Martin Bunder 
email: mbunder@uow.edu.au
  
Abderrahmane Nitaj 
email: abderrahmane.nitaj@unicaen.fr
  
Willy Susilo 
email: [wsusilo@uow.edu.au
  
Joseph Tonien 
email: josephtonien]@uow.edu.au
  
Cryptanalysis of RSA-type cryptosystems based on Lucas sequences, Gaussian integers and elliptic curves

Keywords: RSA, elliptic curves, continued fractions

published or not. The documents may come   L'archive ouverte pluridisciplinaire

Introduction

The public key cryptosystem RSA was introduced by Rivest, Shamir and Adleman [START_REF] Rivest | A Method for obtaining digital signatures and public-key cryptosystems[END_REF] in 1978. It is the most popular and widely used public-key cryptosystem. The RSA operations system are based on modular arithmetic. Let p and q be two large primes. The product N = pq is called the RSA modulus and the product φ(N ) = (p -1)(q -1) is the Euler totient function. In RSA, the public exponent e and the private exponent d are integers satisfying ed ≡ 1 (mod φ(N )). A message m is encrypted as c ≡ m e (mod N ) and decrypted using m ≡ c d (mod N ).

Since its introduction, the RSA cryptosystem has been generalized in various ways, including extensions to singular elliptic curves and Gaussian integers.

In 1995, Kuwakado, Koyama and Tsuruoka [START_REF] Kuwakado | A new RSA-type scheme based on singular cubic curves y 2 = x 3 +bx 2 (mod n)[END_REF] presented a new RSA-type scheme based on singular cubic curves with equation y 2 ≡ x 3 + bx 2 (mod N ) where N = pq is an RSA modulus and b ∈ Z/N Z. The public exponent is an integer e such that gcd e, p 2 -1 q 2 -1 = 1 and the decryption exponent is the integer d ≡ e -1 (mod p 2 -1 q 2 -1 ). From this, we deduce that e and d satisfy a key equation of the form ed -k p 2 -1 q 2 -1 = 1 where k is a positive integer.

In 2002, Elkamchouchi, Elshenawy and Shaban [START_REF] Elkamchouchi | Extended RSA cryptosystem and digital signature schemes in the domain of Gaussian integers[END_REF] introduced an extension of RSA to the ring of Gaussian integers. A Gaussian integer is a complex number of the form a + ib where both a and b are integers and i 2 = -1. The set of all Gaussian integers is denoted Z [i]. A Gaussian prime number is a Gaussian integer that cannot be represented as a product of non-unit Gaussian integers. The only unit Gaussian integers are ±1, ±i. Let P = a + ib and Q = a + ib be two Gaussian primes. Consider the Gaussian integer N = P Q and the Euler totient function φ(N ) = (|P | -1) (|Q| -1) = a 2 + b 2 -1 a 2 + b 2 -1 . Let e be an integer such that d ≡ e -1 (mod φ(N )) exists. Then, in the RSA scheme over the domain of Gaussian integers, a message m ∈ Z[i] is encrypted using c ≡ m e (mod N ) and decrypted using m ≡ c d (mod N ). We note that, in this RSA variant, the key equation is ed

-k (|P | -1) (|Q| -1) = 1 for N = P Q ∈ Z[i].
In the situation that N = pq is an ordinary RSA modulus, the key equation becomes ed -k p 2 -1 q 2 -1 = 1, which is the same than in the Kuwakado-Koyama-Tsuruoka elliptic curve variant of RSA.

In 2007, Castagnos [START_REF] Castagnos | An efficient probabilistic public-key cryptosystem over quadratic field quotients[END_REF] proposed a probabilistic scheme based on an RSA modulus N = pq and using arithmetical operations in quadratic field quotients. Let e be a integer such that gcd e, p 2 -1 q 2 -1 = 1. For any integer r, let V e (r) be the eth term of the Lucas sequence defined by

V 0 (r) = 2, V 1 (r) = r and V k+2 = rV k+1 (r) -V k (r) for k ≥ 0. In this scheme, a message m ∈ Z/N Z is encrypted using c ≡ (1 + mN )V e (r) (mod N 2 )
where r is a random integer with 2 ≤ r ≤ N -2. Then some arithmetical properties, one can decrypt c to get the original message m. Similarly to the Kuwakado-Koyama-Tsuruoka elliptic curve variant of RSA and RSA with Gaussian integers, Castagnos scheme leads to the key equation ed -k p 2 -1 q 2 -1 = 1.

The security of the RSA cryptosystem and its variants are based on the difficulty of factoring large integers of the shape N = pq. Nevertheless, in some cases, the modulus N can be factored by algebraic methods that are not based on factoring algorithms. For example, in 1990, Wiener [START_REF] Wiener | Cryptanalysis of short RSA secret exponents[END_REF] showed how to break the RSA when the decryption exponent d satisfies d < 1 3 N 0.25 . Wiener's method is based on solving the key equation ed -k(p -1)(q -1) = 1 by applying the continued fraction algorithm to the public rational fraction e N . When d is small enough, k d is one of the convergents of the continued fraction expansion of e N . Later, Boneh and Durfee [START_REF] Boneh | Cryptanalysis of RSA with private key d less than N 0.292[END_REF] applied lattice reduction and Coppersmith's technique [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF] and extended the bound to d < N 0.292 . Recently, using the convergents of the continued fraction expansion of e N where N is a number depending on N , Bunder and Tonien [START_REF] Bunder | A new improved attack on RSA[END_REF] could break the RSA if d 2 e < 8N 1.5 .

The complexity of the encryption and decryption algorithms are based on the size of the encryption key e and the size of decryption key d, respectively. In a cryptosystem with a limited resource such as a credit card, it is desirable to have a smaller value of d. In some scenario, for convenience, e is set to a small constant, such as e = 3.

In this paper, we consider one of the following scenarios where N = pq is the product of two large primes and the public exponent e satisfies an equation ed -k p 2 -1 q 2 -1 = 1 with a suitably small secret exponent d:

an instance of the Kuwakado-Koyama-Tsuruoka cryptosystem [START_REF] Kuwakado | A new RSA-type scheme based on singular cubic curves y 2 = x 3 +bx 2 (mod n)[END_REF], an instance of the RSA over Gaussian integers [START_REF] Elkamchouchi | Extended RSA cryptosystem and digital signature schemes in the domain of Gaussian integers[END_REF], an instance of Castagnos scheme [START_REF] Castagnos | An efficient probabilistic public-key cryptosystem over quadratic field quotients[END_REF].

Our method is inspired by Bunder and Tonien's technique [START_REF] Bunder | A new improved attack on RSA[END_REF]. We show that in the case when p and q has equal bit length, if d 2 e < 2N 3 -18N 2 then one can find p and q and then factor the modulus N . Our method is based on the continued fraction algorithm as in Bunder and Tonien's attack. Under the

condition d < 2N 3 -18N 2 e
, we show that one can find k d among the convergents of the continued fraction expansion of the public rational number e N 2 -9 4 N +1 . In the general case, where q < p < µq, if d 2 e < µ N 3 (µ-1) 2 then we can find k d among the convergents of the continued fraction expansion of

e N 2 +1- (µ+1) 2 2µ N .
The paper is organized as follows. In Section 2, we present the Kuwakado-Koyama-Tsuruoka RSA-type scheme, the RSA scheme over Gaussian integers and the Castagnos scheme. In Section 3, we review some facts and lemmas used in our attack. In Section 4, we present our new attack for the case q < p < 2q and in Section 5, our attack for the general case q < p < µq. Experiment results for µ = 2 and µ = 6 are presented in Section 6. Note that the contents of Section 5 and Section 6 are new and have not been included in our conference paper [START_REF] Bunder | A new attack on three variants of the RSA cryptosystem[END_REF].

Preliminaries

In this section, we present the three variants of the RSA cryptosystem for which our attack works, namely the Kuwakado-Koyama-Tsuruoka RSA-type scheme, the RSA scheme over Gaussian integers and the Castagnos scheme.

The Kuwakado-Koyama-Tsuruoka RSA-type scheme

The Kuwakado-Koyama-Tsuruoka RSA-type scheme is based on the use of an RSA modulus N = pq as the modulus of a singular elliptic curve. Let Z N = Z/N Z be the ring of integers modulo N and F p be the finite field. Let a and b be integers with gcd(ab, N ) = 1 and gcd(4a 3 + 27b 2 , N ) = 1. A singular elliptic curve E N (a, b) over the ring Z N is the concatenation of a point O N , called the point at infinity, and the set of points (x, y) ∈ Z 2 N satisfying the Weierstrass equation

y 2 + axy ≡ x 3 + bx 2 (mod N ).
If we consider this form modulo p, we get an elliptic curve

E p (a, b) over F p E p (a, b) : y 2 + axy ≡ x 3 + bx 2 (mod p),
with the point at infinity O p . It is well known that the chord-and-tangent method defines an addition law on singular elliptic curves, as for all elliptic curves on F p . The addition law can be summarized as follows.

-For any point P ∈ E p (a, b), P + O p = O p + P = P .

-

If P = (x, y) ∈ E p (a, b), then -P = (x, -ax -y).
-If P = (x, y), then 2P = P 3 = (x 3 , y 3 ) with

x 3 = 3x 2 + 2bx -ay 2ay + ax 2 + a 3x 2 + 2bx -ay 2ay + ax -b -2x, y 3 = - 3x 2 + 2bx -ay 2ay + ax + a x 3 - -x 3 2ay + ax .
-If P 1 = (x 1 , y 1 ) and P 2 = (x 2 , y 2 ) with P 1 = ±P 2 , then P 1 + P 2 = P 3 = (x 3 , y 3 ) with

x 3 = y 2 -y 1 x 2 -x 1 2 + a y 2 -y 1 x 2 -x 1 -b -x 1 -x 2 , y 3 = - y 2 -y 1 x 2 -x 1 + a x 3 - y 1 x 2 -y 2 x 1 x 2 -x 1 .
The addition law can be extended to the elliptic curve E N (a, b) in the same way as the addition in E p (a, b) by replacing computations modulo p by computations modulo N . In E N (a, b), a specific problem can occur. Sometimes, the inverse modulo N does not exist. In this case, this could lead to finding a prime factor of N , which is unlikely to happen when p and q are large. Note that this is one of the principles of Elliptic Curve Method of factorization [START_REF] Lenstra | Factoring integers with elliptic curves[END_REF].

In 1995, Kuwakado, Koyama and Tsuruoka [START_REF] Kuwakado | A new RSA-type scheme based on singular cubic curves y 2 = x 3 +bx 2 (mod n)[END_REF] proposed a system based on singular elliptic curves modulo an RSA modulus, which can be summarized as follows.

Key Generation:

-Choose two distinct prime numbers p and q of similar bit-length.

-Compute N = pq.

-Choose e such that gcd e, p 2 -1 q 2 -1 = 1.

-Compute d = e -1 (mod p 2 -1 q 2 -1 ).

-Keep p, q, d secret and publish N, e.

Encryption:

-

Transform the message as m = (m x , m y ) ∈ Z N × Z N . -Compute b = m 2 y -m 3 x m 2 x (mod N ). -Compute the ciphertext point (c x , c y ) = e(m x , m y ) on the elliptic curve y 2 = x 3 + bx 2 (mod N ). 3. Decryption: -Compute b = c 2 y -c 3 x c 2 x (mod N ). -Compute the plaintext point (m x , m y ) = d(c x , c y ) on the elliptic curve y 2 = x 3 + bx 2 (mod N ).
Observe the modular inverse d = e -1 (mod p 2 -1 q 2 -1 ) can be transformed as a key equation

ed -k p 2 -1 q 2 -1 = 1,
which will be the starting equation of our new attack.

RSA over the domain of Gaussian integers

We now focus on how to extend the RSA cryptosystem to the ring of Gaussian integers. We begin by reviewing the main properties of Gaussian integers. A Gaussian integer is a complex number of the form a+bi where a, b ∈ Z and i 2 = -1. The set of all Gaussian integers is the ring Z[i]. Let α and β = 0 be two Gaussian integers. We say that β divides α if there exists a Gaussian integer γ such that α = βγ. The norm of a Gaussian integer a + bi is |a + bi| = a 2 + b 2 . A Gaussian prime is a Gaussian integer which is divisible only by a unit. The units in Z[i] are ±1 and ±i and have norm 1. As a consequence, if a 2 + b 2 is a prime number in Z, then a + ib is a Gaussian prime. Conversely, if p ∈ Z is an ordinary prime number, then Gaussian integers p and pi are Gaussian primes if and only if p ≡ 3 (mod 4). The existence of prime factorization in Z[i] allows us to consider Gaussian integers of the form N = P Q where P and Q are Gaussian primes with large norm. Similarly, the existence of Euclidean division and Euclidean algorithm in Z[i] allow us to consider arithmetic operations modulo N . On the other hand, if P is a Gaussian prime, then α |P |-1 ≡ 1 (mod P ) whenever α ≡ 0 (mod P ). Similarly, if N = P Q is the product of two Gaussian primes, then α (|P |-1)(|Q|-1) ≡ 1 (mod N ) whenever α ≡ 0 (mod N ). In particular, if N = pq ∈ Z is the product of two ordinary primes, then α (p 2 -1)(q 2 -1) ≡ 1 (mod N ) whenever α ≡ 0 (mod N ).

Using the arithmetical operations on the ring Z[i], Elkamchouchi, Elshenawy and Shaban [START_REF] Elkamchouchi | Extended RSA cryptosystem and digital signature schemes in the domain of Gaussian integers[END_REF] proposed an extension of the RSA cryptosystem to Gaussian integers. The scheme can be summarized as follows.

1. Key Generation:

-Choose two distinct Gaussian primes P and Q of similar norm.

-Compute N = P Q.

-Choose e such that gcd(e, (|P

| -1)(|Q| -1)) = 1. -Determine d = e -1 (mod (|P | -1)(|Q| -1))).
-Keep P, Q, d secret, publish N, e.

Encryption:

-Transform the message as a Gaussian integer

M ∈ Z[i].
-Compute C ≡ M e (mod N ).

Decryption:

-

Compute M ≡ C d (mod N ).
When N = pq ∈ Z where p and q are ordinary prime numbers of the form 4m+3, the modular inverse of e becomes d = e -1 (mod p 2 -1 q 2 -1 ) and can be rewritten as

ed -k p 2 -1 q 2 -1 = 1.
This is the same key equation that comes up in the Kuwakado-Koyama-Tsuruoka RSA-type scheme.

Castagnos scheme

Castagnos scheme [START_REF] Castagnos | An efficient probabilistic public-key cryptosystem over quadratic field quotients[END_REF] was proposed in 2007 and uses an RSA modulus N = pq and a public exponent e such that gcd e, p 2 -1 q 2 -1 = 1. The encryption and the decryption algorithms make use of the Lucas series. Let r be an integer. Define V 0 (r) = 2 and V 1 (r) = r. For k ≥ 0, the k + 2th term of the Lucas sequence is defined by V k+2 = rV k+1 (r)-V k (r). The Lucas series can be computed efficiently by the square and multiply algorithm. The Castagnos scheme can be summarized as follows, where x p is the Jacobi symbol.

Key Generation:

-Choose two distinct prime numbers p and q of similar bit-length.

-Compute N = pq.

-Choose e such that gcd e, p 2 -1 q 2 -1 = 1.

-Keep p, q secret and publish N, e.

Encryption:

-Transform the message as an integer m ∈ Z/N Z.

-Choose a random integer r ∈ [2, n -2].

-Compute the ciphertext c ≡ (1 + mN )V e (r) (mod N 2 ).

Decryption:

-Compute i p = c 2 -4 p and d(p, i p ) ≡ e -1 (mod p -i p ).

-Compute i q = c 2 -4 q and d(q, i q ) ≡ e -1 (mod q -i q ).

-Compute r p ≡ V d(p,ip) (mod p) and r q ≡ V d(q,iq) (mod q).

-Compute p ≡ p -1 (mod q) and r = r p + p(r p -r q )p (mod N ).

-Compute t p ≡ c Ve(r) (mod p 2 ) and m p ≡ tp-1 p • q -1 (mod p). -Compute t q ≡ c Ve(r) (mod q 2 ) and m q ≡ tq-1 q • p -1 (mod q). -Compute the plaintext m ≡ m p + p(m q -m p )p (mod N ).

Despite the inverse d ≡ e -1 (mod p 2 -1 q 2 -1 ) is not being used directly in the scheme, we use the key equation ed -k p 2 -1 q 2 -1 = 1 to launch an attack on Castagnos scheme when d is suitably small.

Useful lemmas

In this section, we review the main properties of the continued fractions and state a useful lemma that will be used in the attack.

A continued fraction is an expression of the form

a 0 + 1 a 1 + 1 a 2 + 1 . . .
The continued fraction expansion of a number is formed by subtracting away the integer part of it and inverting the remainder and then repeating this process again and again. The coefficients a i of the continued fraction of a number x are constructed as follows:

x 0 = x, a n = [x n ], x n+1 = 1 x n -a n
We use the following notation to denote the continued fraction x = [a 0 , a 1 , . . . , a n ] = a 0 + 1

a 1 + 1 . . . + 1 a n
If k ≤ n, the continued fraction [a 0 , a 1 , . . . , a k ] is called the k th convergent of x. The following theorem gives us the fundamental recursive formulas to calculate the convergents. Theorem 1. [START_REF] Hardy | An Introduction to the Theory of Numbers[END_REF] The k th convergent can be determined as

[a 0 , . . . , a k ] = p k q k
where the sequences {p n } and {q n } are specified as follows:

p -2 = 0, p -1 = 1, p n = a n p n-1 + p n-2 , ∀n ≥ 0, q -2 = 1, q -1 = 0, q n = a n q n-1 + q n-2 , ∀n ≥ 0.
Theorem 2.

[7] Let p, q be positive integers such that

0 < x - p q < 1 2q 2
then p q is a convergent of the continued fraction of x.

Now, we present a useful result that will be used throughout the paper.

Lemma 1. Let N = pq be an RSA modulus with q < p < 2q. Let

φ 1 = N 2 + 1 -5 2 N and φ 2 = N 2 + 1 -2N . Then φ 1 < (p 2 -1)(q 2 -1) < φ 2 .
Proof. Suppose that q < p < 2q. Then 1 < p q < 2, so since the function f (x) = x + 1

x is increasing on [1, +∞), we get f (1) < f p q < f (2), that is

2 < p q + q p < 5 2 .
Multiplying by N , we get

2N < p 2 + q 2 < 5 2 N. Since p 2 -1 q 2 -1 = N 2 + 1 -p 2 + q 2 ,
we get

N 2 + 1 - 5 2 N < (p 2 -1)(q 2 -1) < N 2 + 1 -2N, that is φ 1 < (p 2 -1)(q 2 -1) < φ 2 .
This terminates the proof.

A new attack on RSA variants based on continued fractions

In this section, we propose a new attack on the Kuwakado-Koyama-Tsuruoka cryptosystem as well as RSA over the Gaussian integer domain and the Castagnos scheme in the situation that the key equation ed -k(p 2 -1)(q 2 -1) = 1 is satisfied with a suitably small secret exponent d.

Theorem 3. Let (N, e) be a public key in the Kuwakado-Koyama-Tsuruoka cryptosystem or in the RSA cryptosystem with Gaussian integers or in the Castagnos scheme with N = pq and q < p < 2q.

If e < p 2 -1 q 2 -1 satisfies an equation ed -k p 2 -1 q 2 -1 = 1 with d < 2N 3 -18N 2 e ,
then k d is a convergent of the continued fraction expansion of e N 2 -9 4 N + 1 and one can factor N in polynomial time.

Proof. Let φ 1 = N 2 + 1 -5 2 N and φ 2 = N 2 + 1 -2N . Then N = N 2 -9 4 N + 1 is the midpoint of the interval [φ 1 , φ 2 ]. Since p 2 -1 q 2 -1 ∈ [φ 1 , φ 2 ], then p 2 -1 q 2 -1 -N < 1 2 (φ 2 -φ 1 ) = 1 4 N. (1) 
Using the equation ed -k p 2 -1 q 2 -1 = 1, we get

e N - k d ≤ e 1 N - 1 (p 2 -1) (q 2 -1) + e (p 2 -1) (q 2 -1) - k d = e p 2 -1 q 2 -1 -N N (p 2 -1) (q 2 -1) + 1 (p 2 -1) (q 2 -1) d Then, using d = k(p 2 -1)(q 2 -1)+1 e and (3), we get e 
N - k d < eN 4N (p 2 -1) (q 2 -1) + e (p 2 -1) (q 2 -1) (k (p 2 -1) (q 2 -1) + 1)
.

Now, using Lemma 1, we get e N - k d < eN 4φ 2 1 + e φ 2 1 < e(N + 4) 4(φ 1 -1) 2 = e(N + 4) 4 N 2 -5 2 N 2 . (2) 
A straightforward calculation shows that

N + 4 4 N 2 -5 2 N 2 < 1 4N 3 -36N 2 .
Combining this with (2), we get

e N - k d < e 4N 3 -36N 2 . If d < 2N 3 -18N 2 e
, then e N -k d < 1 2d 2 and by Theorem 2, k d is a convergent of the continued fraction expansion of e N . Using k and d, we get

p 2 -1 q 2 -1 = ed -1 k .
Combining with N = pq, we get the values of p and q which leads to the factorization of N . Observe that every step in the proof can be done in polynomial time. This terminates the proof.

Different bit size primes

In Section 4, we consider the case where the two primes p and q are of the same bit size, i.e. q < p < 2q. In this section, we give a generalised attacked by considering two primes p and q of arbitrary sizes. We will not require p and p to have the same bit size, but instead, we consider the case q < p < µq where µ is a parameter. We show that if

d 2 e < µ N 3 (µ -1) 2
then the three RSA-variant schemes can be broken. Theorem 4. Let (N, e) be a public key in the Kuwakado-Koyama-Tsuruoka cryptosystem or in the RSA cryptosystem with Gaussian integers or in the Castagnos scheme with N = pq and q < p < µq. If e < p 2 -1 q 2 -1 satisfies an equation ed -k p 2 -1 q 2 -1 = 1 with

d < N (N -(µ + 1 µ )) e( (µ-1) 2 µ N + 2) ≈ √ µ N 3 2 (µ -1) √ e then k d is a convergent of the continued fraction expansion of e N 2 + 1 -(µ+1) 2 2µ N
and one can factor N in polynomial time.

Proof. We have 1 < p q < µ, so based on the increasing property of the function

f (x) = x + 1 x on [1, +∞), we get f (1) < f p q < f (µ), that is 2 < p q + q p < µ + 1 µ .
Multiplying by N , we get

2N < p 2 + q 2 < (µ + 1 µ )N.
Since p 2 -1 q 2 -1 = N 2 + 1 -p 2 + q 2 , we get

N 2 + 1 -(µ + 1 µ )N < (p 2 -1)(q 2 -1) < N 2 + 1 -2N.
Let

φ 1 = N 2 + 1 -(µ + 1 µ )N, φ 2 = N 2 + 1 -2N, N = N 2 + 1 - (µ + 1) 2 2µ N.
Then N is the midpoint of the interval [φ

1 , φ 2 ]. Since p 2 -1 q 2 -1 ∈ [φ 1 , φ 2 ],
we have

p 2 -1 q 2 -1 -N < 1 2 (φ 2 -φ 1 ) = (µ -1) 2 2µ N. (3) 
Using the equation ed

-k p 2 -1 q 2 -1 = 1, we get e N - k d ≤ e 1 N - 1 (p 2 -1) (q 2 -1) + e (p 2 -1) (q 2 -1) - k d = e p 2 -1 q 2 -1 -N N (p 2 -1) (q 2 -1) + 1 (p 2 -1) (q 2 -1) d = e p 2 -1 q 2 -1 -N N (p 2 -1) (q 2 -1) + e (p 2 -1) (q 2 -1) (k(p 2 -1)(q 2 -1) + 1)
Then, using (3), we get

e N - k d < e (µ-1) 2 2µ N (φ 1 -1) 2 + e (φ 1 -1) 2 = e( (µ-1) 2 2µ N + 1) (φ 1 -1) 2 = e( (µ-1) 2 µ N + 2) 2N 2 (N -(µ + 1 µ )) 2 .
Combining with the condition

d < N (N -(µ + 1 µ )) e( (µ-1) 2 µ N + 2) we have e N - k d < 1 2d 2 
So by Theorem 2, k d is a convergent of the continued fraction expansion of e N , and thus, we can find the factorization of N in polynomial time. This terminates the proof.

6 Experiment results

Same bit primes

In connection with Theorem 3, we present an experimental result. We consider two RSA primes p and q, both of 512 bits, which give us a 1024-bit modulus N . The public exponent e is 2029-bit and the secret exponent d is 520-bit. We can verify that the condition d < 2N 

Different bit primes

In this section, we present our experimental result with Theorem 4 for the case µ = 6. We pick two RSA primes p and q such that q < p < 6q. The prime p is 513bit and the prime q is 511-bit. The public exponent e is 2025-bit and the secret exponent d is 520-bit. We can verify that the condition of d < 

Conclusion

We have proposed an attack on three variants of the RSA cryptosystem, namely the Kuwakado-Koyama-Tsuruoka extension for singular elliptic curves, Elkamchouchi et al.'s extension of RSA to the Gaussian integer ring and Castagnos scheme. For the three extensions, we showed that the RSA modulus N = pq can be factored in polynomial time if the public exponent e is related to a suitably
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small secret exponent d. The attack is based on the theory of continued fractions and can be seen as an extension of Wiener's [START_REF] Wiener | Cryptanalysis of short RSA secret exponents[END_REF] and Bunder-Tonien's [START_REF] Bunder | A new improved attack on RSA[END_REF] attacks on the RSA.