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. In the second attack, we consider two public exponents e1 and e2 and their corresponding private exponents d1 and d2. We show that one can factor N when d1 and d2 share a suitable amount of their most significant bits, that is |d1 -d2| < N r(r-1) (r+1) 2 . The third attack enables us to factor two Prime Power RSA moduli N1 = p r 1 q1 and N2 = p r 2 q2 when p1 and p2 share a suitable amount of their most significant bits, namely, |p1 -p2| < p 1 2rq 1 q 2 .

Introduction

The RSA public-key cryptosystem, invented in 1978 by Rivest, Shamir and Adleman [START_REF] Rivest | A Method for Obtaining digital signatures and public-key cryptosystems[END_REF], is one of the most popular systems in use today. In the RSA cryptosystem, the public key is (N, e) where the modulus N = pq is a product of two primes of the same bitsize, and the public exponent is a positive integer satisfying ed ≡ 1 (mod φ(N )). In RSA, encryption and decryption require executing heavy exponential multiplications modulo the large integer N . To reduce the decryption time, one may be tempted to use a small private exponent d. However, in 1990 Wiener [START_REF] Wiener | Cryptanalysis of short RSA secret exponents[END_REF] showed that RSA is insecure if d < 1 3 N 0.25 , and Boneh and Durfee [START_REF] Boneh | Cryptanalysis of RSA with private key d less than N 0.292[END_REF] improved the bound to d < N 0.292 . In 2004, Blömer and May [START_REF] Blömer | A generalized Wiener attack on RSA[END_REF] combined both Wiener's method and Boneh and Durfee's method to show that RSA is insecure if the public exponent e satisfies an equation ex + y = kφ(N ) with x < 1 3 N

Partially supported by the French SIMPATIC (SIM and PAiring Theory for Information and Communications security).

Concurrent to these efforts, many RSA variants have been proposed in order to ensure computational efficiency while maintaining the acceptable levels of security. One such important variant is the Prime Power RSA. In Prime Power RSA the modulus N is in the form N = p r q for r ≥ 2. In [START_REF] Takagi | Fast RSA-type cryptosystem modulo p k q[END_REF], Takagi showed how to use the Prime Power RSA to speed up the decryption process when the public and private exponents satisfy an equation ed ≡ 1 (mod (p -1)(q -1)). As in the standard RSA cryptosystem, the security of the Prime Power RSA depends on the difficulty of factoring integers of the form N = p r q.

Therefore, a Prime Power RSA modulus must be appropriately chosen, since it has to resist factoring algorithms such as the Number Field Sieve [START_REF]The Development of the Number Field Sieve[END_REF] and the Elliptic Curve Method [START_REF] Lenstra | Factoring integers with elliptic curves[END_REF]. Table 1, shows the suggested secure Power RSA forms as a function of the size of the modulus back in 2002 (see [START_REF]Cryptography using Compaq multiprime technology in a parallel processing environment[END_REF]). Note that, due to the ever increasing development of computing hardware, the form N = p 2 q is no longer recommended for 1024 bit modulus.

Modulus size (bits)

1024 1536 2048 3072 4096 8192

Form of the modulus N pq, p 2 q pq, p 2 q pq, p 2 q pq, p 2 q pq, p 2 q, p 3 q pq, p 2 q, p 3 q, p 4 q Table 1. Optimal number of prime factors of a Prime Power RSA modulus [START_REF]Cryptography using Compaq multiprime technology in a parallel processing environment[END_REF].

In 1999, Boneh, Durfee, and Howgrave-Graham [START_REF] Boneh | Factoring N = p r q for Large r[END_REF] presented a method for factoring N = p r q when r is large. Furthermore, Takagi [START_REF] Takagi | Fast RSA-type cryptosystem modulo p k q[END_REF] proved that one can factor N if d < N 1 2(r+1) , and May [START_REF] May | Secret Exponent Attacks on RSA-type Schemes with Moduli N = p r q. Public Key Cryptography-PKC[END_REF] improved the bound to d < N r (r+1) 2 or d < N (r-1) 2 (r+1) 2 . Very recently, Lu, Zhang and Lin [START_REF] Lu | New Results on Solving Linear Equations Modulo Unknown Divisors and its Applications[END_REF] improved the bound to d < N r(r-1) (r+1) 2 , and Sarkar [START_REF] Sarkar | Small secret exponent attack on RSA variant with modulus N = p r q, Designs[END_REF] improved the bound for N = p 2 q to d < N 0.395 and gave explicit bounds for r = 3, 4, 5.

In this paper, we focus on the Prime Power RSA with a modulus N = p r q, and present three new attacks: In the first attack we consider a public exponent e satisfying an equation ex -φ(N )y = z where x and y are positive integers. Using a recent result of Lu, Zhang and Lin [START_REF] Lu | New Results on Solving Linear Equations Modulo Unknown Divisors and its Applications[END_REF], we show that one can factor N in polynomial time if |xz| < N r(r-1) (r+1) 2 . In the standard situation z = 1, the condition becomes d = x < N r(r-1) (r+1) 2 which improves the bound of May [START_REF] May | Secret Exponent Attacks on RSA-type Schemes with Moduli N = p r q. Public Key Cryptography-PKC[END_REF] for r ≥ 3 and retrieves the bound of Lu, Zhang and Lin [START_REF] Lu | New Results on Solving Linear Equations Modulo Unknown Divisors and its Applications[END_REF]. Note that unlike Sarkar [START_REF] Sarkar | Small secret exponent attack on RSA variant with modulus N = p r q, Designs[END_REF] who solves ex -φ(N )y = 1, we solve a more general equation ex -φ(N )y = z. This leads to less constraints on the solution space, which in turn leads to an increase in the number of solutions to the equation. Intuitively speaking, our method has higher likelihood of finding solutions; that is, factoring RSA. In section 3, we shall present an example supporting this claim.

In the second attack, we consider an instance of the Prime Power RSA with modulus N = p r q. We show that one can factor N if two private keys d 1 and d 2 share an amount of their most significant bits, that is if

|d 1 -d 2 | is small enough. More precisely, we show that if |d 1 -d 2 | < N r(r-1)
(r+1) 2 , then N can be factored in polynomial time. The method we present is based on a recent result of [START_REF] Lu | New Results on Solving Linear Equations Modulo Unknown Divisors and its Applications[END_REF] with Coppersmith's method for solving an univariate linear equation.

In the third attack, we consider two instances of the Prime Power RSA with two moduli N 1 = p r 1 q 1 and N 2 = p r 2 q 2 such that the prime factors p 1 and p 2 share an amount of their most significant bits, that is |p 1 -p 2 | is small. More precisely, we show that one can factor the RSA moduli

N 1 and N 2 in polynomial time if |p 1 -p 2 | < p1
2rq1q2 . The method we use for this attack is based on the continued fraction algorithm.

The rest of this paper is organized as follows: In Section 2, we briefly review the preliminaries necessary for the attacks, namely Coppersmith's technique for solving linear equations and the continued fractions theorem. In Section 3, we present the first attack on the Prime Power RSA, which is valid with no conditions on the prime factors. In Section 4, we present the second attack in the situation where two decryption exponents share an amount of their most significant bits. In Section 5, we present the third attack on the Prime Power RSA when the prime factors share an amount of their most significant bits. We then conclude the paper in Section 6.

Preliminaries

In this section, we present some basics on Coppersmith's method for solving linear modular polynomial equations and an overview of the continued fraction algorithm. Both techniques are used in the crafting of our attacks.

First, observe that if N = p r q with q < p, then p r+1 > p r q = N , and p > N 1 r+1 . Hence throughout this paper, we will use the inequality p > N β where β = 1 r+1 .

Linear Modular Polynomial Equations

In 1995, Coppersmith [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF] developed powerful lattice-based techniques for solving both modular polynomial diophantine equations with one variable and two variables. These techniques have been generalized to more variables, and have served for cryptanalysis of many instances of RSA. More on this can be found in [START_REF]Using LLL-reduction for solving RSA and factorization problems: a survey[END_REF][START_REF] Hinek | Cryptanalysis of RSA and its variants[END_REF]. In [START_REF] Herrmann | Solving linear equations modulo divisors: On factoring given any bits[END_REF], Herrmann and May presented a method for finding the small roots of a modular polynomial equation f (x 1 , . . . , x n ) ≡ 0 (mod p) where f (x 1 , . . . , x n ) ∈ Z[x 1 , . . . , x n ] and p is an unknown divisor of a known integer N . Their method is based on the seminal work of Coppersmith [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF]. Very recently, Lu, Zhang and Lin [START_REF] Lu | New Results on Solving Linear Equations Modulo Unknown Divisors and its Applications[END_REF] presented a generalization for finding the small roots of a modular polynomial equation f (x 1 , . . . , x n ) ≡ 0 (mod p v ), where p v is a divisor of some composite integer N . For the bivariate case, they proved the following result, which we shall use in the crafting of our attacks.

Theorem 1 (Lu, Zhang and Lin). Let N be a composite integer with a divisor p u such that p ≥ N β for some 0 < β ≤ 1. Let f (x, y) ∈ Z[x, y] be a homogenous linear polynomial. Then one can find all the solutions (x, y) of the equation f (x, y) = 0 mod p v with gcd(x, y) = 1, |x| < N γ1 , |y| < N γ2 , in polynomial time if

γ 1 + γ 2 < uvβ 2 .

The Continued Fractions Algorithm

We present here the well known result of Legendre on convergents of a continued fraction expansion of a real number. The details can be found in [START_REF] Hardy | An Introduction to the Theory of Numbers[END_REF]. Let ξ be a positive real number. Define ξ 0 = ξ and for i = 0, 1, . . . , n, a i = ξ i , ξ i+1 = 1/(ξ i -a i ) unless ξ i is an integer. This expands ξ as a continued fraction in the following form:

ξ = a 0 + 1 a 1 + 1 . . . + 1 a n + 1 . . .
, a 0 ∈ N, and a i ∈ N * for i ≥ 1, which is often rewritten as ξ = [a 0 , a 1 , . . . , a n , . . .]. For i ≥ 0, the rational numbers [a 0 , a 1 , . . . , a i ] are the convergents of ξ. If ξ = a b is a rational number, then ξ = [a 0 , a 1 , . . . , a n ] for some positive integer n, and the continued fraction expansion of ξ is finite with the total number of convergents being polynomial in log(b). The following result enables one to determine if a rational number a b is a convergent of the continued fraction expansion of a real number ξ (see Theorem 184 of [START_REF] Hardy | An Introduction to the Theory of Numbers[END_REF]).

Theorem 2 (Legendre). Let ξ be a positive real number. Suppose gcd(a, b) = 1 and ξ -a b < 1 2b 2 . Then a b is one of the convergents of the continued fraction expansion of ξ. Note that the continued fractions expansion process is polynomial in time.

3 The First Attack on Prime Power RSA with Modulus N = p r q

In this section, we present an attack on the Prime Power RSA when the public key (N, e) satisfies an equation ex -φ(N )y = z with small parameters x and |z|.

Theorem 3. Let N = p r q be a Prime Power RSA modulus and e a public exponent satisfying the equation ex -φ(N )y = z with y ≡ 0 (mod pq), 1 < e < φ(N ) and gcd(e, φ(N )) = 1. Then one can factor N in polynomial time if

|xz| < N r(r-1) (r+1) 2 .
Proof. Suppose that e < N satisfies an equation ex -φ(N )y = z with |x| < N δ and |z| < N γ . Then, since φ(N ) = p r-1 (p -1)(q -1), we get ex -z ≡ 0 (mod p r-1 ). Applying Theorem 1 with u = r, v = r -1 and β = 1 r+1 , we can solve the equation in polynomial time if

δ + γ < uvβ 2 = r(r -1) (r + 1) 2 , that is |xz| < N r(r-1) (r+1) 2
. Since e φ(N ) < 1, then, using x and z in the equation ex -φ(N )y = z, we get for sufficiently large N comparatively to r,

y = ex -z φ(N ) < e|x| φ(N ) + |z| φ(N ) < |x| + |z| ≤ 1 + |xz| < 1 + N r(r-1) (r+1) 2 < N.
Hence, when y ≡ 0 (mod pq), we get gcd(ex -z, N ) = gcd(p r-1 (p -1)(q -1)y, p r q) = g,

with g = p r-1 , g = p r or g = p r-1 q. If g = p r-1 , then p = g 1 r-1 , if g = p r , then p = g 1 r and if g = p r-1 q, then p = N
g . This leads to the factorization of N .

Example 1. For r = 2 and N = p r q, let us take for N and e the 55 digit numbers

N = 8138044578297117319482018441148072252199996769522371021, e = 1199995230601021126201343651611107957480251354355883029.
In order to solve the diophantine equation ex-φ(N )y = z, we transformed it into the equation ex -z ≡ 0 (mod p r-1 ) using Theorem 3. To be able to apply Coppersmith's technique via Theorem 1, we chose the parameters m = 7, t = 6 so that the dimension of constructed the lattice is 36, and X = N r(r-1) (r+1) 2 = 1592999974064. We built the lattice using the polynomial f (x 1 , x 2 ) = x 1 + ex 2 , then applied the LLL algorithm [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF], and used Gröbner basis method to find the smallest solution x 1 = -11537 and x 2 = 7053 to f (x 1 , x 2 ) ≡ 0 (mod p r-1 ) in 174 seconds using an off-the-shelf computer. From this solution, we deduced p = gcd(x 1 + ex 2 , N ) = 2294269585934949239, and finally recovered q = N p 2 = 1546077175000723901. We then computed φ(N ) and d ≡ e -1 (mod φ(N )) as follows:

φ(N ) = 8138044578297117310671227668089561946257896925261579800, d = 2015994747748388772982436393811213317361971865510756269.
Observe that d ≈ N 0.98 which is out of range of Sarkar's bound [START_REF] Sarkar | Small secret exponent attack on RSA variant with modulus N = p r q, Designs[END_REF] which can only retrieve private keys d < N 0.395 for r = 2.

4 The Second Attack on Prime Power RSA using Two Decryption Exponents

In this section, we present an attack on the Prime Power RSA when two private exponents d 1 and d 2 share an amount of their most significant bits, that is The polynomial equation is f (x) = e 1 e 2 x -(e 2 -e 1 ) ≡ 0 (mod p r-1 ), which can be transformed into g(x) = x -a ≡ 0 (mod p r-1 ) where a ≡ (e 2 -e1)(e 1 e 2 ) -1 Example 3. We present here an example corresponding to Theorem 5. Consider N 1 = p 2 1 q 1 and N 2 = p 2 2 q 2 with N 1 = 170987233913769420505896917437304719816691353833034482461, N 2 = 120532911819726882881630714003135237766675602824250965921.

|d 1 -d 2 | is small.

That is if |d

1 -d 2 | < N r(r-1) ( 
We applied the continued fraction algorithm to compute the first 40 convergents of N2 N1 . Every convergent is a candidate for the ratio q2 q1 of the prime factors. One of the convergents is 36443689 51698789 leading to q 2 = 36443689 and q 1 = 51698789. This gives the prime factors p 1 and p 2 p 1 = N 1 q 1 = 1818618724382942951460443,

p 2 = N 2 q 2 = 1818618724382943035672683.

Conclusion

In this paper, we have considered the Prime Power RSA with modulus N = p r q and public exponent e. We presented three new attacks to factor the modulus in polynomial time. The first attack can be applied if small parameters x, y and z satisfying the equation ex -φ(N )y = z can be found . The second attack can be applied when two private exponents d 1 and d 2 share an amount of their most significant bits. The third attack can be applied when two Prime Power RSA moduli N 1 = p r 1 q 1 and N 2 = p r 2 q 2 are such that p 1 and p 2 share an amount of their most significant bits.

Theorem 4 .

 4 Let N = p r q be an RSA modulus and d 1 and d 2 be two private exponents such that e 1 e 2 (d 1 -d 2 ) -(e 2 -e 1 ) ≡ 0 (mod N ). Then, one can factor N in polynomial time, if|d 1 -d 2 | < N r(r-1) (r+1) 2 . Proof. Suppose that e 1 d 1 -k 1 φ(N ) = 1 and e 2 d 2 -k 2 φ(N ) = 1 with e 1 > e 2 .Hence e 1 d 1 ≡ 1 (mod φ(N )) and e 2 d 2 ≡ 1 (mod φ(N )). Multiplying the first equation by e 2 and the second by e 1 and subtracting, we gete 1 e 2 (d 1 -d 2 ) ≡ e 2 -e 1 (mod φ(N )).Since φ(N ) = p r-1 (p -1)(q -1), we get e 1 e 2 (d 1 -d 2 ) ≡ e 2 -e 1 (mod p r-1 ). Now, consider the modular linear equation e 1 e 2 x -(e 2 -e 1 ) ≡ 0 (mod p r-1 ), d 1 -d 2 is a root of such equation. Suppose further that |d 1 -d 2 | < N δ , then applying Theorem 1 with u = r, v = r -1 and β = 1 r+1 will lead to the solution x = d 1 -d 2 obtained in polynomial time if δ < uvβ 2 = r(r -1) (r + 1) 2 .

1 r- 1 1 r

 111 r+1) 2 . Computing gcd(e 1 e 2 x -(e 2 -e 1 ), N ) = gcd p r-1 (p -1)(q -1)y, p r q = g, and assuming that e 1 e 2 (d 1 -d 2 )-(e 2 -e 1 ) ≡ 0 (mod N ) will lead to determining p, hence factoring N as follows: p = g when g = p r-1 , or p = g when g = p r , or p = N g if g = p r-1 q. Example 2. Let us present an example corresponding to Theorem 4. Consider N = p 2 q with N = 6093253851486120878859471958399737725885946526553626219, e 1 = 2749600381847487389715964767235618802529675855606377411, e 2 = 3575081244952414009316396501512372226545892558898276551.

(mod N ). Using m = 8 and t = 6, we built a lattice with dimension ω = 9. Applying the LLL algorithm [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF] and solving the first reduced polynomials, we get the solution x 0 = 1826732340. Hence gcd(f (x 0 ), N ) = p = 1789386140116417697 and finally q = N p 2 = 1903010275819064491. The whole process took less than 4 seconds using an off-the-shelf computer. Then, using φ(N ) = p(p -1)(q -1), we retrieved the private exponents d 1 ≡ e -1 1 (mod φ(N )) and d 2 ≡ e -1 2 (mod φ(N )). Note that again d 1 ≈ d 2 ≈ N 0.99 which Sarkar's method with the bound d < N 0.395 could not possibly retrieve. [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF] The Third Attack on Prime Power RSA with Two RSA Moduli

In this section, we consider two Prime Power RSA moduli N 1 = p r 1 q 1 and N 2 = p r 2 q 2 , where p 1 and p 2 share an amount of their most significant bits.

Theorem 5. Let N 1 = p r 1 q 1 and N 2 = p r 2 q 2 be two RSA moduli with p 1 > p 2 . If

then, one can factor N in polynomial time.

Proof. Suppose that N 1 = p r 1 q 1 and N 2 = p r 2 q 2 with p 1 > p 2 . Then

In order to apply Theorem 2, we need that

, or equivalently

Observe that

Under this condition, we get q2 q1 among the convergents of the continued fraction expansion of N2 N1 . Using q 1 and q 2 , we get p 1 = N1 q1