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Introduction

Research in determining pre-requisites for strong primes for the integer factorization problem (IFP) of a product of two primes N = pq has been intriguing and have captured the attention of researchers since IFP came into prominence via the RSA algorithm. The simplicity of the problem statement raised interest on whether such a simple problem statement describing the IFP could only be solved in exponential time for all cases, i.e. all types of primes. As can be found in the literature, this is not the case. So-called weak primes were identified by researchers and this caused an avalanche of research output on this matter. In this paper, we focus on IFP when N = pq is unbalanced, that is when q is much smaller than p.

In PKC 2009, May and Ritzenhofen [START_REF] May | Implicit factoring: On polynomial time factoring given only an implicit hint[END_REF] presented a method for factoring large integers with some implicit hints. More precisely, let N 1 = p 1 q 1 and N 2 = p 2 q 2 be two RSA moduli of the same bit-size such that q 1 and q 2 are α-bit primes and p 1 and p 2 share at least t least significant bits (LSBs). The method of May and Ritzenhofen is a lattice based method that allows to find the factorization of N 1 and N 2 when t ≥ 2α + 3. May and Ritzenhofen's method heuristically generalizes to a lattice based method to simultaneously factor k RSA moduli N 1 = p 1 q 1 , . . . , N k = p k q k when the p i 's share t ≥ k k-1 α many LSBs. In [START_REF] Sarkar | Further results on implicit factoring in polynomial time[END_REF], Sarkar and Maitra reconsidered the method of May and Ritzenhofen for two RSA moduli. Sarkar and Maitra's method works when N 1 = p 1 q 1 and N 2 = p 2 q 2 are such that p 1 and p 2 share their LSBs or most significant bits (MSBs) as well as a contiguous portion of bits at the middle.

In PKC 2010, Faugère, Marinier and Renault [START_REF] Faugère | Implicit factoring with shared most significant and middle bits[END_REF] presented a new and rigorous lattice-based method that addresses the implicit factoring problem when p 1 and p 2 share t MSBs. Moreover, when N 1 = p 1 q 1 and N 2 = p 2 q 2 are two RSA moduli of the same bit-size and the prime factors q i are α-bit primes, the method of Faugère et al. provably factors N 1 and N 2 as soon as p 1 and p 2 share t ≥ 2α + 3 MSBs. The method heuristically generalizes to the case when p 1 and p 2 share an amount of bits in the middle. It also heuristically generalizes to k RSA moduli N 1 = p 1 q 1 , . . . , N k = p k q k when the p i 's share t ≥ k k-1 α + 6 of MSBs. In IWSEC 2013, Kurosawa and Ueda [START_REF] Kurosawa | How to factor N1 and N2 when p1 = p2 (mod 2 t )[END_REF] presented a lattice-based method to factor two RSA moduli N 1 = p 1 q 1 and N 2 = p 2 q 2 of the same bit size when p 1 and p 2 share t LSBs with t ≥ 2α + 1 where q 1 ≈ q 2 ≈ 2 α . Their method takes advantage on using Gaussian reduction techniques. It slightly improves the bound t ≥ 2α + 3 of May and Ritzenhofen. We notice that Kurosawa and Ueda did not study a number of possible extensions of their method, namely, when p 1 and p 2 share t MSBs and also when the multiple of the primes share LSB's and MSB's.

All the former attacks apply when the RSA moduli N 1 = p 1 q 1 , . . . , N k = p k q k are of the same bit-size and the p i 's share an amount of MSBs, LSBs or bits in the middle. In this paper, we present novel approaches of implicit factoring that generalize the former attacks and apply when some unknown multiples a i p i of the prime factors p i share an amount of MSBs or of LSBs.

Our first method concerns two RSA moduli N 1 = p 1 q 1 , N 2 = p 2 q 2 of arbitrarily sizes in the situation that there exist two integers a 1 , a 2 such that a 1 p 1 and a 2 p 2 share t many MSBs. We show that, using the continued fraction expansion of N2 N1 , one can factor simultaneously N 1 and N 2 whenever |a 1 p 1 -a 2 p 2 | < p1 2a2q1q2 . In particular, when N 1 and N 2 are of the same bit size and q 1 , q 2 are α-bit primes, then one can factor N 1 and N 2 whenever a i ≤ 2 β for i = 1, 2 and t ≥ 2α+2β +1. When β = 0, that is a 1 = a 2 = 1, our result becomes t ≥ 2α + 1 and improves the bound t ≥ 2α + 3 presented in [START_REF] Sarkar | Further results on implicit factoring in polynomial time[END_REF] and [START_REF] Faugère | Implicit factoring with shared most significant and middle bits[END_REF] where the methods are based on lattice reduction techniques.

Our second method is a heuristic generalization of the first method to an arbitrary number k ≥ 3 of RSA moduli N i = p i q i , i = 1, . . . , k in the situation that there exist k integers a i such that the a i p i 's share t many MSBs. When the RSA moduli are of the same bit size and the factors q i , i = 1, . . . , k, are α-bit primes, the method allows us to factor the RSA moduli as soon as

t > k k -1 α + k 2 k -1 β + k 2(k -1) (1 + log 2 (πe)) , ( 1 
)
where β is such that a i ≤ 2 β . Once again, with β = 0, we improve the bound presented in the attack of [START_REF] Faugère | Implicit factoring with shared most significant and middle bits[END_REF].

Our third method addresses the implicit factoring problem when two unbalanced RSA moduli N 1 = p 1 q 1 and N 2 = p 2 q 2 of arbitrarily sizes are such that there exist two integers a 1 and a 2 such that a 1 p 1 and a 2 p 2 share t many LSBs. We show that it is possible to factor both N 1 and N 2 if a 1 a 2 q 1 q 2 < 2 t-1 . This method is also based on the continued fraction algorithm, applied to T 2 t where T ≡ N 2 N -1 1 (mod 2 t ). We notice that, when a 1 = a 2 = 1 and q 1 , q 2 are α-bit primes, the former condition on t transforms to t ≥ 2α + 1 which improves the bound on t for LSBs in [START_REF] May | Implicit factoring: On polynomial time factoring given only an implicit hint[END_REF] and [START_REF] Sarkar | Further results on implicit factoring in polynomial time[END_REF] and retrieves the bound of [START_REF] Kurosawa | How to factor N1 and N2 when p1 = p2 (mod 2 t )[END_REF].

Our fourth method is a generalization of the third method to k ≥ 3 RSA moduli N i = p i q i , i = 1, . . . , k. Assume that there exist k integers a i such that the a i p i 's share t many LSBs. If the RSA moduli are of the same bit size and the q i 's are α-bit primes, our method allows us to address the implicit factoring problem whenever t satisfies [START_REF] Faugère | Implicit factoring with shared most significant and middle bits[END_REF] where β is such that a i ≤ 2 β .

In fact our findings under the four scenarios, further discus possible malicious key generation of RSA moduli by observing not only the difference between primes, but also the differences of the multiple of primes. At the same time it generalizes the previous works by [START_REF] May | Implicit factoring: On polynomial time factoring given only an implicit hint[END_REF], [START_REF] Sarkar | Further results on implicit factoring in polynomial time[END_REF], [START_REF] Faugère | Implicit factoring with shared most significant and middle bits[END_REF] and [START_REF] Kurosawa | How to factor N1 and N2 when p1 = p2 (mod 2 t )[END_REF]. Contrarily to the previous works, we study all the possible situations involving k = 2 as well as k ≥ 3 in both cases of MSBs and LSBs. In Table 1, we compare the applicability of our methods against the previous methods for the different scenarios. 

Method

MSBs LSBs k = 2 k ≥ 3 k = 2 k ≥ 3 May, Ritzenhofen [START_REF] May | Implicit factoring: On polynomial time factoring given only an implicit hint[END_REF] No

No Yes Yes Sarkar, Maitra [START_REF] Sarkar | Further results on implicit factoring in polynomial time[END_REF] Yes No Yes No Faugère et al. [START_REF] Faugère | Implicit factoring with shared most significant and middle bits[END_REF] Yes Yes No No Kurosawa, Ueda [START_REF] Kurosawa | How to factor N1 and N2 when p1 = p2 (mod 2 t )[END_REF] No No Yes No Our methods Yes Yes Yes Yes Also, we notice that not only the new bounds improve the previous ones, but also that the rank of the new underlying lattices are often lower than the ranks of the lattices used in the former methods. In Table 2 and Table 3, we compare our results against the former results with k RSA moduli in terms of bounds and dimension of the lattices.

We apply our results to the implicit factorization of k ≥ 2 RSA for Paranoids [START_REF] Shamir | A: RSA for Paranoids[END_REF] N i = p i q i , i = 1, . . . , k, where p i ≈ 2 4500 and q i ≈ 2 500 . For example, we show that we can easily factor two RSA for Paranoids moduli N 1 = p 1 q 1 , N 2 = p 2 q 2 if there exist two integers a 1 and a 2 such that a 1 p 1 and a 2 p 2 share t MSBs or t LSBs with t ≥ 1001 + 2β where β is such that a i ≤ 2 β for i = 1, 2. For q1 ≈ q2 ≈ 2 α and |p1 -p2| < 2 t , the bound is heuristically better than t ≥ 2α+3 and the dimension of the lattice is at least 9 (m = t = 1).

Can not be applied

Faugère et al. [1]

For

q1 ≈ q2 ≈ 2 α and |p1 -p2| < 2 t , the rigor- ous bound is t ≥ 2α + 3 using 2-dimensional lat- tices of Z 3 . For q1 ≈ . . . ≈ q k ≈ 2 α and |pi -pj| < 2 t , the heuristic bound is t > k k-1 α + 1 + k 2(k-1) 2 + log 2 (k) 2 + log 2 (πe) using k-dimensional lattices of Z k(k+1) 2 . Kurosawa, Ueda [3] Not studied.
Can not be applied

Our results

For q1 ≈ q2 ≈ 2 α and |a1p1 -a2p2| < 2 t for some unknown integers a1, a2 ≤ 2 β , the rigorous bound is t ≥ 2α + 2β + 1 using the continued fraction algorithm. For a1 = a2 = 1, β = 0 and the the rigorous bound is t ≥ 2α + 1.

For q1 ≈ . . . ≈ q k ≈ 2 α and |aipi -ajpj| < 2 t for some unknown integers a1, . . . , a k , the heuristic bound is

t > k k-1 α + k 2 k-1 β + k 2(k-1) (1 + log 2 (πe)) us- ing k-dimensional lattices of Z k . For a1 = . . . = a k = 1, β = 0 and the the heuris- tic bound is t > k k-1 α + k 2(k-1) (1 + log 2 (πe)).
Table 3. Comparison of the bounds on t for k RSA moduli in the LSB case.

Method for LSBs

Number

of RSA moduli k = 2 Number of RSA moduli k ≥ 3
May, Ritzenhofen [START_REF] May | Implicit factoring: On polynomial time factoring given only an implicit hint[END_REF] For q1 ≈ q2 ≈ 2 α and p1 ≡ p2 (mod 2 t ), the rigorous bound is

t ≥ 2α + 3 using 2- dimensional lattices of Z 2 . For q1 ≈ . . . ≈ q k ≈ 2 α and pi ≡ pj (mod 2 t ), the heuris- tic bound is t ≥ k k-1 α using k- dimensional lattices of Z k .
Sarkar, Maitra [START_REF] Sarkar | Further results on implicit factoring in polynomial time[END_REF] For q1 ≈ q2 ≈ 2 α and p1 ≡ p2 (mod 2 t ), the bound is heuristically better than t ≥ 2α+3 and the dimension of the lattice is at least 9 (m = t = 1).

Can not be applied.

Faugère et al. [1]

Not studied. Not studied.

Kurosawa, Ueda [START_REF] Kurosawa | How to factor N1 and N2 when p1 = p2 (mod 2 t )[END_REF] For q1 ≈ q2 ≈ 2 α and p1 ≡ p2 (mod 2 t ), the rigorous bound is

t ≥ 3α + 1 using 2- dimensional lattices of Z 2 .
Can not be applied

Our results

For q1 ≈ q2 ≈ 2 α and |a1p1 -a2p2| < 2 t for some unknown integers a1, a2 ≤ 2 β , the rigorous bound is t ≥ 2α + 2β + 1 using the continued fraction algorithm. For a1 = a2 = 1, β = 0 and the the rigorous bound is t ≥ 2α + 1.

For q1 ≈ . . . ≈ q k ≈ 2 α and aipi ≡ ajpj (mod 2 t ) for some unknown integers a1, . . . , a k , the heuristic bound is t >

k k-1 α + k 2 k-1 β + k 2(k-1) (1 + log 2 (πe)) using k- dimensional lattices of Z k . For a1 = . . . = a k = 1, β = 0 and the the heuristic bound is t > k k-1 α + k 2(k-1) (1 + log 2 (πe)).
The rest of this paper is organized as follows. In Section 2, we introduce some useful background on continued fractions and lattice basis reduction. In section 3, we present our first method to address the problem of implicit factoring of two RSA moduli N 1 = p 1 q 1 and N 2 = p 2 q 2 when a 1 p 1 and a 2 p 2 share t MSBs. In section 4, we present a generalization to k ≥ 3 RSA moduli N i = p i q i , i = 1, . . . , k, in the situation that the a i p i 's share t MSBs. In section 5, we present an attack on two RSA moduli N 1 = p 1 q 1 and N 2 = p 2 q 2 when a 1 p 1 and a 2 p 2 share t LSBs and we generalize this attack to k ≥ 3 RSA moduli in Section 6. In Section 7, we present our experiments and we conclude in Section 8.

Preliminaries

In this section, we review some knowledge background on continued fractions and lattice basis reduction.

Continued fractions

First we give the definition of continued fractions and state a related theorem. The details can be referenced in [START_REF] Hardy | An Introduction to the Theory of Numbers[END_REF]. For any positive real number ξ, define ξ 0 = ξ and for i = 0, 1, . . . , n, a i = ξ i , ξ i+1 = 1/(ξ i -a i ) unless ξ n is an integer. Then ξ can be expanded as a continued fraction in the following form

x = a 0 + 1 a 1 + 1 . . . + 1 a n + 1 . . . ,
which, for simplicity, can be rewritten as ξ = [a 0 , a 1 , . . . , a n , . . .]. If ξ is a rational number, then the process of calculating the continued fraction expansion would be finished in some finite index n and then ξ = [a 0 , a 1 , . . . , a n ]. The convergents a b of ξ are the fractions defined by a b = [a 0 , . . . , a i ] for i ≥ 0. We note that, if ξ = a b is a rational number, then the continued fraction expansion of ξ is finite with the total number of convergents being polynomial in log(b).

Another important result on continued fractions that will be used throughout this paper is the following (Theorem 184 of [START_REF] Hardy | An Introduction to the Theory of Numbers[END_REF]).

Theorem 1 (Legendre). Let ξ be a positive number. Suppose gcd(a, b) = 1 and

ξ - a b < 1 2b 2 .
Then a b is one of the convergents of the continued fraction expansion of ξ.

Lattice reduction

Let us present some basics on lattice reduction techniques. Let On the other hand, for comparison, the Gaussian Heuristic says that the length of the shortest non-zero vector of a lattice L is usually approximately σ(L) where

σ(L) ≈ d 2πe det(L) 1 d .

Factoring two RSA Moduli in the MSB Case

In this section, we study the problem of factoring two RSA moduli N 1 = p 1 q 1 and N 2 = p 2 q 2 where a 1 p 1 and a 2 p 2 coincide on the t most significant bits (MSBs), that is when |a 2 p 2 -a 1 p 1 | is sufficiently small.

The general attack for two RSA Moduli in the MSB Case

We begin by the following result which applies to two RSA moduli not necessarily of the same bit size.

Theorem 3. Let N 1 = p 1 q 1 , N 2 = p 2 q 2 be two RSA moduli. If there exist two integers a 1 , a 2 such that a 1 < p 2 , a 2 < p 1 and |a 1 p 1 -a 2 p 2 | < p1
2a2q1q2 , then one can factor N 1 and N 2 in polynomial time.

Proof. For N 1 = p 1 q 1 and N 2 = p 2 q 2 , let x = a 1 p 1 -a 2 p 2 . Multiplying x by q 2 , we get a 1 p 1 q 2 -a 2 N 2 = xq 2 . Suppose that |x| < p1 2a2q1q2 . Then, dividing by a 2 N 1 = a 2 p 1 q 1 , we get

N 2 N 1 - a 1 q 2 a 2 q 1 = |x|q 2 a 2 p 1 q 1 < p 1 2a 2 q 1 q 2 × q 2 a 2 p 1 q 1 = 1 2(a 2 q 1 ) 2 .
Hence, from Theorem 1, it follows that a1q2 a2q1 , in lowest term is one of the convergents in the continued fraction expansion of N2 N1 . If we assume a 1 < p 2 , a 2 < p 1 , then using a1q2 a2q1 , we get q 1 = gcd(N 1 , a 2 q 1 ) and therefore p 1 = N1 q1 . Similarly, we get q 2 = gcd(N 2 , a 1 q 2 ) and p 2 = N2 q2 .

Remark 1. The result of Theorem 3 is valid even when the RSA moduli are not of the same size. Comparatively, the attacks presented by Sarkar and Maitra in [START_REF] Sarkar | Further results on implicit factoring in polynomial time[END_REF] and Faugère et al. in [START_REF] Faugère | Implicit factoring with shared most significant and middle bits[END_REF] are valid only if N 1 ≈ N 2 and q 1 ≈ q 2 .

Example 1. Consider the following RSA moduli

N 1 = 63431782986412625310912155582547071972279848634479, N 2 = 9946006657067710178027582903059286609914354223.
The first partial quotients of Each convergent a b of N2 N1 is a candidate for a1q2 a2q1 and the good one will reveal q 1 and q 2 if the conditions of Theorem 3 are fulfilled. Indeed, the 40th convergent is a b = 1351300027964332 8618068847003717463 and gives

q 1 = gcd(N 1 , b) = 2125300178867, p 1 = N 1 q 1 = 29846034747067203786403150576377329237, q 2 = gcd(N 2 , a) = 9531501481, p 2 = N 2 q 2 = 1043487920228935667940393294165327383.
We notice that p 1 and p 2 do not share any amount of LSBst nor MSBs nor bits in the middle. This shows that the attacks presented in [START_REF] Sarkar | Further results on implicit factoring in polynomial time[END_REF] and [START_REF] Faugère | Implicit factoring with shared most significant and middle bits[END_REF] will not give a result in this situation.

Application to unbalanced RSA and RSA for Paranoids

As an application of Theorem 3 to factor two unbalanced RSA moduli of the same bit-size, we get the following result.

Corollary 1.

Let N 1 = p 1 q 1 , N 2 = p 2 q 2 be two unbalanced RSA moduli of the same bit-size n. Suppose that q i ≈ 2 α , p i ≈ 2 n-α for i = 1, 2. Let a 1 , a 2 be two integers such that a i ≤ 2 β , i = 1, 2. If a 1 p 1 and a 2 p 2 share t most significant bits with t ≥ 2α + 2β + 1, then one can factor N 1 and N 2 in polynomial time.

Proof. Let N 1 = p 1 q 1 , N 2 = p 2 q 2 be two RSA moduli with N 1 ≈ N 2 ≈ 2 n and q 1 ≈ q 2 ≈ 2 α . Suppose that a multiple a 1 p 1 and a multiple a 2 p 2 share the t most significant bits, that is a 1 p 1 -a 2 p 2 = x with |x| ≤ 2 n-α+β-t . Assume that t ≥ 2α + 2β + 1. Then

2a 2 q 1 q 2 |x| < 2 1+β+2α+n-α+β-t ≤ 2 n-α ≈ p 1 ,
which can be transformed into the inequality |x| < p1 2a2q1q2 . Hence, as in Theorem 3, it follows that a1q2 a2q1 is a convergent of the continued fraction of N2 N1 which leads to the factorization of N 1 and N 2 .

Remark 2. If we consider β = 0 in Corollary 1, that is, if a 1 = a 2 = 1, a sufficient condition to factor the two RSA moduli is t ≥ 2α + 1 which slightly improves the bound t ≥ 2α + 3 found by Faugère et al. in [START_REF] Faugère | Implicit factoring with shared most significant and middle bits[END_REF]. This shows that the bound found by Faugère et al. with lattice reduction techniques can be achieved using the continued fraction algorithm instead.

Consider two RSA for Paranoids moduli N i = p i q i with N i ≈ 2 5000 , q i ≈ 2 500 and p i ≈ 2 4500 for i = 1, 2. Then α = 500 and by Corollary 1, it is possible to factor N 1 and N 2 if a multiple a 1 p 1 and a multiple a 2 p 2 share the t MSBs whenever t ≥ 2α + 2β + 1, that is whenever t ≥ 1001 + 2β.

Factoring k RSA Moduli in the MSB Case

The attack mounted for two RSA moduli can be generalized to an arbitrary number k ≥ 3 of moduli N i = p i q i , i = 1 . . . , k where the q i 's are α-bit primes and the a i p i 's share t MSBs. Instead of using the continued fraction algorithm, we use a lattice based method to find simultaneous diophantine approximations. Theorem 4. Let N i = p i q i , i = 1 . . . , k, be k ≥ 3 n-bit RSA moduli where the q i 's are α-bit primes. Suppose that there exist k integers a 1 , . . . , a k with a i ≤ 2 β , i = 1, . . . , k, such that the a i p i 's share all t most significant bits. If

t > k k -1 α + k 2 k -1 β + k 2(k -1) (1 + log 2 (πe)) ,
then, under the Gaussian Heuristic assumption, one can factor the k RSA moduli

N 1 , • • • , N k in polynomial time. Proof. For 2 ≤ i ≤ k, we set x i = a i p i -a 1 p 1 .
Then, multiplying by q 1 q i , we get

a i q 1 N i -a 1 q i N 1 = q 1 q i x i . Define a = k j=1 a j .
Multiplying by a ai , we get

aq 1 N i - aa 1 q i a i N 1 = aq 1 q i x i a i .
Let C be a number to be fixed later. Consider the vector

v = Caq 1 , aq 1 q 2 x 2 a 2 , . . . , aq 1 q k x k a k ∈ Z k . ( 2 
) Then v = aq 1 , aa1q2 a2 . . . , aa1q k a k × M, where M is the k × k-matrix M =             C N 2 N 3 . . . N k-1 N k 0 -N 1 0 . . . 0 0 0 0 -N 1 . . . 0 0 . . . . . . . . . . . . . . . . . . 0 0 0 . . . -N 1 0 0 0 0 . . . 0 -N 1             .
Let L be the lattice defined by the rows of M . The dimension of L is k and the determinant is det(L) = CN k-1

1

. The Gaussian Heuristic for L asserts that the length of its shortest non-zero vector is usually σ(L) where

σ(L) ≈ k 2πe det(L) 1 k = k 2πe C 1 k N k-1 k 1 . ( 3 
)
If we choose C such that σ(L) > v , then v can be found among the shortest non-zero vectors of the lattice L. Using (2), we get

v 2 = C 2 a 2 q 2 1 + k i=2 a 2 q 2 1 q 2 i x 2 i a 2 i . (4) 
Suppose that for i = 1, . . . , k, we have

N i ≈ 2 n , q i ≈ 2 α , p i ≈ 2 n-α , a i ≤ 2 β .
Moreover, suppose that the a i p i 's share all t MSBs. Then, for i ≥ 2, we have

|x i | = |a i p i -a 1 p 1 | ≤ 2 n-α+β-t .
Hence (4) leads to

v 2 < C 2 × 2 2kβ+2α + (k -1)2 2kβ+4α+2(n+β-α-t)-2β = C 2 × 2 2kβ+2α + (k -1) × 2 2kβ+2α+2n-2t . Define C such that C 2 × 2 2kβ+2α ≥ 2 2kβ+2α+2n-2t , that is C ≥ 2 n-t . Then v 2 < kC 2 × 2 2kβ+2α
. On the other hand, using

N i ≈ 2 n in (3), we get σ(L) 2 ≈ k 2πe C 2 k × 2 2n(k-1) k . Suppose σ(L) > v . Then σ(L) 2 > v 2 , that is k 2πe C 2 k 2 2n(k-1) k > kC 2 × 2 2kβ+2α . Hence C 2(k-1) k < 1 πe 2 2n(k-1) k -2kβ-2α-1 .
Plugging C ≥ 2 n-t and extracting t, we get

t > k k -1 α + k 2 k -1 β + k 2(k -1) (1 + log 2 (πe)) .
Using (2), we get q 1 = gcd(Caq 1 , N 1 ) and for i = 2, . . . , k, q i = gcd( aa1qi ai , N i ). This terminates the proof.

We notice that with β = 0, that is a i = 1 for i = 1, . . . , k, we get

t > k k -1 α + k 2(k -1) (1 + log 2 (πe)) ,
which slightly improves the bound obtained by Faugère et al. in [START_REF] Faugère | Implicit factoring with shared most significant and middle bits[END_REF]. This shows that our result extends the result of Faugère et al. where they considered only the case when the p i 's share t MSBs.

Factoring Two RSA Moduli in the LSB Case

The study of implicit factorization when p 1 , p 2 share some LSBs has been considered in [START_REF] May | Implicit factoring: On polynomial time factoring given only an implicit hint[END_REF], [START_REF] Sarkar | Further results on implicit factoring in polynomial time[END_REF], [START_REF] Faugère | Implicit factoring with shared most significant and middle bits[END_REF] and [START_REF] Kurosawa | How to factor N1 and N2 when p1 = p2 (mod 2 t )[END_REF]. In this section, we extend the former attacks to the case where an unknown multiple a 1 p 1 of p 1 and an unknown multiple a 2 p 2 of p 2 share their t LSBs.

The general attack

Theorem 5. Let N 1 = p 1 q 1 , N 2 = p 2 q 2 be two RSA moduli. Assume that there exist two integers a 1 , a 2 with a 1 < p 2 , a 2 < p 1 such that a 1 p 1 and a 2 p 2 share t many LSBs. If a 1 a 2 q 1 q 2 < 2 t-1 , then one can factor N 1 and N 2 in polynomial time.

Proof. Let N 1 = p 1 q 1 and N 2 = p 2 q 2 . Assume that a 1 p 1 and a 2 p 2 share t many LSBs. Then a 1 p 1 -a 2 p 2 = 2 t x for some integer x and we have

q 1 q 2 (a 1 p 1 -a 2 p 2 ) = N 1 a 1 q 2 -N 2 a 2 q 1 = 2 t xq 1 q 2 .
Then

N 1 a 1 q 2 -N 2 a 2 q 1 ≡ 0 (mod 2 t ). Since gcd(N 1 , 2) = 1, then N -1 1 (mod 2 t ) exists and a 1 q 2 -a 2 q 1 N 2 N -1 1 ≡ 0 (mod 2 t ). Define T ≡ N 2 N -1 1 (mod 2 t ).
Then a 1 q 2 -a 2 q 1 T ≡ 0 (mod 2 t ) and there exists an integer y such that a 1 q 2 = a 2 q 1 T -2 t y.

(

) 5 
Suppose that a 1 a 2 q 1 q 2 < 2 t-1 . Then dividing by 2 t a 2 q 1 , we get

T 2 t - y a 2 q 1 = |a 2 q 1 T -2 t y| 2 t a 2 q 1 = a 1 q 2 2 t a 2 q 1 < a 1 q 2 2a 1 a 2 q 1 q 2 a 2 q 1 = 1 2(a 2 q 1 ) 2 .
Therefore from Theorem 1, it follows that y a2q1 is one of the convergents in the continued fraction expansion of T 2 t . Since a 2 < p 1 , we get q 1 = gcd(N 1, a 2 q 1 ) and p 1 = N1 q1 . Using (5), we get a 1 q 2 = a 2 q 1 T -2 t y. Similarly, since a 1 < p 2 , we get q 2 = gcd(N 2 , a 1 q 2 ) and p 2 = N2 q2 . This terminates the proof.

Application to unbalanced RSA and RSA for Paranoids

Here we apply Theorem 5 in the situation that the two RSA moduli N 1 = p 1 q 1 , N 2 = p 2 q 2 are of the same shape, that is N 1 and N 2 are of the same bit-size and the q i 's are α-bit primes.

Corollary 2.

Let N 1 = p 1 q 1 , N 2 = p 2 q 2 be two unbalanced n-bit size RSA moduli with q 1 ≈ q 2 ≈ 2 α . Suppose that there exist two positive integers a 1 ≤ 2 β , a 2 ≤ 2 β such that a 1 p 1 and a 2 p 2 share the t LSBs. If t ≥ 2α + 2β + 1, then one can factor N 1 and N 2 in polynomial time.

Proof. Let N 1 = p 1 q 1 , N 2 = p 2 q 2 be two RSA moduli with N 1 ≈ N 2 ≈ 2 n and, q 1 ≈ q 2 ≈ 2 α . Suppose that a multiple a 1 p 1 and a multiple a 2 p 2 share the t least significant bits where a i ≤ 2

β for i = 1, 2. Define T ≡ N 2 N -1 1 (mod 2 t ).
As in the proof of Theorem 5, we have a 1 p 1 -a 2 p 2 = 2 t x and a 1 q 2 = a 2 q 1 T -2 t y for some integers x and y. Suppose that t ≥ 2α + 2β + 1. Then a 1 a 2 q 1 q 2 < 2 2β+2α ≤ 2 t-1 . Therefore, using the same arguments than Theorem 5, we conclude that y a2q1 is one of the convergents in the continued fraction expansion of T 2 t which leads to the factorization of N 1 and N 2 .

Remark 3. Here again, if β = 0, then the condition of Corollary 2 becomes t ≥ 2α + 1 which improves the bounds found in the former approaches of [START_REF] May | Implicit factoring: On polynomial time factoring given only an implicit hint[END_REF], [START_REF] Sarkar | Further results on implicit factoring in polynomial time[END_REF], [START_REF] Faugère | Implicit factoring with shared most significant and middle bits[END_REF] and retrieves the bound of [START_REF] Kurosawa | How to factor N1 and N2 when p1 = p2 (mod 2 t )[END_REF].

As an application of Corollary 2, consider two 1024-bit RSA for Paranoids moduli N 1 = p 1 q 1 , N 2 = p 2 q 2 where q 1 , q 2 are 500-bit primes. Hence α = 500 and using Corollary 2, one can factor N 1 and N 2 if there exist two integers a 1 ≤ 2 β and a 2 ≤ 2 β such that a 1 p 1 and a 2 p 2 share t LSBs with t > 2001 + 2β.

Factoring k RSA Moduli in the LSB Case

In this section, we assume that we are given k ≥ 3 different RSA moduli N i = p i q i , i = 1, . . . , k where some unknown multiples a i p i 's coincide on the t least significant bits. For suitably large t, we show that there is an efficient algorithm that recovers the factorization of the k RSA moduli. To this end, we use the lattice reduction techniques to solve a simultaneous diophantine approximations problem. Theorem 6. Let N i = p i q i , i = 1 . . . , k, be k ≥ 3 n-bit RSA moduli where the q i 's are α-bit primes. Suppose that there exist k positive integers a 1 , . . . , a k with a i ≤ 2 β , i = 1, . . . , k, such that the a i p i 's share all t least significant bits. If

t > k k -1 α + k 2 k -1 β + k 2(k -1) (1 + log 2 (πe)) ,
then, under the Gaussian Heuristic assumption, one can factor the k RSA moduli

N 1 , • • • N k in polynomial time.
Proof. For 1 ≤ i ≤ k, suppose that the a i p i 's share t least significant bits. Then, for 1 ≤ i ≤ k, a i p i -a 1 p 1 = 2 t x i . Multiplying by q 1 q i , we get a i q 1 N i -a 1 q i N 1 = 2 t q 1 q i x i . Define a = k j=1 a j . Multiplying by a ai , we get

aq 1 N i - aa 1 q i a i N 1 = 2 t aq 1 q i x i a i .
Transforming modulo 2 t , we get aq

1 N i N -t 1 -aa1qi ai ≡ 0 (mod 2 t ). Define T i ≡ N i N -1 1 (mod 2 t ).
Then aq 1 T i -aa1qi ai ≡ 0 (mod 2 t ) and there exists an integer y i such that aq 1 T i -2 t y i = aa1qi ai . Consider the vector

v = aq 1 , aa 1 q 2 a 2 , . . . , aa 1 q k a k ∈ Z k . ( 6 
) Then v = (aq 1 , y 2 . . . , y k ) × M, where M is the k × k-matrix M =             1 T 2 T 3 . . . T k-1 T k 0 -2 t 0 . . . 0 0 0 0 -2 t . . . 0 0 . . . . . . . . . . . . . . . . . . 0 0 0 . . . -2 t 0 0 0 0 . . . 0 -2 t             .
Let L be the lattice defined by the rows of the matrix M . The dimension of L is k and the determinant is det(L) = 2 (k-1)t . The Gaussian Heuristics for L asserts that the length of its shortest non-zero vector is σ(L) where

σ(L) ≈ k 2πe det(L) 1 k = k 2πe 2 (k-1)t k . ( 7 
)
Observe that the norm of v satisfies

v 2 = a 2 q 2 1 + k i=2 aa 1 q k a k 2 .
If the a i p i 's share all t least significant bits, then, for i = 1, . . . , k, we have

q i ≈ 2 α , a i ≤ 2 β , |x i | = |a i p i -a 1 p 1 | 2 t < 2 n-α+β-t . Hence v 2 < 2 2kβ+2α + (k -1)2 2kβ+2α = k2 2kβ+2α . ( 8 
)
Using ( 8) and ( 7) and transforming σ(L) 2 > v 2 into k 2πe 2

2(k-1)t k > k2 2kβ+2α , we get

t > k k -1 α + k 2 k -1 β + k 2(k -1)
(1 + log 2 (πe)) .

Using (6), we get q 1 = gcd(aq 1 , N 1 ) and for i = 2, . . . , k, q i = gcd( aa1qi ai , N i ). This terminates the proof.

Once again, if β = 0, then a i = 1 and the bound of Theorem 6 transforms to t > k k-1 α + k 2(k-1) (1 + log 2 (πe)) , which improves the bound of [START_REF] Faugère | Implicit factoring with shared most significant and middle bits[END_REF].

Experiments

In this section, we describe the experiments that we conducted for k = 4, 10, 30 and 50 RSA moduli, in connection with Theorem 4 and Theorem 6. We verified our assumptions by running experiments on a Core2 Duo 2GHz notebook. The lattice reduction basis technique was based on the LLL algorithm. Assume that a 1 p 1 and the a i p i 's share t MSBs. Then since a i p i ≤ 2 n-α+β , we see that |a i p i -a 1 p 1 | ≤ 2 n-α+β-t . Therefore, t ≤ n -α + β. Similarly, assume that a 1 p 1 and the a i p i 's share t LSBs. Then |a i p i -a 1 p 1 | = 2 t x i with t ≤ n -α + β. In both cases, combining with the bound of t in Theorem 4 and Theorem 5, we get

n -α + β ≥ t > k k -1 α + k 2 k -1 β + k 2(k -1)
(1 + log 2 (πe)) , which is satisfied if

β < n(k -1) k 2 -k + 1 - 2k -1 k 2 -k + 1 α - k 2(k 2 -k + 1)
(1 + log 2 (πe)) .

(9)

Consequently, we only consider the situation where the bit-size β of the a i 's satisfies condition (9). We generated many random 1024-bit RSA moduli for k = 4, 10, 30, 50 and various values of α and β according to the bound (9). All our experiments were successful and the assumptions on the Gaussian Heuristics were verified. In Table 4, we notice the experimentally lowest values of t that have 100% success rate.

Conclusion

In this work we have designed a technique to factor k ≥ 2 RSA moduli N i = p i q i , i = 1, . . . , k when some unknown multiples a i p i share t many Most Significant Bits (MSBs) or t many Least Significant Bits (LSBs). The new technique generalizes many previous results where the prime factors p i share t many MSBs or t many LSBs. This provides practitioners tighter conditions for the primes that are generated for utilization with the RSA algorithm. On the other hand, our results also serve their purpose to provide a peace of mind for practitioners knowing that the generated RSA moduli does not fall into any of the categories mentioned in this work.
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 1 b 1 . . . , b d be d linearly independent vectors of R n with d ≤ n. The set of all integer linear combinations of the b i forms a lattice L. Namely, L = d i=1 x i b i | x i ∈ Z . The integer n is the rank of the lattice L and d is its dimension. The set (b 1 , . . . , b d ) is called a basis of L. The determinant of L is defined as det(L) = √ B t B where B is the basis matrix, i.e., the matrix of the b i 's in the canonical basis of R n . The determinant is invariant under unimodular basis transformations of B and reduces to det(L) = | det(B)| when d = n. Let us denote by v the Euclidean norm of a vector v ∈ L. A central problem in lattice reduction is to find short non-zero vectors in L. Vectors with short norm can be computed by the LLL algorithm of Lenstra, Lenstra, and Lovász [4]. Theorem 2 (LLL). Let L be a lattice spanned by a basis (u 1 , . . . , u d ). Then the LLL algorithm produces a new basis (b 1 , . . . , b d ) of L satisfying b
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