 2007, Castagnos [4] proposed a probabilistic scheme based on an RSA

modulus N = pq and using arithmetical operations in quadratic field quotients.
Let e be a integer such that gcd

(
e,
(
p2 − 1

) (
q2 − 1

))
= 1. For any integer r, let

Ve(r) be the eth term of the Lucas sequence defined by V0(r) = 2, V1(r) = r
and Vk+2 = rVk+1(r)− Vk(r) for k ≥ 0. In this scheme, a message m ∈ Z/NZ is
encrypted using c ≡ (1 +mN)Ve(r) (mod N2) where r is a random integer with
2 ≤ r ≤ N − 2. Then some arithmetical properties, one can decrypt c to get the
original message m. Similarly to the Kuwakado-Koyama-Tsuruoka elliptic curve
variant of RSA and RSA with Gaussian integers, Castagnos scheme leads to the
key equation ed− k

(
p2 − 1

) (
q2 − 1

)
= 1.

The security of the RSA cryptosystem and its variants are based on the dif-
ficulty of factoring large integers of the shape N = pq. Nevertheless, in some
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cases, the modulus N can be factored by algebraic methods that are not based
on factoring algorithms. For example, in 1990, Wiener [12] showed how to break
the RSA when the decryption exponent d satisfies d < 1

3N
0.25. Wiener’s method

is based on solving the key equation ed − k(p − 1)(q − 1) = 1 by applying the
continued fraction algorithm to the public rational fraction e

N . When d is small

enough, k
d is one of the convergents of the continued fraction expansion of e

N .
Later, Boneh and Durfee [1] applied lattice reduction and Coppersmith’s tech-
nique [5] and extended the bound to d < N0.292. Recently, using the convergents
of the continued fraction expansion of e

N ′ where N ′ is a number depending
on N , Bunder and Tonien [3] could break the RSA if d2e < 8N1.5.

The complexity of the encryption and decryption algorithms are based on
the size of the encryption key e and the size of decryption key d, respectively. In
a cryptosystem with a limited resource such as a credit card, it is desirable to
have a smaller value of d. In some scenario, for convenience, e is set to a small
constant, such as e = 3.

In this paper, we consider one of the following scenarios where N = pq is
the product of two large primes and the public exponent e satisfies an equation
ed− k

(
p2 − 1

) (
q2 − 1

)
= 1 with a suitably small secret exponent d:

– an instance of the Kuwakado-Koyama-Tsuruoka cryptosystem [9],
– an instance of the RSA over Gaussian integers [6],
– an instance of Castagnos scheme [4].

Our method is inspired by Bunder and Tonien’s technique [3]. We show that
in the case when p and q has equal bit length, if d2e < 2N3 − 18N2 then
one can find p and q and then factor the modulus N . Our method is based on
the continued fraction algorithm as in Bunder and Tonien’s attack. Under the

condition d <
√

2N3−18N2

e , we show that one can find k
d among the convergents

of the continued fraction expansion of the public rational number e
N2− 9

4N+1
. In

the general case, where q < p < µq, if d2e < µ N3

(µ−1)2 then we can find k
d among

the convergents of the continued fraction expansion of e

N2+1− (µ+1)2

2µ N
.

The paper is organized as follows. In Section 2, we present the Kuwakado-
Koyama-Tsuruoka RSA-type scheme, the RSA scheme over Gaussian integers
and the Castagnos scheme. In Section 3, we review some facts and lemmas used
in our attack. In Section 4, we present our new attack for the case q < p < 2q
and in Section 5, our attack for the general case q < p < µq. Experiment results
for µ = 2 and µ = 6 are presented in Section 6. Note that the contents of Section
5 and Section 6 are new and have not been included in our conference paper [2].

2 Preliminaries

In this section, we present the three variants of the RSA cryptosystem for which
our attack works, namely the Kuwakado-Koyama-Tsuruoka RSA-type scheme,
the RSA scheme over Gaussian integers and the Castagnos scheme.
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2.1 The Kuwakado-Koyama-Tsuruoka RSA-type scheme

The Kuwakado-Koyama-Tsuruoka RSA-type scheme is based on the use of an
RSA modulus N = pq as the modulus of a singular elliptic curve. Let ZN =
Z/NZ be the ring of integers modulo N and Fp be the finite field. Let a and b
be integers with gcd(ab,N) = 1 and gcd(4a3 + 27b2, N) = 1. A singular elliptic
curve EN (a, b) over the ring ZN is the concatenation of a point ON , called the
point at infinity, and the set of points (x, y) ∈ Z2

N satisfying the Weierstrass
equation

y2 + axy ≡ x3 + bx2 (mod N).

If we consider this form modulo p, we get an elliptic curve Ep(a, b) over Fp

Ep(a, b) : y2 + axy ≡ x3 + bx2 (mod p),

with the point at infinityOp. It is well known that the chord-and-tangent method
defines an addition law on singular elliptic curves, as for all elliptic curves on
Fp. The addition law can be summarized as follows.

– For any point P ∈ Ep(a, b), P +Op = Op + P = P .
– If P = (x, y) ∈ Ep(a, b), then −P = (x,−ax− y).
– If P = (x, y), then 2P = P3 = (x3, y3) with

x3 =

(
3x2 + 2bx− ay

2ay + ax

)2

+ a

(
3x2 + 2bx− ay

2ay + ax

)
− b− 2x,

y3 = −
(

3x2 + 2bx− ay
2ay + ax

+ a

)
x3 −

−x3

2ay + ax
.

– If P1 = (x1, y1) and P2 = (x2, y2) with P1 6= ±P2, then P1 + P2 = P3 =
(x3, y3) with

x3 =

(
y2 − y1
x2 − x1

)2

+ a

(
y2 − y1
x2 − x1

)
− b− x1 − x2,

y3 = −
(
y2 − y1
x2 − x1

+ a

)
x3 −

y1x2 − y2x1
x2 − x1

.

The addition law can be extended to the elliptic curve EN (a, b) in the same
way as the addition in Ep(a, b) by replacing computations modulo p by com-
putations modulo N . In EN (a, b), a specific problem can occur. Sometimes, the
inverse modulo N does not exist. In this case, this could lead to finding a prime
factor of N , which is unlikely to happen when p and q are large. Note that this
is one of the principles of Elliptic Curve Method of factorization [10].

In 1995, Kuwakado, Koyama and Tsuruoka [9] proposed a system based on
singular elliptic curves modulo an RSA modulus, which can be summarized as
follows.
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1. Key Generation:
– Choose two distinct prime numbers p and q of similar bit-length.
– Compute N = pq.
– Choose e such that gcd

(
e,
(
p2 − 1

) (
q2 − 1

))
= 1.

– Compute d = e−1 (mod
(
p2 − 1

) (
q2 − 1

)
).

– Keep p, q, d secret and publish N, e.

2. Encryption:
– Transform the message as m = (mx,my) ∈ ZN × ZN .

– Compute b =
m2
y−m

3
x

m2
x

(mod N).

– Compute the ciphertext point (cx, cy) = e(mx,my) on the elliptic curve
y2 = x3 + bx2 (mod N).

3. Decryption:

– Compute b =
c2y−c

3
x

c2x
(mod N).

– Compute the plaintext point (mx,my) = d(cx, cy) on the elliptic curve
y2 = x3 + bx2 (mod N).

Observe the modular inverse d = e−1 (mod
(
p2 − 1

) (
q2 − 1

)
) can be trans-

formed as a key equation

ed− k
(
p2 − 1

) (
q2 − 1

)
= 1,

which will be the starting equation of our new attack.

2.2 RSA over the domain of Gaussian integers

We now focus on how to extend the RSA cryptosystem to the ring of Gaussian
integers. We begin by reviewing the main properties of Gaussian integers.

A Gaussian integer is a complex number of the form a+bi where a, b ∈ Z and
i2 = −1. The set of all Gaussian integers is the ring Z[i]. Let α and β 6= 0 be two
Gaussian integers. We say that β divides α if there exists a Gaussian integer γ
such that α = βγ. The norm of a Gaussian integer a+ bi is |a+ bi| = a2 + b2. A
Gaussian prime is a Gaussian integer which is divisible only by a unit. The units
in Z[i] are ±1 and ±i and have norm 1. As a consequence, if a2 + b2 is a prime
number in Z, then a+ ib is a Gaussian prime. Conversely, if p ∈ Z is an ordinary
prime number, then Gaussian integers p and pi are Gaussian primes if and only if
p ≡ 3 (mod 4). The existence of prime factorization in Z[i] allows us to consider
Gaussian integers of the form N = PQ where P and Q are Gaussian primes
with large norm. Similarly, the existence of Euclidean division and Euclidean
algorithm in Z[i] allow us to consider arithmetic operations modulo N . On the
other hand, if P is a Gaussian prime, then α|P |−1 ≡ 1 (mod P ) whenever α 6≡ 0
(mod P ). Similarly, if N = PQ is the product of two Gaussian primes, then
α(|P |−1)(|Q|−1) ≡ 1 (mod N) whenever α 6≡ 0 (mod N). In particular, if N =

pq ∈ Z is the product of two ordinary primes, then α(p2−1)(q2−1) ≡ 1 (mod N)
whenever α 6≡ 0 (mod N).
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Using the arithmetical operations on the ring Z[i], Elkamchouchi, Elshenawy
and Shaban [6] proposed an extension of the RSA cryptosystem to Gaussian
integers. The scheme can be summarized as follows.

1. Key Generation:
– Choose two distinct Gaussian primes P and Q of similar norm.
– Compute N = PQ.
– Choose e such that gcd(e, (|P | − 1)(|Q| − 1)) = 1.
– Determine d = e−1 (mod (|P | − 1)(|Q| − 1))).
– Keep P,Q, d secret, publish N, e.

2. Encryption:
– Transform the message as a Gaussian integer M ∈ Z[i].
– Compute C ≡Me (mod N).

3. Decryption:
– Compute M ≡ Cd (mod N).

When N = pq ∈ Z where p and q are ordinary prime numbers of the form 4m+3,
the modular inverse of e becomes d = e−1 (mod

(
p2 − 1

) (
q2 − 1

)
) and can be

rewritten as
ed− k

(
p2 − 1

) (
q2 − 1

)
= 1.

This is the same key equation that comes up in the Kuwakado-Koyama-Tsuruoka
RSA-type scheme.

2.3 Castagnos scheme

Castagnos scheme [4] was proposed in 2007 and uses an RSA modulus N = pq
and a public exponent e such that gcd

(
e,
(
p2 − 1

) (
q2 − 1

))
= 1. The encryption

and the decryption algorithms make use of the Lucas series. Let r be an integer.
Define V0(r) = 2 and V1(r) = r. For k ≥ 0, the k + 2th term of the Lucas se-
quence is defined by Vk+2 = rVk+1(r)−Vk(r). The Lucas series can be computed
efficiently by the square and multiply algorithm. The Castagnos scheme can be

summarized as follows, where
(
x
p

)
is the Jacobi symbol.

1. Key Generation:
– Choose two distinct prime numbers p and q of similar bit-length.
– Compute N = pq.
– Choose e such that gcd

(
e,
(
p2 − 1

) (
q2 − 1

))
= 1.

– Keep p, q secret and publish N, e.

2. Encryption:
– Transform the message as an integer m ∈ Z/NZ.
– Choose a random integer r ∈ [2, n− 2].
– Compute the ciphertext c ≡ (1 +mN)Ve(r) (mod N2).
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3. Decryption:

– Compute ip =
(
c2−4
p

)
and d(p, ip) ≡ e−1 (mod p− ip).

– Compute iq =
(
c2−4
q

)
and d(q, iq) ≡ e−1 (mod q − iq).

– Compute rp ≡ Vd(p,ip) (mod p) and rq ≡ Vd(q,iq) (mod q).

– Compute p′ ≡ p−1 (mod q) and r = rp + p(rp − rq)p′ (mod N).

– Compute tp ≡ c
Ve(r)

(mod p2) and mp ≡ tp−1
p · q−1 (mod p).

– Compute tq ≡ c
Ve(r)

(mod q2) and mq ≡ tq−1
q · p−1 (mod q).

– Compute the plaintext m ≡ mp + p(mq −mp)p
′ (mod N).

Despite the inverse d ≡ e−1 (mod
(
p2 − 1

) (
q2 − 1

)
) is not being used directly

in the scheme, we use the key equation ed−k
(
p2 − 1

) (
q2 − 1

)
= 1 to launch an

attack on Castagnos scheme when d is suitably small.

3 Useful lemmas

In this section, we review the main properties of the continued fractions and
state a useful lemma that will be used in the attack.

A continued fraction is an expression of the form

a0 +
1

a1 +
1

a2 +
1

. . .

The continued fraction expansion of a number is formed by subtracting away
the integer part of it and inverting the remainder and then repeating this process
again and again. The coefficients ai of the continued fraction of a number x are
constructed as follows:

x0 = x, an = [xn], xn+1 =
1

xn − an

We use the following notation to denote the continued fraction

x = [a0, a1, . . . , an] = a0 +
1

a1 +
1

. . . +
1

an

If k ≤ n, the continued fraction [a0, a1, . . . , ak] is called the kth convergent of
x. The following theorem gives us the fundamental recursive formulas to calculate
the convergents.
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Theorem 1. [7] The kth convergent can be determined as

[a0, . . . , ak] =
pk
qk

where the sequences {pn} and {qn} are specified as follows:

p−2 = 0, p−1 = 1, pn = anpn−1 + pn−2, ∀n ≥ 0,

q−2 = 1, q−1 = 0, qn = anqn−1 + qn−2, ∀n ≥ 0.

Theorem 2. [7] Let p, q be positive integers such that

0 <

∣∣∣∣x− p

q

∣∣∣∣ < 1

2q2

then p
q is a convergent of the continued fraction of x.

Now, we present a useful result that will be used throughout the paper.

Lemma 1. Let N = pq be an RSA modulus with q < p < 2q. Let φ1 = N2 +
1− 5

2N and φ2 = N2 + 1− 2N . Then

φ1 < (p2 − 1)(q2 − 1) < φ2.

Proof. Suppose that q < p < 2q. Then 1 < p
q < 2, so since the function f(x) =

x+ 1
x is increasing on [1,+∞), we get f(1) < f

(
p
q

)
< f(2), that is

2 <
p

q
+
q

p
<

5

2
.

Multiplying by N , we get

2N < p2 + q2 <
5

2
N.

Since
(
p2 − 1

) (
q2 − 1

)
= N2 + 1−

(
p2 + q2

)
, we get

N2 + 1− 5

2
N < (p2 − 1)(q2 − 1) < N2 + 1− 2N,

that is φ1 < (p2 − 1)(q2 − 1) < φ2. This terminates the proof.
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4 A new attack on RSA variants based on continued
fractions

In this section, we propose a new attack on the Kuwakado-Koyama-Tsuruoka
cryptosystem as well as RSA over the Gaussian integer domain and the Castag-
nos scheme in the situation that the key equation ed− k(p2 − 1)(q2 − 1) = 1 is
satisfied with a suitably small secret exponent d.

Theorem 3. Let (N, e) be a public key in the Kuwakado-Koyama-Tsuruoka
cryptosystem or in the RSA cryptosystem with Gaussian integers or in the
Castagnos scheme with N = pq and q < p < 2q. If e <

(
p2 − 1

) (
q2 − 1

)
satisfies

an equation ed− k
(
p2 − 1

) (
q2 − 1

)
= 1 with

d <

√
2N3 − 18N2

e
,

then k
d is a convergent of the continued fraction expansion of

e

N2 − 9
4N + 1

and one can factor N in polynomial time.

Proof. Let φ1 = N2 + 1− 5
2N and φ2 = N2 + 1− 2N . Then N ′ = N2 − 9

4N + 1
is the midpoint of the interval [φ1, φ2]. Since

(
p2 − 1

) (
q2 − 1

)
∈ [φ1, φ2], then∣∣(p2 − 1

) (
q2 − 1

)
−N ′

∣∣ < 1

2
(φ2 − φ1) =

1

4
N. (1)

Using the equation ed− k
(
p2 − 1

) (
q2 − 1

)
= 1, we get∣∣∣∣ eN ′ − k

d

∣∣∣∣ ≤ e ∣∣∣∣ 1

N ′
− 1

(p2 − 1) (q2 − 1)

∣∣∣∣+

∣∣∣∣ e

(p2 − 1) (q2 − 1)
− k

d

∣∣∣∣
= e

∣∣(p2 − 1
) (
q2 − 1

)
−N ′

∣∣
N ′ (p2 − 1) (q2 − 1)

+
1

(p2 − 1) (q2 − 1) d

Then, using d =
k(p2−1)(q2−1)+1

e and (3), we get∣∣∣∣ eN ′ − k

d

∣∣∣∣ < eN

4N ′ (p2 − 1) (q2 − 1)
+

e

(p2 − 1) (q2 − 1) (k (p2 − 1) (q2 − 1) + 1)
.

Now, using Lemma 1, we get∣∣∣∣ eN ′ − k

d

∣∣∣∣ < eN

4φ21
+

e

φ21
<

e(N + 4)

4(φ1 − 1)2
=

e(N + 4)

4
(
N2 − 5

2N
)2 . (2)

A straightforward calculation shows that

N + 4

4
(
N2 − 5

2N
)2 < 1

4N3 − 36N2
.
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Combining this with (2), we get∣∣∣∣ eN ′ − k

d

∣∣∣∣ < e

4N3 − 36N2
.

If d <
√

2N3−18N2

e , then
∣∣ e
N ′ −

k
d

∣∣ < 1
2d2 and by Theorem 2, k

d is a convergent

of the continued fraction expansion of e
N ′ . Using k and d, we get(

p2 − 1
) (
q2 − 1

)
=
ed− 1

k
.

Combining with N = pq, we get the values of p and q which leads to the fac-
torization of N . Observe that every step in the proof can be done in polynomial
time. This terminates the proof.

5 Different bit size primes

In Section 4, we consider the case where the two primes p and q are of the
same bit size, i.e. q < p < 2q. In this section, we give a generalised attacked by
considering two primes p and q of arbitrary sizes. We will not require p and p to
have the same bit size, but instead, we consider the case q < p < µq where µ is
a parameter. We show that if

d2e <
µ N3

(µ− 1)2

then the three RSA-variant schemes can be broken.

Theorem 4. Let (N, e) be a public key in the Kuwakado-Koyama-Tsuruoka
cryptosystem or in the RSA cryptosystem with Gaussian integers or in the
Castagnos scheme with N = pq and q < p < µq. If e <

(
p2 − 1

) (
q2 − 1

)
satisfies an equation ed− k

(
p2 − 1

) (
q2 − 1

)
= 1 with

d <
N(N − (µ+ 1

µ ))√
e( (µ−1)2

µ N + 2)
≈
√
µ N

3
2

(µ− 1)
√
e

then k
d is a convergent of the continued fraction expansion of

e

N2 + 1− (µ+1)2

2µ N

and one can factor N in polynomial time.

Proof. We have 1 < p
q < µ, so based on the increasing property of the function

f(x) = x+ 1
x on [1,+∞), we get f(1) < f

(
p
q

)
< f(µ), that is

2 <
p

q
+
q

p
< µ+

1

µ
.
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Multiplying by N , we get

2N < p2 + q2 < (µ+
1

µ
)N.

Since
(
p2 − 1

) (
q2 − 1

)
= N2 + 1−

(
p2 + q2

)
, we get

N2 + 1− (µ+
1

µ
)N < (p2 − 1)(q2 − 1) < N2 + 1− 2N.

Let

φ1 = N2 + 1− (µ+
1

µ
)N,

φ2 = N2 + 1− 2N,

N ′ = N2 + 1− (µ+ 1)2

2µ
N.

ThenN ′ is the midpoint of the interval [φ1, φ2]. Since
(
p2 − 1

) (
q2 − 1

)
∈ [φ1, φ2],

we have ∣∣(p2 − 1
) (
q2 − 1

)
−N ′

∣∣ < 1

2
(φ2 − φ1) =

(µ− 1)2

2µ
N. (3)

Using the equation ed− k
(
p2 − 1

) (
q2 − 1

)
= 1, we get∣∣∣∣ eN ′ − k

d

∣∣∣∣ ≤ e ∣∣∣∣ 1

N ′
− 1

(p2 − 1) (q2 − 1)

∣∣∣∣+

∣∣∣∣ e

(p2 − 1) (q2 − 1)
− k

d

∣∣∣∣
= e

∣∣(p2 − 1
) (
q2 − 1

)
−N ′

∣∣
N ′ (p2 − 1) (q2 − 1)

+
1

(p2 − 1) (q2 − 1) d

= e

∣∣(p2 − 1
) (
q2 − 1

)
−N ′

∣∣
N ′ (p2 − 1) (q2 − 1)

+
e

(p2 − 1) (q2 − 1) (k(p2 − 1)(q2 − 1) + 1)

Then, using (3), we get∣∣∣∣ eN ′ − k

d

∣∣∣∣ < e (µ−1)
2

2µ N

(φ1 − 1)2
+

e

(φ1 − 1)2

=
e( (µ−1)2

2µ N + 1)

(φ1 − 1)2

=
e( (µ−1)2

µ N + 2)

2N2(N − (µ+ 1
µ ))2

.

Combining with the condition

d <
N(N − (µ+ 1

µ ))√
e( (µ−1)2

µ N + 2)
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we have ∣∣∣∣ eN ′ − k

d

∣∣∣∣ < 1

2d2

So by Theorem 2, k
d is a convergent of the continued fraction expansion of e

N ′ ,
and thus, we can find the factorization of N in polynomial time. This terminates
the proof.

6 Experiment results

6.1 Same bit primes

In connection with Theorem 3, we present an experimental result. We consider
two RSA primes p and q, both of 512 bits, which give us a 1024-bit modulus N .
The public exponent e is 2029-bit and the secret exponent d is 520-bit. We can

verify that the condition d <
√

2N3−18N2

e is satisfied as required by Theorem 3.

p =1009926345 7471330007 1984329453 1837129144 5329854502

1579205949 1972427206 6832404994 0387919056 4150845276

8065924106 7922890816 2666245720 1616730699 1117239731 85481

q =9201052432 2086390067 1386866266 0639973895 0237269245

6878261382 5773843108 2681621528 1513707044 8098390827

1161420676 8781444754 1784724352 5840645389 7707377855 3491

N =9292385259 8882409829 3162082225 5290648240 2932610895

2796745930 4569281602 2535261774 6000624542 0686015350

5820019086 9644402726 0931963319 2462241182 6579351302

0782053736 0725528276 5503973157 0642939798 0805113181

1631153462 5580255681 0453116780 9138251914 8143650220

1487534725 1944638440 3016589748 5133626528 3338290596 23064171
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e =5610945328 2671796041 5829077437 9519142056 5955456458

7016831195 6891736518 8405496534 0274145492 4223492328

5533946739 3132613402 2802793166 8707714667 2017196874

2057028761 3007844191 6424007923 8588782842 5888389498

2399842002 8312226377 0538147674 6869931106 0864836776

4239757895 9256035850 8693271128 6691302868 6894236736

3858899449 4578621026 8249617044 5653141105 6506148300

2531330952 9779988125 0306197976 3903833872 8515848925

1679290735 1472231296 9415530850 4617614777 4425005468

7389111903 1488774848 5654348435 7158394635 1774298241

7614264452 0801690300 4327479471 1402065512 8418504644

3456306876 4694318782 5003370247 1823625867 3480338561 6726117398 7

We found k
d at the 306th convergent of e

N2− 9
4N+1

k =2230382597 4699469998 8596682209 1052908389 5670986870

3180114419 9709650127 6686575639 3075936836 3045074562

2035858758 0823897378 9584493028 0368787713 7164782033 05

d =3432398830 0653048574 9095039954 0696608634 7176500716

5270469723 1729592771 5916988280 2606127982 0330727277

4886481556 9574042901 8560993999 8583219062 8701414555 7262923

6.2 Different bit primes

In this section, we present our experimental result with Theorem 4 for the case
µ = 6. We pick two RSA primes p and q such that q < p < 6q. The prime p is 513-
bit and the prime q is 511-bit. The public exponent e is 2025-bit and the secret

exponent d is 520-bit. We can verify that the condition of d <
N(N−(µ+ 1

µ ))√
e(

(µ−1)2

µ N+2)
is

satisfied as required by Theorem 4.

p =2251084283 5399690392 8700279533 0660713571 6421309613

1606252397 0689624877 5416713946 7115639068 3214685532

3666826003 6319257221 4371382498 2817351298 6759602510 57551

q =4309404521 9164250721 4408330391 2371174042 4509359250

1101852828 8585049357 7444908497 8816733294 5916734904

4534762750 3939424631 2488030728 2485748601 6547649010 5607
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N =9700832790 7021385390 4896466540 1601016697 9018555029

9703057514 5759061053 3697035051 2074639275 6847870272

0665951962 7031014290 6416502632 7630838653 8473467834

7894193231 7363670403 6746823112 7635148598 2833618775

9537769355 3973649039 4878199679 3768212843 1912875915

5743213282 9142414646 2589790816 1555160091 6544617094 24788457

e =2671630446 5047922612 1252742215 1475559753 7241860791

2093132740 5641923165 9718687137 9309258926 2478467217

6240162209 8399694799 3431771506 3146187336 5667839242

9797136667 0172935196 7047211436 7473569771 6376048156

6682301440 4366414431 8903690242 5361894565 8356426103

1590986355 9710607287 9200098536 4620383116 0061469153

1021296633 3242652768 5015393792 5758080833 8675858392

6006508016 4569283723 6478429721 9444664288 7134749805

8459839679 1047808065 9191027176 5899435088 0770410882

2622162123 1125991843 0044728097 1298291167 5436520870

8063051557 0718647958 9297699102 8690718545 8180532010

5143027320 1226957906 0997422184 9734372569 9623973425 7519040887

We found k
d at the 291th convergent of e

N2+1− (µ+1)2

2µ N
= e

N2+1− 49
12N

k =9744422179 7382625455 6522084013 6478311497 0194986256

1788936640 5212659933 2382608493 4392942988 2877863728

9298553572 7992595886 9245052334 7340515904 3019272879

d =3432398830 0653048574 9095039954 0696608634 7176500716

5270469723 1729592771 5916988280 2606127982 0330727277

4886481556 9574042901 8560993999 8583219062 8701414555 7412423

7 Conclusion

We have proposed an attack on three variants of the RSA cryptosystem, namely
the Kuwakado-Koyama-Tsuruoka extension for singular elliptic curves, Elkam-
chouchi et al.’s extension of RSA to the Gaussian integer ring and Castagnos
scheme. For the three extensions, we showed that the RSA modulus N = pq can
be factored in polynomial time if the public exponent e is related to a suitably
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small secret exponent d. The attack is based on the theory of continued fractions
and can be seen as an extension of Wiener’s [12] and Bunder-Tonien’s [3] attacks
on the RSA.
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