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Introduction

The RSA cryptosystem, invented in 1978 by Rivest, Shamir and Adleman [START_REF] Rivest | A Method for Obtaining digital signatures and public-key cryptosystems[END_REF] is undoubtedly one of the most popular public key cryptosystems. In the standard RSA [START_REF] Rivest | A Method for Obtaining digital signatures and public-key cryptosystems[END_REF], the modulus N = pq is the product of two large primes of the same bit-size. The public exponent e is an integer such that 1 ≤ e < φ(N ) and gcd(e, φ(N )) = 1 where φ(N ) = (p -1)(q -1) is the Euler totient function. The corresponding private exponent is the integer d such that ed ≡ 1 (mod φ(N )). In RSA, the encryption, decryption, signature generation, and signature verification require substantial CPU cycles because the time to perform these operations is proportional to the number of bits in public or secret exponents [START_REF] Rivest | A Method for Obtaining digital signatures and public-key cryptosystems[END_REF]. To reduce CPU time necessary for encryption and signature verification, one may be tempted to use a small public exponent e. This situation has been proven to be insecure against some small public exponent attacks (see [START_REF] Hastad | On Using RSA with Low Exponent in a Public Key Network[END_REF] and [START_REF] Hastad | Solving simultaneous modular equations of low degree[END_REF]). To reduce the decryption and signature generation time, one may also be tempted to use a small private exponent d. Unfortunately, RSA is also vulnerable to various powerful short secret exponent attacks such as, the attack of Wiener [START_REF] Wiener | Cryptanalysis of short RSA secret exponents[END_REF], and the attack of Boneh and Durfee [START_REF] Boneh | Cryptanalysis of RSA with private key d less than N 0.292[END_REF] (see also [START_REF] Boneh | Twenty years of attacks on the RSA cryptosystem[END_REF]). An alternate way for increasing the performance of encryption, decryption, signature generation, and signature verification, without reverting to small exponents, is to use the multiprime variant of RSA. The multi-prime RSA is a generalization of the standard RSA cryptosystem in which the modulus is in the form N = p 1 p 2 • • • p k where k ≥ 3 and the p i 's are distinct prime numbers. Combined with the Chinese Remainder Theorem, a multi-prime RSA is much more efficient than the standard RSA (see [START_REF]Cryptography using Compaq multiprime technology in a parallel processing environment[END_REF]).

In Section 4.1.2 of the X9.31-1998 standard for public key cryptography [START_REF]ANSI Standard X9.31-1998, Digital Signatures Using Reversible Public Key Cryptography for the Financial Services Industry (rDSA)[END_REF], some recommendations are presented regarding the generation of the prime factors of an RSA modulus. For example, it is recommended that the modulus should have 1024 + 256x bits for x ≥ 0. This requirement deters some factorization attacks, such as the Number Field Sieve (NFS) [START_REF]The Development of the Number Field Sieve[END_REF] and the Elliptic Curve Method (ECM) [START_REF] Lenstra | Factoring integers with elliptic curves[END_REF]. Another recommendation is that the prime difference |p-q| should be large, and p q should not be near the ratio of two small integers. These requirements guard against Fermat factoring algorithm [START_REF] De Weger | Cryptanalysis of RSA with small prime difference, Applicable Algebra in Engineering[END_REF], as well as Coppersmith's factoring attack on RSA [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF] when one knows half of the bits of p. For example, if N = pq and p, q are of the same bit-size with |p -q| < N 1/4 , then p -√ N < N 1/4 (see [START_REF] Nitaj | Another generalization of Wieners attack on RSA[END_REF]) where √ N is the nearest integer to √ N , which means that half of the bits of p are those of [ √ N ] which leads to the factorization of N (see [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF] and [START_REF] De Weger | Cryptanalysis of RSA with small prime difference, Applicable Algebra in Engineering[END_REF]). Observe that the factorization attack of Coppersmith applies provided that one knows half of the bits of p, that is p is in one of the forms

p = M 1 + u 0 with known M 1 and unknown u 0 ≤ N 1 4 , M 1 u 1 + M 0 with known (M 1 , M 0 ) and unknown u 1 ≤ N 1 4 .
Such primes are called Coppersmith's weak primes. In the case of p = M 1 u 1 +M 0 with known M 1 and M 0 , the Euclidean division of q by M 1 is in the form

q = M 1 v 1 +v 0 . Hence N = pq = (M 1 u 1 +M 0 )(M 1 v 1 +v 0 ) which gives M 0 v 0 ≡ N (mod M 1 ). Hence, since gcd(M 0 , M 1 ) = 1, then v 0 ≡ N M -1 0 (mod M 1 )
. This means that when p is of the form p = M 1 u 1 + M 0 with known M 1 and M 0 , then q is necessarily of the form q = M 1 v 1 + v 0 with known v 0 . Coppersmith's attack is therefore applicable only when small enough parameters M 0 and v 0 can be found such that p = M 1 u 1 + M 0 and q = M 1 v 1 + v 0 . This reduces the applicability of the attack to the set of moduli such that p and q are of the form defined above.

In this paper, we consider the generalization of Coppersmith's attack by considering a more satisfiable decomposition of any of the multipliers of p or q, i.e., ap or aq not just p or q, effectively leading to an increased set of moduli that can be factored. We describe two new attacks on RSA with a modulus N = pq. The first attack applies in the situation that, for given positive integers M 1 , . . . , M k , one of the prime factors, p say, satisfies a linear equation ap = u 0 + M 1 u 1 + . . . + M k u k with suitably small integers a and u 0 , . . . , u k . We call such prime factors weak primes for the integers M 1 , . . . , M k . The second attack applies when both factors p and q are weak for the integers M 1 , . . . , M k . We note that, for k = 1, the weak primes are such that ap = u 0 + M 1 u 1 . This includes the class of Coppersmith's weak primes. For both attacks, we give an estimation of the RSA moduli N = pq with a prime factor p ∈ 2 n , 2 n+1 which is weak for the integers M, M 2 , . . . , M k where M = 2 n 2k . The rest of the paper is organized as follows. In Section 2, we give some basic concepts on integer factorization and lattice reduction as well as an overview of Coppersmith's method. In Section 3, we present an attack on an RSA modulus N = pq with one weak prime factor. In Section 4, we present the second attack an RSA modulus N = pq with two weak prime factors. We conclude the paper in Section 5.

Preliminaries

In this section we give the definitions and results that we need to perform our attacks. These preliminaries include basic concepts on integer factorization and lattice reduction techniques.

Integer factorization: the state of the art

Currently, the most powerful algorithm for factorizing large integers is the Number Field Sieve (NFS) [START_REF]The Development of the Number Field Sieve[END_REF]. The heuristic expected time T N F S (N ) of the NFS depends on the bitsize of the integer N to be factored:

T N F S (N ) = exp (1.92 + o(1))(log N ) 1/3 (log log N ) 2/3 .
If the integer N has small factors, the Elliptic Curve Method (ECM) [START_REF] Lenstra | Factoring integers with elliptic curves[END_REF] for factoring is substantially faster than the NFS. It can compute a non-trivial factor p of a composite integer N in an expected runtime T ECM :

T ECM (p) = exp √ 2 + o(1) (log p) 1/2 (log log p) 1/2 ,
which is sub-exponential in the bitsize of the factor p. The largest factor found so far with the ECM is a 83 decimal digits (275 bits) prime factor of the special number 7 337 + 1 (see [START_REF] Zimmermann | 50 largest factors found by ECM[END_REF]).

Lattice reduction

Let m and n be positive integers with m ≤ n. Let u 1 , . . . , u m ∈ R n be m linearly independent vectors. The lattice L spanned by u 1 , . . . , u m is the set

L = m i=1 a i u i | a i ∈ Z .
The 

(L) = √ M • M t . When L is full rank, the determinant reduces to det(L) = | det(M )|. The Euclidean norm of a vector v = m i=1 a i u i ∈ L is defined as v = m i=1 a 2 i .
As a lattice has infinitely many bases, some bases are better than others, and a very important task is to find a basis with small vectors {b 1 , . . . , b m } called the reduced basis. This task is very hard in general, however, the LLL algorithm proposed by Lenstra, Lenstra, and Lovász [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF] finds a basis of a lattice with relatively small vectors in polynimial time. The following theorem determines the sizes of the reduced basis vectors obtained with LLL (see [START_REF] May | New RSA Vulnerabilities Using Lattice Reduction Methods[END_REF] for more details).

Theorem 1. Let L be a lattice spanned by a basis {u 1 , . . . , u m }. The LLL algorithm applied to L outputs a reduced basis {b

1 , . . . , b m } with b 1 ≤ b 2 ≤ . . . ≤ b i ≤ 2 m(m-1) 4(m-i+1) det(L) 1 m+i-1 , for i = 1, 2, . . . , m.
The existence of a short nonzero vector in a lattice is guaranteed by a result of Minkowski stating that every m-dimensional lattice L contains a non-zero vector

v with v ≤ √ m det(L) 1 m
. On the other hand, the Gaussian Heuristic asserts that the norm γ 1 of the shortest vector of a random lattice satisfies

γ 1 ≈ dim(L) 2πe det(L) 1 dim(L) .
Hereafter, we will use this result as an estimation for the expected minimum norm of a non-zero vector in a lattice.

Coppersmith's Method

In 1996, Coppersmith [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF] presented two techniques based on LLL to find small integer roots of univariate modular polynomials or of bivariate integer polynomials. Coppersmith showed how to apply his technique to factorize an RSA modulus N = pq with q < p < 2q when half of the least or the most significant bits of p is known.

Theorem 2. Let N = pq be an RSA modulus with q < p < 2q. Let M 0 and M 1 be two positif integers.

If p = M 1 + u 0 with u 0 < N 1 4 or if p = M 1 u 1 + M 0 with u 1 < N 1 4
, then N can be factored in time polynomial in log N .

Coppersmith's technique extends to polynomials in more variables, but the method becomes heuristic. The problem of finding small roots of linear modular polynomials f (x 1 , . . . , x n ) = a 1 x 1 + a 2 x 2 + + a n x n + a n+1 (mod p) for some unknown p that divides the known modulus N has been studied using Coppersmith's technique by Herrmann and May [START_REF] Herrmann | Solving linear equations modulo divisors: On factoring given any bits[END_REF]. The following result, due to Lu, Zhang and Lin [START_REF] Lu | New Results on Solving Linear Equations Modulo Unknown Divisors and its Applications[END_REF] gives a sufficient condition under which modular roots can be found efficiently.

Theorem 3 (Lu, Zhang, Lin). Let N be a composite integer with a divisor p u such that p ≥ N β . Let f (x 1 , . . . , x n ) ∈ Z[x 1 , . . . , x n ] be a homogenous linear polynomial. Then one can find all the solutions (y 1 , . . . , y n ) of the equation f (x 1 , . . . , x n ) = 0 mod p v , v ≤ u with gcd(y 1 , . . . , y n ) = 1 and

|y 1 | < N δ1 , . . . , |y n | < N δn if n i=1 δ i ≤ u v 1 -1 - u v β n n-1 -n 1 -n-1 1 - u v β 1 - u v β .
The time complexity of the algorithm for finding such sulution (y 1 , . . . , y n ) is polynomial in log N .

3 The Attack with One Weak Prime Factor

The Attack

In this section, we present an attack to factor an RSA modulus N = pq when p satisfies a linear equation in the form ap = u 0 + M 1 u 1 + . . . M k u k for a suitably small positive integer a and suitably small integers u 0 , u 1 , . . . , u k where M 1 , . . . , M k are given positive integers. Such prime factor p is called a weak prime for the integers M 1 , . . . , M k .

Theorem 4. Let N = pq be an RSA modulus such that p > N β and M 1 , . . . , M k be k positive integers with M 1 < M 2 < . . . < M k . Suppose that there exists a positive integer a, and k + 1 integers u i , i = 0, . . . , k such that ap

= u 0 + M 1 u 1 + . . . + M k u k with max(u i ) < N δ and δ < 1 k + 1 1 -(1 -β) k+1 k -(k + 1) 1 -k 1 -β (1 -β) .
Then one can factor N in polynomial time.

Proof. Let M 1 , . . . , M k be k positive integers such that

M 1 < M 2 < . . . < M k . Suppose that ap = u 0 + M 1 u 1 + . . . + M k u k , that is (u 0 , . . . , u k
) is a solution of the modular polynomial equation

x 0 + M 1 x 1 + . . . + M k x k = 0 (mod p). (1) 
Suppose that |u i | < N δ for i = 0, . . . , k. Using n = k + 1, u = 1 and v = 1 in Theorem 3, means that the equation ( 1) can be solved in polynomial time, i.e., finding (u 0 , . . . , u k ) if

(k + 1)δ < 1 -(1 -β) k+1 k -(k + 1) 1 -k 1 -β (1 -β) ,
which gives the bound

δ < 1 k + 1 1 -(1 -β) k+1 k -(k + 1) 1 -k 1 -β (1 -β) .
This terminates the proof.

Remark 1. For a balanced RSA modulus, the prime factors p and q are of the same bit size. Then p > N β with β = 1 2 . Hence, the condition on δ becomes

δ < 1 k + 1 1 - 1 2 k+1 k - 1 2 1 - 1 2 1 k . (2) 
In Table 1, we give the bound for δ for given β and k. Remark 2. We note that Coppersmith's weak primes correspond to moduli N = pq with q < p < 2q where one of the prime factors is of the form p = M 1 + u 0 or p = M 1 u 1 + M 0 with u 0 , u 1 < N 0.25 as mentioned in Theorem 2. This a special case of the equation of Theorem 4. Indeed, we can solve the equations p = M 1 +u 0 and p

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 β = 0.
= M 1 u 1 + M 0 when |u 0 |, |u 1 | < N 1 4
. Alternatively, Coppersmith's weak primes correspond to the cell (k, 2β) = (1, 0.25) in Table 1.

Numerical Examples

Example 1. Let N =10009752886312109988022778227550577837081215192005129864784685 185744046801879577421186031638557426812962407688357511963709141, be a 412-bit RSA modulus with N = pq where q < p < 2q. Then p and q are balanced and p ≈ N 

= u 0 + M u 1 + M 2 u 2 . Typically, M 2 ≈ N 1 2 , that is M ≈ N 1 4
. So let M = 2 100 . For β = 0.5 and k = 2, Table [START_REF]ANSI Standard X9.31-1998, Digital Signatures Using Reversible Public Key Cryptography for the Financial Services Industry (rDSA)[END_REF] gives the bound δ < 0.069. Assume therefore that the parameters u i satisfy |u i | < N 0.069 ≈ 2 28 for i = 0, 1, 2. By applying Theorem 4 we should find u 0 , u 1 and u 2 as long as u 0 , u 1 , u 2 < 2 28 . We apply the method of Lu et al. [START_REF] Lu | New Results on Solving Linear Equations Modulo Unknown Divisors and its Applications[END_REF] with m = 4 and t = 1. This gives a 35-dimensional lattice. Applying the LLL algorithm [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF], we find a reduced basis with multivariate polynomials

f i (x 1 , x 2 , x 3 ) ∈ Z[x 1 , x 2 , x 3 ], i = 1, . . . , 3.
Applying the Gröbner basis technique for solving a system of polynomial equations, we get u 0 = 9005, u 1 = 7123, u 2 = 3915. Using these values, we can compute ap = u 0 + M u 1 + M 2 u 2 from which we deduce p = gcd(u 0 + M u 1 + M 2 u 2 , N ), that is p = 123356126338704841740132972382836883609800988209539117002682143. Finally, we can compute q = N p , that is q = 81145162250214072465980396192562821802697970661432623765038987.

Note here that there is no linear decomposition of p in the form p = M 1 + u 0 nor p = M 1 u 1 + M 0 with u 0 , u 1 < N 0.25 that makes p vulnerable to the attack of Coppersmith. This shows that the modulus N is vulnerable to our attack, while it is not vulnerable to Coppersmith's attack. Finally, the overall recorded execution time for our attack using an off-the-shelf computer was 17 seconds.

Example 2. In [START_REF] Bernstein | Factoring RSA keys from certified smart cards: Coppersmith in the wild[END_REF], Bernstein et al. discovered many prime factors with special forms. Many of these primes were found by computing the greatest common divisor of a collection of RSA moduli. Others were found by applying Coppersmith's technique. We show below that our attack can find some primes among the list of Bernstein et al. One of these primes is

p =0xc00000000000000000000000000000000000000000000000000000000000000 000000000000000000000000000000000000000000000000000000000000002f 9, =10055855947456947824680518748654384595609524365444295033292671082 79132302255516023260140572362517757076752389363986453814031541210 8959927459825236754563833. 
Using M = 2 510 , we get p = 3M + 761 = M u 1 + u 0 where u 1 = 3 and u 0 = 761. We have u 1 , u 0 < N δ with δ ≈ 0.007 which is less than the bound 0.125 in Table 1 for a 1024 bit-size RSA modulus N with β = 0.5, and k = 1. This implies that the conditions for Theorem 4 are satisfied and our method finds p when used in any RSA modulus. where M = 2 70 . The coefficients u 7 , u 3 and u 0 satisfy u 7 , u 3 , u 0 < N δ with δ ≈ 0.016 while the bound of Theorem 4 is 0.021 (see Table 1 for k = 7 and β = 0.5). Again, this shows that our method will find the factorization of any RSA modulus that is a multiple of p.

The Number of Single Weak Primes in an Interval

In this section, we consider two positive integers n and M and present a study of the weak primes with M , that is the primes p ∈ 2 n , 2 n+1 such that there exists a positive integer a that gives the decomposition

ap = k i=0 M i u i
where |u i | < N δ and δ satisfies Theorem 4. We show that the number of the RSA moduli N in the interval [2 2n , 2 2(n+1) ] with a weak prime factor p ∈ 2 n , 2 n+1 is polynomial in 2 n . That is, this number is lower bounded by 2 η where η > 1 2 . We call such a class weak RSA Moduli in the interval [2 2n , 2 2(n+1) ].

Theorem 5. Let n be a positive integer. For k ≥ 1, define M = 2 n k . Let N be the set of the weak RSA moduli N ∈ 2 2n , 2 2(n+1) such that N = pq, p and q are of the same bitsize, p > q, and p

= k i=0 M i ui a + b ∈ 2 n , 2 n+1
for some small integers b, a < N δ and |u i | < N δ for i = 0, . . . , k with

δ = 1 k + 1 1 - 1 2 k+1 k - 1 2 1 - 1 2 1 k
.

Then the cardinality of N satisfies #N ≥ 2 η where η = (1 + 2(k + 1)δ)n + log 2 (n -1) n(n + 1) log [START_REF] Bernstein | Factoring RSA keys from certified smart cards: Coppersmith in the wild[END_REF] .

Proof. Let N be an RSA moduli. Suppose that N ∈ 2 2n , 2 2(n+1) with N = pq where p and q are of the same bitsize. Since p ≈ N 1 2 , then p ∈ 2 n , 2 n+1 . Suppose further that for some positive integer a, we have ap

= k i=0 M i u i . Then M k = ap - k-1 i=0 M i u i u k ≈ a u k p, which implies M ≈ p 1 k ≈ N 1 2k . Now, define M = N 1 2k = 2 n k
, where x is the integer greater or equal to x. This yields 2 n ≤ M k ≤ 2 n+1 . Consider the set

P = p = k i=0 M i u i a + b, p is prime, | p ∈ 2 n , 2 n+1 , a < N δ , |u i | < N δ ,
where δ satisfies (2). Here b is as small as possible so that

k i=0 M i ui a + b is prime. Also, since M k is the leading term, then observe that k i=0 M i u i a -M k = u k -a a M k + k i=1 M i u i a .
To ensure p ∈ 2 n , 2 n+1 , we consider only the situation where u k ≥ a. Hence, using the bounds a < N δ and |u i | < N δ for i = 0, . . . , k -1, we get a lower bound for the number of possibilities for a and for u i , which themselves set a lower bound for the cardinality of P as follows:

#P ≥ N δ N δ k ≈ N (k+1)δ ≈ 2 2(k+1)nδ . (3) 
On the other hand, the prime number theorem asserts that the number π(x) of the primes less than

x is π(x) ≈ x log(x)
.

Hence, the number of primes in the interval 2 n , 2 n+1 is approximately

π 2 n+1 -π (2 n ) ≈ 2 n+1 log (2 n+1 ) - 2 n log (2 n ) = (n -1)2 n n(n + 1) log(2) . (4) 
It follows that the number of RSA moduli N = pq ∈ 2 2n , 2 2(n+1) with a weak factor p ∈ P and q ∈ 2 n , 2 n+1 is at least #(N )

≥ #P × π 2 n+1 -π (2 n ) .
Using 3 and 4, we get

#(N ) ≥ 2 2(k+1)nδ × (n -1)2 n n(n + 1) log(2) = (n -1) n(n + 1) log(2) × 2 (1+2(k+1)δ)n = 2 η ,
where η = (1 + 2(k + 1)δ)n + log 2 (n -1) n(n + 1) log [START_REF] Bernstein | Factoring RSA keys from certified smart cards: Coppersmith in the wild[END_REF] .

This terminates the proof.

Table 2 presents a list of values of the bound η in terms of k and n. In Table 2, we see that in the situation (β, k) = (0.5, 1), the number #(N ) of 1024-bits RSA moduli N = pq ∈ 2 1024 , 2 1026 with a weak factor p is at least #(N ) ≥ 2 759 .

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 n = 1 2 log 2 (N ) =
Observe that the number of RSA moduli with a weak Coppersmith's prime factor in the same interval is approximately N

1 4 • N 1 2 ≈ 2 768
. Actually, weak Coppersmith's prime are of the form p = M 1 + u 0 or p = M 1 u 1 + M 0 with one unknown parameter u 0 or u 1 , while our weak primes for k = 1 are of the form p = M 1 u 1 + u 0 with two unknown parameters u 0 or u 1 . This shows that our weak prime factors are different from weak Coppersmith primes. [START_REF] Boneh | Cryptanalysis of RSA with private key d less than N 0.292[END_REF] The Attack with Two Weak Prime factors

The Attack

In this section, we present an attack on RSA with a modulus N = pq when both the prime factors p and q are weak primes. Theorem 6. Let N = pq be an RSA modulus and M be a positive integer. Let k ≥ 1. Suppose that there exist integers a, b, u i and

v i , i = 1, . . . , k such that ap = k i=0 M i u i and bq = k i=0 M i v i with |u i |, |v i | < N δ and δ < 1 2k + 1 + log 2k 3 2(2k + 1) log(N ) + log(2k + 1) -log(2πe) 4 log(N ) - log 4k 3 4 log(N ) .
Then one can factor N in polynomial time.

Proof. Suppose that ap = k i=0 M i u i and bq = k i=0 M i v i . Then multiplying ap and bq, we get

abN = 2k i=0 M i w i , with w i = i j=0 u j v i-j .
This can be transformed into the equation

M 2k x 2k + M 2k-1 x 2k-1 + . . . + M x 1 -yN = -x 0 , (5) 
with the solution (x 2k , x 2k-1 , . . . , x 1 , y, x 0 ) = (w 2k , w 2k , . . . , w 1 , ab, u 0 v 0 ). For i = 0, . . . , k, suppose that |u i |, |v i | < N δ . Since for i = 0, . . . , 2k, the maximal number of terms in w i is k, we get

|x i | = |w i | ≤ k max j (|u j |) • max j (|v j |) < kN 2δ . (6) 
Let C be a constant to be fixed later. Consider the lattice L generated by the row vectors of the matrix

M (L) =            1 0 0 . . . 0 CM 2k 0 1 . . . 0 0 CM 2k-1 . . . . . . . . . . . . . . . . . . 0 0 0 . . . 1 CM 0 0 0 . . . 0 -CN            . ( 7 
)
The dimension of the lattice L is dim(L) = 2k+1 and its determinant is det(L) = CN . According to the Gaussian Heuristic, the length of the shortest non-zero vector of the lattice L is approximately σ(L) with

σ(L) ≈ dim(L) 2πe det(L) 1 dim(L) = 2k + 1 2πe (CN ) 1 2k+1
.

Consider the vector v = (x 2k , x 2k-1 , . . . , x 1 , -Cx 0 ). Then, using (5), we get

(x 2k , x 2k-1 , . . . , x 1 , -Cx 0 ) = (x 2k , x k-1 , . . . , x 1 , y) • M (L).
This means that v ∈ L. Consequently, if C satisfies v ≤ σ(L), then, by the Gaussian Heuristic, v is the shortest vector of L. Using the bound ( 6), the length of the vector v satisfies

v 2 = C 2 x 2 0 + 2k i=1 x 2 i ≤ C 2 + 2k i=1 k 2 N 4δ = C 2 + 2k 3 N 4δ .
Let C be a positive integer satisfying C ≤ √ 2k 3 . Then the norm of the vector v satisfies v 2 < 4k 3 N 4δ . Hence, using the Gaussian approximation σ(L), the inequality

v ≤ σ(L) is satisfied if 2k 3 2 N 2δ ≤ 2k + 1 2πe 2 1 2 k 3 2 N 1 2k+1
.

Solving for δ, we get δ < 1 2k + 1 + log 2k 3 2(2k + 1) log(N ) + log(2k + 1) -log(2πe) 4 log(N ) -log 4k 3 4 log(N ) .

If δ satisfies the former bound, then the LLL algorithm, applied to the lattice L will output the vector v = (x 2k , x 2k-1 , . . . , x 1 , -Cx 0 ) from which, we deduce

w 2k = |x 2k |, w 2k-1 = |x 2k-1 |, . . . , w 1 = |x 1 |, w 0 = | -Cx 0 | C .
Using the coefficients w i , i = 1, . . . , 2k, we construct the polynomial P (X) = w 2k X 2k + w 2k-1 X 2k-1 + . . . + w 1 X + w 0 . Factoring P (X), we get

P (X) = k i=0 M i u i k i=0 M i v i ,
from which we deduce all the values u i and v i for i = 1, . . . , k. Using each u i and v i for i = 1, . . . , k, we get ap = k i=0 M i u i and finally obtain p = gcd k i=0 M i u i , N which in turn gives q = N q . This terminates the proof.

In Table 3, we give the bound for δ for a given k and a given size of the RSA modulus. 3. Upper bounds for δ with Theorem 6.

Examples

Example 4. Consider the 234 bits RSA modulus

N = 18128727522177729435347634587168292968987318316812435932174117774340029.
Let M = 2 50 . Suppose further that the prime factors p and q are such that ap = M 2 u 2 + M u 1 + u 0 and bq = M 2 v 2 + M v 1 + v 0 , that is k = 2 with the notation of Theorem 6. We built the matrix [START_REF] Hardy | An Introduction to the Theory of Numbers[END_REF] with C = √ 2k 3 = 4 and applied the LLL algorithm [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF]. We got a new basis, where the last row is: From this, we form the polynomial P (X) = w 4 X 4 +w 3 X 3 +w 2 X 2 +w 1 X 1 +w 0 . which factors as:

P (X) = 4678994X 2 + 5832048X + 4871673 6459344X 2 + 6620037X + 8328307 .
From this, we deduce

u 2 = 4678994, u 1 = 5832048, u 0 = 4871673, v 2 = 6459344, v 1 = 6620037, v 0 = 8328307.
Using these values, we compute

ap = M 2 u 2 + M u 1 + u 0 = 5931329552564290566528965219451557369, bq = M 2 v 2 + M v 1 + v 0 = 8188191298680619668680362464158618739.
and obtain p = gcd(ap, N ) = 126198501118389160989977983392586327, q = gcd(bq, N ) = 143652478924221397696146709897519627. This leads to the factorization of N = pq. We note that the first attack described in Section 3 does not succeed to factor N . Indeed, we have log(maxi(|vi|)) log N ≈ 0.098 which is larger than the value δ = 0.069 for k = 2 and β = 0.5 in Table 1. Finally, the overall recorded execution time for our attack using an off-the-shelf computer was 12 seconds.

The Number of Double Weak Primes in an Interval

In this section, we consider two positive integers n and M and present a study of the double weak primes with M , that is the primes p, q ∈ 2 n , 2 n+1 such that there exists positive integer a and b that give the decompositions:

ap = k i=0 M i u i , bq = k i=0 M i v i
where |u i | < N δ , |v i | < N δ and δ satisfies Theorem 6. We show that the number of the RSA moduli N in the interval [2 2n , 2 2(n+1) ] with a weak prime factors p, q ∈ 2 n , 2 n+1 is lower bounded by 2 η2 where η 2 > 1 2 . Theorem 7. Let n be a positive integer. For k ≥ 1, define M = 2 + v, p, q ∈ 2 n , 2 n+1 for some small integers u, v, a < N δ , b < N δ , |u i | < N δ and |v i | < N δ for i = 0, . . . , k with

δ = 1 k + 1 1 - 1 2 k+1 k - 1 2 1 - 1 2 1 k
.

Then the cardinality of N is at least #N ≥ 2 η2 where η 2 = 4(k + 1)nδ.

Proof. As in the proof of Theorem 5, the number of prime numbers p ∈ 2 n , 2 n+1

such that p = k i=0 M i ui a + u with |u i | < 2 2nδ is #P ≥ 2 2(k+1)nδ .

Then, the number N 2 of RSA modulus N ∈ 2 2n , 2 2(n+1) with N = pq, where both p and q are weak primes is at least #N 2 ≥ 2 4(k+1)nδ = 2 η2 , where η 2 = 4(k + 1)nδ. This terminates the proof.

In Table 3, we present a list of values of the bound η 2 in terms of k and n. 

Conclusions

In this paper we presented and illustrated two attacks based on factoring RSA moduli with weak primes. We further computed lower bounds for the sets of weak moduli -that is, moduli made of at least one or two weak prime respectively-in the interval [2 2n , 2 2(n+1) ] and showed that these sets are much larger than the set of RSA prime factors satisfying Coppersmith's conditions, which effectively extending the likelihood for factoring RSA moduli.

1 2 ≈

 2 2206 . Hence for β = 0.5, we have p > N β . Suppose that p satisfies an equation of the form ap

Example 3 .

 3 Now, consider this other example from the list of Bernstein et al.[START_REF] Bernstein | Factoring RSA keys from certified smart cards: Coppersmith in the wild[END_REF] the form p = 3145774M 7 + 27262976M 3 + 593 = M 7 u 7 + M 3 u 3 + u 0

k = 1 k

 1 = 2 k = 3 k = 4 k = 5 log 2 (N ) = 1024 0.332 0.199 0.141 0.109 0.089 log 2 (N ) = 2048 0.333 0.199 0.142 0.110 0.090 Table

(

  w4, w3, w2, w1, -Cw0) = (30223231819936, 68646317659290, 109044283791446, 80821741694637, -162291153390444).

  n k . Let N be the set of the weak RSA moduli N ∈ 2 2n , 2 2(n+1) such that N = pq with p = k i=0 M i ui a + u, q = k i=0 M i vi b

k = 1 k 7 n

 17 = 2 k = 3 k = 4 k = 5 k = 6 k =

  set {u 1 , . . . , u m } is called a lattice basis for L. The dimension (or rank) of the lattice L is dim(L) = m, and L is called full rank if m = n. It is often useful to represent the lattice L by the m × n matrix M whose rows are the coefficients of the vectors u 1 , . . . , u m . The determinant (or volume) of L is defined as det

Table 1 .

 1 Upper bounds for δ by Theorem 4.

	5 0.125 0.069 0.047 0.036 0.029 0.024 0.021 0.018 0.016 0.015
	β = 0.6 0.180 0.101 0.071 0.054 0.044 0.037 0.032 0.028 0.025 0.022
	β = 0.7 0.245 0.142 0.100 0.077 0.063 0.053 0.046 0.046 0.036 0.032

Table 2 .

 2 Lower bounds for η under Theorem 5.

	512 759 715 698 689 684 680 677
	n = 1 2 log 2 (N ) = 1024 1526 1438 1404 1386 1375 1368 1362
	n = 1 2 log 2 (N ) = 2048 3061 2885 2818 2782 2759 2744 2733

Table 4 .

 4 Lower bounds for η2 under Theorem 7.