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Abstract. The KMOV scheme is a public key cryptosystem based on
an RSA modulus n = pq where p and q are large prime numbers with
p ≡ q ≡ 2 (mod 3). It uses the points of an elliptic curve with equation
y2 ≡ x3 + b (mod n). In this paper, we propose a generalization of the
KMOV cryptosystem with a prime power modulus of the form n = prqs

and study its resistance to the known attacks.
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1 Introduction

In 1978, Rivest, Shamir and Adleman [23] proposed RSA, the first and widely
used cryptosystem. The RSA scheme is composed by an RSA modulus of the
form n = pq and a pair of keys (e, d) where e is the public exponent and d is
the private exponent, related by the congruence ed ≡ 1 (mod (p − 1)(q − 1)).
The security of RSA is based on the difficulty factoring large integers n = pq,
especially when p and q are large prime numbers of the same bit-size.

Since its invention, RSA has been intensively studied for vulnerability and for
efficiency (see [1,7]). In order to gain a faster decryption, Takagi [27] proposed
a variant of RSA with a modulus n = prq. For similar reasons, Lim et al. [17]
presented a variant of RSA and Takagi schemes with a modulus n = prqs. Such
variants are used in cryptography for various applications such as electronic
cash [6] and the design of Okamoto-Uchiyama scheme [22]. The exponents in the
modulus n = prqs should be carefully chosen to resist the factorization methods
such as the Number Field Sieve and the Elliptic Curve Method. Table 1 presents
the optimal number of primes in the modulus n = prqs according to the study
in [4].

In 1985, Miller [20] and Koblitz [11] independently proposed to use elliptic
curves for cryptography (ECC). The security of the ECC systems is based on
the discrete logarithm problem. Nowadays, ECC is gaining interests and various
applications in cryptography are based on ECC schemes such as the elliptic
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Modulus size in bits Form of the modulus
2048 pq, p2q
3072 pq, p2q
3584 pq, p2q
4096 pq, p2q, p3q
8192 pq, p2q, p3q, p3q2

Table 1. Optimal number of prime factors for a specific modulus size [4].

curve digital signature algorithm (ECDSA) and the elliptic curve Diffie-Hellman
(ECDH) protocol for key exchange. We refer to [24] for more details.

In 1992, Koyama, Maurer, Okamoto and Vanstone [13] proposed a scheme,
called KMOV, based on the elliptic curve with equation y2 ≡ x3+b (mod n) over
the ring Z/nZ where n = pq is an RSA modulus with p ≡ q ≡ 2 (mod 3). KMOV
was extended in various ways, especially to singular cubic curves by Koyama [12]
with the equation y2 + axy = x3 (mod n) and by Kuwakado, Koyama and
Tsuruoka [14] with the singular cubic curve with equation y2 = x3+bx2 (mod n).
Demytko [5] proposed a similar scheme where only one coordinate of a point on
an elliptic curve is used. The security of the former systems is based on the
difficulty of factoring large composite numbers, especially RSA moduli n = pq
where p and q are large prime numbers of the same bit-size.

In this paper, we propose a generalization of the KMOV cryptosystem by
considering a prime power RSA modulus n = prqs and the elliptic curve with
equation y2 ≡ x3 +b (mod n) over the ring Z/nZ where b is an integer such that
gcd(b, pq) = 1. When p ≡ q ≡ 2 (mod 3), we show that the number of points
on the curve is pr−1qs−1(p+ 1)(q + 1). Then, we use this to build a generalized
KMOV cryptosystem with key generation, encryption and decryption schemes.
We give a detailed study of the security of the new generalization of the KMOV
cryptosystem.

The paper is organized as follows. In Section 2, we first give an introduction
to elliptic curves over the finite field Fp where p ≥ 5 is a prime number, then
we present some results on the elliptic curves over a ring Z/nZ with n = pq and
finally we present the KMOV cryptosystem. In Section 3, we study the number
of solutions of the modular multivariate polynomial equation f(x1, . . . , xk) ≡ 0
(mod n) for n = pr and n = prqs. In Section 4, we give our generalization of the
KMOV system with a modulus of the form n = prqs. We study the security of
the new system in Section 5. Finally, we conclude the paper in Section 6.

2 Preliminaries

In this section, we present some facts on elliptic curves defined over a finite field
Fp as well as over a ring Z/nZ where n = pq is an RSA modulus, and present
the KMOV cryptosystem.
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2.1 Elliptic curves over a finite field

Let p ≥ 5 be a prime number and a, b ∈ Fp with 4a3 + 27b2 6≡ 0 (mod p).
An elliptic curve Ep(a, b) over Fp with parameters a and b is the set of points
P = (x, y) ∈ Fp × Fp satisfying the equation

y2 ≡ x3 + ax+ b (mod p). (1)

together with an extra point O, called the point at infinity (see [26,24,9] for more
details). A very important task in the theory of elliptic curves is counting the
number of points. For a curve Ep(a, b), the number of points is usually denoted
#Ep(a, b) and can be computed as

#Ep(a, b) = p+ 1 +
p−1∑
x=0

(
x3 + ax+ b

p

)
,

where
(

.
p

)
is the Legendre symbol which is defined as

(
a

p

)
=


0 if a ≡ 0 (mod p),
1 if a is a quadratic residue modulo p,
−1 if a is a quadratic non-residue modulo p.

When Ep(a, b) is defined over Fp for a prime number p, #Ep(a, b) can be ap-
proximated by p+ 1 according to Hasse Theorem (see [26,24]).

Theorem 1. Let Ep(a, b) be an elliptic curve over Fp. Then number of points
on Ep(a, b) is #Ep(a, b) = p+ 1− t with

t ≤ 2√p.

In [25], Schoof presented an algorithm to compute the number of points on an
elliptic curve with a running time ofO

(
log(p)8) but this algorithm is not efficient

for large primes. The following result gives a more precise value for #Ep(a, b)
when ab = 0 (see [9,24]).

Theorem 2. Let Ep(a, b) be an elliptic curve over Fp with the equation the
y2 ≡ x3 + ax+ b (mod p). The number of points on Ep(a, b) is

#Ep(a, b) =
{
p+ 1 if a = 0, b 6= 0, p ≡ 2 (mod 3),
p+ 1 if a 6= 0, b = 0, p ≡ 3 (mod 4).

It is well known that the chord-and-tangent rule [26,24] performs the addition
of two points on the elliptic curve Ep(a, b) and represents Ep(a, b) as an Abelian
group. Indeed, the addition of two points P1 = (x1, y1) and P2 = (x2, y2) on an
elliptic curve Ep(a, b) is defined as follows.

– If P1 = O, then P1 + P2 = P2 + P1 = P2.
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– If x1 = x2 and y1 = −y2, then P1 + P2 = P2 + P1 = O.
– Otherwise P1 + P2 = P2 + P1 = P3 = (x3, y3) where{

x3 ≡ λ2 − x1 − x2 (mod p)
y3 ≡ λ(x1 − x3)− y1 (mod p),

with

λ ≡

{
y2−y1
x2−x1

(mod p) if x1 6≡ x2 (mod p),
3x2

1+a
2y1

(mod p) if x1 ≡ x2 (mod p).

The multiplication by an integer k of a point P on the curve is defined as

kP = P + P + . . .+ P.

If P is a point of the elliptic curve Ep(a, b), then we have (#E)P = O and for
any integer k (1 + k#E)P = P . For the specific situations p ≡ 2 (mod 3) and
p ≡ 3 (mod 4), we have the following result.

Lemma 1. Let Ep(a, b) be an elliptic curve over Fp with the equation y2 ≡
x3 + ax+ b mod p. Then for any integer k

(1 + k(p+ 1))P =
{
P if a = 0, b 6= 0, p ≡ 2 (mod 3),
P if a 6= 0, b = 0, p ≡ 3 (mod 4).

2.2 Elliptic curves over a ring Z/nZ

In this section, we give an overview on the theory of elliptic curves over the ring
Z/nZ where n = pq is the product of two prime numbers p ≥ 5 and q ≥ 5. Let
a, b ∈ Z/nZ such that gcd

(
4a3 + 27b2, n

)
= 1. As for finite fields, an elliptic

curve En(a, b) is the set of points P = (x, y) satisfying the equation

y2 ≡ x3 + ax+ b (mod n), (2)

together with a point O called the point at infinity. We can define an addition on
En(a, b) using the same rules as in the addition operation on Ep(a, b). However,
the addition of two points P1 = (x1, y1) and P2 = (x2, y2) is not always defined
as in the following situations

– if x1 6≡ x2 (mod n) and gcd(x2 − x1, n) 6= 1,
– if x1 ≡ x2 (mod n) and gcd(2y1, n) 6= 1.

This problem can be reduced by the Chinese Remainder Theorem. The point O
is represented by the pair (Op,Oq) of points at infinity of Ep(a, b) and Eq(a, b)
and every point P = (x, y) 6= O on En(a, b) can be uniquely represented by
a couple (Pp, Pq) ∈ Ep(a, b) × Eq(a, b) with Pp = (x (mod p), y (mod p)) and
Pq = (x (mod q), y (mod q)). Conversely, the points of the form (O, Pq) and
(Pp,O) can not be represented by this method. When the primes p and q in
n = pq are large, it is unlikely that the addition of two points on En(a, b) is of
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the form (O, Pq) or (Pp,O). In the two cases, this will find the factorization of n
since gcd(x2−x1, n) is p or q or similarly gcd(2y1, n) is p or q with inconsiderable
probability.

Since every point P = (x, y) on En(a, b) can be uniquely represented by a
couple (Pp, Pq) ∈ Ep(a, b)×Eq(a, b), then using Theorem 2, we get the following
result.

Lemma 2. Let n = pq be the product of two large prime numbers p and q. Let
En(a, b) be an elliptic curve over Z/nZ with equation y2 ≡ x3 +ax+ b (mod p).
Then for any integer k,

(1 + k(p+ 1)(q + 1))P =
{
P if a = 0, b 6= 0, p ≡ q ≡ 2 (mod 3),
P if a 6= 0, b = 0, p ≡ q ≡ 3 (mod 4).

Proof. Let n = pq be the product of two distinct primes such that p ≡ q ≡ 2
(mod 3) or p ≡ q ≡ 3 (mod 4). If P = O = (Op,Oq), then

(1 + k(p+ 1)(q + 1))O = O

Now, suppose that P 6= O with P = (x, y). Then, by the Chinese remainder the-
orem, P can be represented as a pair of points (Pp, Pq) with Pp = (x (mod p), y
(mod p)) and Pq = (x (mod q), y (mod q)). If k is an integer, then

(1 + k(p+ 1)(q + 1))P = ((1 + k(p+ 1)(q + 1))Pp, (1 + k(p+ 1)(q + 1))Pq)
= (Pp + k(q + 1)(p+ 1)Pp, Pq + k(p+ 1)(q + 1)Pq)
= (Pp, Pq)
= P,

where we used (p+ 1)Pp = Op and (q+ 1)Pq = Oq according to Theorem 2. ut

2.3 The KMOV Cryptosystem

In 1991, Koyama, Maurer, Okamoto and Vanstone [13] proposed three cryp-
tosystems based on elliptic curves over the ring Z/nZ where n = pq is an RSA
modulus. In this section, we describe their Type 1 scheme. This scheme is based
on a modulus of the form n = pq with p ≡ q ≡ 2 (mod 3) and on an elliptic curve
with equation y2 ≡ x3 + b (mod n) with b 6≡ 0 (mod p) and b 6≡ 0 (mod q).

– Key generation.
1. Choose two large primes p and q with the same bit length, such that
p ≡ q ≡ 2 (mod 3).

2. Compute the RSA modulus n = pq.
3. Choose an integer e such that gcd(e, (p+ 1) (q + 1)) = 1. The pair (n, e)

represents the public key.
4. Compute d ≡ e−1 (mod (p + 1)(q + 1)). The pair (n, d) represents the

private key.
– Encryption.
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1. Represent the message as M = (xM , yM ) ∈ Z/nZ× Z/nZ.
2. Compute b ≡ y2

M − x3
M (mod n). The elliptic curve En(0, b) is defined

by the equation y2 ≡ x3 + b (mod n).
3. Compute (xC , yC) = e(xM , yM ) on En(0, b). The point (xC , yC) is the

encrypted message.
– Decryption.

1. Compute b ≡ y2
C −x3

C (mod n). The elliptic curve En(0, b) is defined by
the equation y2 ≡ x3 + b (mod n).

2. Compute M = (xM , yM ) = d(xC , yC) on En(0, b). The point (xM , yM )
is the original message.

The correctness of the KMOV scheme is obvious since d ≡ e−1 (mod (p+1)(q+
1)), then ed− k(p+ 1)(q + 1) = 1 for some integer k. Also, we have

b ≡ y2
M − x3

M ≡ y2
C − x3

C (mod n).

Then, by Lemma 2,

d(xC , yC) = deM = (1 + k(p+ 1)(q + 1))M = M.

In [8] and [21], two attacks on KMOV have been presented, especially when d is
sufficiently small. As a consequence, the private key d in the KMOV should be
carefully chosen.

3 Multivariate Polynomial Equations

In this section, we study the number of solutions of a multivariate polynomial
equation modulo a prime power of the form pr. We start with the following
lemma.

Lemma 3. Let f(t1, . . . , tk) ∈ Z [t1, . . . , tk] be a polynomial with integer coeffi-
cients. For any integers p and r ≥ 2, we have

f
(
t1 + pr−1h1, . . . , tk + pr−1hk

)
= f (t1, . . . , tk) + pr−1

k∑
i=1

∂f

∂ti
(t1, . . . , tk)hi (mod pr).

Proof. Since every polynomial is a finite sum of monomials, it is sufficient to
prove the lemma for f(t1, . . . , tk) = tm1

1 . . . tmk

k . We have

f
(
t1 + pr−1h1, . . . , tk + pr−1hk

)
=
(
t1 + pr−1h1

)m1
. . .
(
tk + pr−1hk

)mk
.

Observe that for i = 1, . . . , k, by a binomial expansion, we get(
ti + pr−1hi

)mi ≡ tmi
i +mit

mi−1
i pr−1hi (mod pr).
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Then

f
(
t1 + pr−1h1, . . . , tk + pr−1hk

)
≡
(
t1 + pr−1h1

)m1
. . .
(
tk + pr−1hk

)mk

≡ tm1
1 . . . tmk

k + pr−1

(
k∑

i=1
mit

m1
1 . . . tmi−1

i . . . tmk

k hi

)
(mod pr)

≡ f (t1, . . . , tk) + pr−1
k∑

i=1

∂f

∂ti
(t1, . . . , tk)hi (mod pr).

This proves the lemma. ut

Let p be an integer and r ≥ 1. For a multivariate polynomial f(t1, . . . , tk), we
consider the curve defined by the equation f(t1, . . . , tk) ≡ 0 (mod pr). Every
integer solution (t1, . . . , tk) will be considered as a point on the curve. In the
following definition, we introduce the notion of a singular point.

Definition 1. Let f(t1, . . . , tk) ∈ Z [t1, . . . , tk] be a polynomial and pr be a prime
power integer. A point (t1, . . . , tk) on the curve f(t1, . . . , tk) ≡ 0 (mod pr) is
called a singular point if for all i = 1, . . . , k, we have

∂f

∂ti
(t1, . . . , tk) ≡ 0 (mod p).

A non singular point is called a regular point.

In the following definition, we define the number of singular and regular points
on a curve.

Definition 2. Let f(t1, . . . , tk) ∈ Z [t1, . . . , tk] be a polynomial and pr be a prime
power integer. The number of points on the curve f(t1, . . . , tk) ≡ 0 (mod pr) is
denoted cpr with

cpr = #
{

(t1, . . . , tk) ∈ (Z/prZ)k | f(t1, . . . , tk) ≡ 0 (mod pr)
}

and the number of singular points is denoted spr with

spr = #{(t1, . . . , tk) ∈ (Z/prZ)k |f(t1, . . . , tk) ≡ 0 (mod pr),
∂f

∂ti
(t1, . . . , tk) ≡ 0 (mod p), i = 1, . . . , k}.

A non-singular point is called a regular point. The number of regular points
modulo pr is Rpr = cpr − spr .

The following result gives an inductive relationship between Rpr and Rpr−1 .

Theorem 3. Let Rpr be the number of regular points on the curve f(t1, . . . , tk) ≡
0 (mod pr) and Rpr−1 be the number of regular points on the curve f(t1, . . . , tk) ≡
0 (mod pr−1). Then

Rpr = pk−1Rpr−1 .
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Proof. Suppose that f (w1, . . . , wk) ≡ 0 (mod pr). Then f (w1, . . . , wk) ≡ 0
(mod pr−1). Hence, any solution (w1, . . . , wk) of the modular equation

f(w1, . . . , wk) ≡ 0 (mod pr)

is of the form

(w1, . . . , wk) = (t1, . . . , tk) + pr−1 (h1, . . . , hk) (mod pr), (3)

where (t1, . . . , tk) is a modular root of f(t1, . . . , tk) ≡ 0 (mod pr−1) and (h1, . . . , hk) ∈
(Z/pZ)k. Also note that, since for i = 1, . . . , k, we have

∂f

∂wi
(w1, . . . , wk) ≡ ∂f

∂ti
(t1, . . . , tk) (mod p),

then (w1, . . . , wk) is regular if and only if (t1, . . . , tk) is regular. Using (3) in
Lemma 3, we get

f (w1, . . . , wk) ≡ f (t1, . . . , tk) + pr−1
k∑

i=1

∂f

∂wi
(w1, . . . , wk)hi (mod pr).

Since f (t1, . . . , tk) ≡ 0 (mod pr−1), then f (t1, . . . , tk) = upr−1 for some integer
u ∈ Z/pZ. This implies that if f (w1, . . . , wk) ≡ 0 (mod pr), then

u+
k∑

i=1

∂f

∂wi
(w1, . . . , wk)hi ≡ 0 (mod p). (4)

If (w1, . . . , wk) is a regular point, then ∂f

∂wi
(w1, . . . , wk) 6= 0 for some i ∈ 1, . . . , k.

Hence (4) is an affine equation over the field Z/pZ, which has pk−1 solutions
(h1, . . . , hk). Consequently, using (3), we see that any regular point (w1, . . . , wk)
on the curve modulo pr is determined by a regular point (t1, . . . , tk) modulo pr−1

and pk−1 points (h1, . . . , hk) modulo p. This leads to

Rpr = pk−1Rpr−1 .

This terminates the proof. ut

As a consequence of Theorem 3, we have the following result.

Corollary 1. Let Rpr be the number of regular points on the curve f(t1, . . . , tk) ≡
0 (mod pr). Then

Rpr = p(k−1)(r−1)Rp.

An important consequence concerns curves without any singular points.

Corollary 2. If a curve f(t1, . . . , tk) ≡ 0 (mod pr) has no singular point, then
the number of points on the curve is

cpr = p(k−1)(r−1)cp.
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Remark 1. For a univariate polynomial equation with non singular point, we
have k = 1 and cpr = cp, which retrieves Hensel’s Lemma.

Let pr be a prime power and b be an integer with gcd(p, b) = 1. The following
result allows to compute the number of solutions of the equation y2 ≡ x3 + b
(mod pr) in terms of the number of solution of the equation y2 ≡ x3+b (mod p).

Corollary 3. Let pr be a prime power and b be an integer with gcd(p, b) = 1.
Then

#
{

(x, y) ∈ (Z/prZ)2 | y2 ≡ x3 + b (mod pr)
}

= pr−1#
{

(x, y) ∈ (Z/pZ)2 | y2 ≡ x3 + b (mod p)
}
.

Proof. If y2 ≡ x3 + b (mod pr), then f(x, y) ≡ 0 (mod pr) where f(x, y) =
y2 − x3 − b. Since there is no singular point on the curve f(x, y) ≡ 0 (mod pr),
then by Corollary 1, we get cpr = pr−1cp and proves the corollary. ut

In the special case p ≡ 2 (mod 3), we have the following explicit result.

Corollary 4. Let pr be a prime power with p ≡ 2 (mod 3) and b be an integer
such that gcd(p, b) = 1. Then

#
{

(x, y) ∈ (Z/prZ)2 | y2 ≡ x3 + b (mod pr)
}

= pr.

Proof. This follows Theorem 2 and Corollary 3. ut

Also, when p ≡ 2 (mod 3), we have an explicit result about the number of
solutions of the projective curve with equation y2z ≡ x3 + bz3 (mod p).

Corollary 5. Let p be a prime number with p ≡ 2 (mod 3) and b be an integer
with gcd(p, b) = 1. Then

#
{

(x, y, z) ∈ (Z/pZ)3 | y2z ≡ x3 + bz3 (mod p)
}

= p2.

Proof. Suppose that p ≡ 2 (mod 3) and b is an integer with gcd(p, b) = 1. If
z 6≡ 0 (mod p), then the equation y2z ≡ x3 + bz3 (mod p) can be reduced to
y2 ≡ x3 + b (mod p). By Theorem 2, the number of points of this elliptic curve
is p + 1. Removing the point O, we find that the number of solutions of the
equation y2 ≡ x3 + b (mod p) is p. If z = 0, then x = 0 and y is any integer with
0 ≤ y ≤ p − 1. Hence, the number of solutions of the equation y2z ≡ x3 + bz3

(mod p) is (p− 1)p+ p = p2. ut

The former result can be extended to the equation y2z ≡ x3 + bz3 (mod pr).
In the following, we put (x : y : z) to represent the projective point with
gcd(p, xyz) = 1 which satisfies the following property

(x : y : z) = {(λx, λy, λz) ∈ (Z/prZ)3
, | λ ∈ Z/prZ, , gcd(p, λ) = 1}.

We denote by Ppr the set of such projective points.
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Theorem 4. Let p be a prime number with p ≡ 2 (mod 3) and b be an integer
with gcd(p, b) = 1. Then the number of non singular points on the curve y2z ≡
x3 + bz3 (mod pr) is

#
{

(x : y : z) ∈ Ppr | y2z ≡ x3 + bz3 (mod pr)
}

= pr−1(p+ 1).

Proof. Suppose that p ≡ 2 (mod 3) and b is an integer with gcd(p, b) = 1. Since
the only singular point of the curve with equation y2z ≡ x3 + bz3 (modpr) is
(0, 0, 0) which is not represented in Ppr , then by combining Corollary 1 and
Corollary 5, the number of regular points is

cpr − 1 = p2(r−1)(cp − 1) = p2(r−1)(p2 − 1).

Also, since each tuple (x : y : z) represents φ (pr) = pr−1(p−1) tuples (u, v, w) ∈
(Z/pZ)3, then the number of regular solutions (x : y : z) of the equation y2z ≡
x3 + bz3 (mod pr) is

p2(r−1)(p2 − 1)
pr−1(p− 1) = pr−1(p+ 1).

This terminates the proof. ut

We can use the former result to find the number of points on the elliptic curve de-
fined by the equation y2 ≡ x3+b (mod prqs) by splitting the curve in two pieces.
The next result concerns the polynomial equation f(t1, . . . , tk) ≡ 0 (mod prqs)
where p and q are integers with gcd(p, q) = 1.

Theorem 5. Let cprqs be the number of points on the curve f(t1, . . . , tk) ≡ 0
(mod prqs) where gcd(p, q) = 1. Then

cprqs = cpr × cqs .

Proof. Since gcd(p, q) = 1, then by the Chinese Remainder Theorem, there is a
one to one correspondence from the set of solutions of the equation f(t1, . . . , tk) ≡
0 (mod prqs) to the set of the solutions of the system

f(t1, . . . , tk) ≡ 0 (mod pr), f(t1, . . . , tk) ≡ 0 (mod qs).

Hence cprqs = cpr × cqs . ut

As a corollary of Theorem 5 and Corollary 4, we have the following result.

Corollary 6. Let pr and qs be two prime powers such that gcd(p, q) = 1, with
p ≡ q ≡ 2 (mod 3). Then the number of points on the elliptic curve with equation
y2 ≡ x3 + b (mod prqs) is

#
{{

(x, y) ∈ (Z/prqsZ)2 | y2 ≡ x3 + b (mod prqs)
}
∪ O

}
= prqs + 1.
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Proof. This is immediate since, by Corollary 4, we have

#
{

(x, y) ∈ (Z/prZ)2 | y2 ≡ x3 + b (mod pr)
}

= pr

and
#
{

(x, y) ∈ (Z/qsZ)2 | y2 ≡ x3 + b (mod qs)
}

= qs

Then, by the Chinese Remainder Theorem, we get

#
{

(x, y) ∈ (Z/prqsZ)2 | y2 ≡ x3 + b (mod prqs)
}

= prqs.

Adding the point at infinity O, we get the result. ut

Remark 2. Notice that
{{

(x, y) ∈ (Z/prqsZ)2 | y2 ≡ x3 + b (mod prqs)
}
∪ O

}
is the set of points that we use for encryption in practice.

4 The Proposed Generalization of the KMOV
Cryptosystem

In this section, we propose a generalization of the KMOV cryptosystem to elliptic
curves with equation y2 ≡ x3 + b (mod prqs) where gcd(b, pq) = 1. We will need
the following lemma which is a consequence of Theorem 4 combined with the
Chinese Remainder Theorem.
Lemma 4. Let n = prqs be a prime power RSA modulus. Then, for any point
P on the elliptic curve with equation y2 ≡ x3 + b (mod prqs) and any integer k,
we have (

1 + kpr−1qs−1(p+ 1)(q + 1)
)
P = O.

Recall that the previous lemma reveals why we have used the projective points
rather that the affine ones, since :

1. The projective coordinates give the cardinality pr−1 (p+ 1) of the curve mod-
ulo pr, which satisfies pr−1 (p+ 1)P = O, while the affine coordinates fail
to do that because the number of points of the elliptic curve with equation
y2 ≡ x3 + b (mod pr) is pr and we have pr < pr−1 (p+ 1).

2. There is no need to add the point at infinity in the cardinality, since it is
counted in Ppr from the beginning.

Next, we describe the generalization of the KMOV cryptosystem by presenting
the key generation, the encryption and the decryption.

4.1 Key generation

1. Choose two large primes p and q such that p ≡ q ≡ 2 (mod 3).
2. Choose two integers r and s from the Table 1 and compute n = prqs.
3. Choose an integer e such that gcd

(
e, pr−1 (p+ 1) qs−1 (q + 1)

)
= 1. The pair

(n, e) represents the public key.
4. Compute the private exponent d ≡ e−1 (mod pr−1 (p+ 1) qs−1 (q + 1)).
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4.2 Encryption

1. Represent the message as a point M = (xM , yM ) ∈ (Z/nZ)2.
2. Compute b ≡ y2

M − x3
M (mod n).

3. Compute C = eM = (xC , yC) on the elliptic curve y2 = x3 + b (mod n).
4. Send the encrypted message C.

4.3 Decryption

1. Compute b ≡ y2
C − x3

C (mod n).
2. Compute the message M = dC on the elliptic curve y2 = x3 + b (mod n).

The decryption is exact since de ≡ 1 (mod pr−1 (p+ 1) qs−1 (q + 1)) and there
exists an integer k such that de = 1 + kpr−1 (p+ 1) qs−1 (q + 1). Hence, using
Lemma 4, we get

dC = deM =
(
1 + kpr−1(p+ 1)qs−1(q + 1)

)
M = M.

5 Security of the New Cryptosystem

In this section, we discuss the security of the proposed scheme.

5.1 Factoring the modulus

In our scheme, the modulus is of the form n = prqs where p and q are two prime
numbers with p ≡ q ≡ 2 (mod 3). When p and q are large and the exponents r
and s are chosen according to Table 1, the problem is believed hard (see [4,3]) as
for the RSA situation where the modulus is n = pq. The factoring methods such
as the Elliptic Curve Method [15] and the Number Field Sieve [16] are ineffective
for large primes p and q.

5.2 Finding the order

For an elliptic curve curve with equation

y2 ≡ x3 + ax+ b (mod p),

where p is a large prime number, there is no known method to find the number
of solutions of the underlying equation. This is valid when the equation is in the
form

y2 ≡ x3 + ax+ b (mod n),

where n is the product of large unknown prime factors. This shows that finding
the order ψ(n) = pr−1qs−1(p+ 1)(q + 1) in the new scheme is unfeasible.

Comparatively, in the original KMOV, the modulus is n = pq and the order
is (p+ 1)(q+ 1) while in the standard RSA the modulus is similar and the order
is (p − 1)(q − 1). Finding one of these orders is known to be computationally
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equivalent to factoring the modulus n = pq. In our new scheme, the modulus is
n = prqs and the order is ψ(n) = pr−1qs−1(p+1)(q+1). Hence, finding the order
ψ(n) will lead to p and q. It follows that finding the order in the new scheme is
also equivalent to factoring the modulus.

On the other hand, note that the order ψ(n) represents the number of points
on the elliptic curve with equation

y2z ≡ x3 + bz3 (mod n),

where the factorization of n is unknown. It is known that by the Chinese Re-
mainder Theorem, finding a solution modulo n can be done by finding a solution
modulo pr and modulo qs. Since the factorization of n is unknown, this is infea-
sible.

5.3 Solving the elliptic curve discrete logarithm
In the new scheme, the public parameters are the modulus n = prqs, the expo-
nent e, the ciphertext C = (xC , yC) which is computed as C = eM = e(xM , yM )
on the elliptic curve with equation

y2 ≡ x3 + b (mod n), b ≡ y2
M − x3

M (mod n).

Solving the equation C = eM for M is equivalent to solving the discrete loga-
rithm problem since if P is a point on the elliptic curve such thatM = uP , then
C = eM = euP and finding u is computationally infeasible since the elliptic
curve discrete logarithm problem is hard (see [10]).

5.4 Solving the key equation
In the new scheme, the public exponent e and the private exponent d are related
with the modular equation ed ≡ 1 (mod pr−1qs−1(p+1)(q+1)), or equivalently
by the equation

ed− kpr−1qs−1(p+ 1)(q + 1) = 1.
This equation is related to the prime power RSA key equation

ed− kpr−1qs−1(p− 1)(q − 1) = 1,

which has been intensively studied. In [18], it is shown that if r, s > 1, and

d < n
1− 3r+s

(r+s)2 ,

then one can find d and factor the modulus n = prqs. In [19], for s = 1, the
bound is

d < n
r(r−1)
(r+1)2 .

Observe that the key equation in our scheme is slightly different from the prime
power RSA key equation, nevertheless, the techniques are similar and we con-
clude that when d is sufficiently large, then the equation is not vulnerable to the
former attacks. For comparison, in the standard RSA and KMOV, the bound
for vulnerability is d < n0.292 (see [2,8]).
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5.5 Impossible addition on the elliptic curve method

As the elliptic curve is defined over the ring Z/prqsZ, then the addition is not
always defined if one of the inversion modulo pr or modulo qs is not possible.
This situation can be used to factor the modulus n = prqs. On the other hand,
this scenario is very unlikely to happen and the following result gives a precise
probability.

Corollary 7. The probability that the sum of two points on the elliptic curve
with equation y2 ≡ x3 + b (mod prqs) is not defined is approximately

pr−1 (p+ 1) qs−1 (q + 1)− (prqs + 1)
pr−1 (p+ 1) qs−1 (q + 1) ≈ p+ q

(p+ 1)(q + 1) .

Proof. We first give an estimation of solutions (x : y : z) of the equation

y2z ≡ x3 + bz3 (mod prqs),

with gcd(pq, z) = 1. Notice that{
(x : y : z) ∈ Pprqs , p - z, q - z | zy2 ≡ x3 + bz3 (mod prqs)

}
=
{

(x : y : 1) ∈ Pprqs , | y2 ≡ x3 + b (mod prqs)
}

=
{

(x, y) ∈ Z/nZ | y2 ≡ x3 + b (mod prqs)
}

therefore

#
{

(x : y : z) ∈ (Z/prqsZ)3 | gcd(pq, z) = 1, zy2 = x3 + bz3
}
∪ O = prqs + 1

We know that the sum of two points on the curve zy2 ≡ x3 + bz3 (mod prqs) is
not defined if and only if the third coordinate of the sum is divisible by p or q
but not divisible by prqs. The probability of such situations is

pr−1(p+ 1)qs−1(q + 1)− (prqs + 1)
pr−1(p+ 1)qs−1(q + 1) = p+ q

(p+ 1) (q + 1) + pr−1qs−1 − 1
pr−1 (p+ 1) qs−1 (q + 1)

≈ p+ q

(p+ 1)(q + 1)

This shows that the probability that the sum of two points is not defined is very
low since when p and q are large and of the same bit size, then p+q

(p+1)(q+1) ≈
1√
pq .
ut

6 Conclusion.

We presented a generalization of the KMOV cryptosystem by using an elliptic
curve defined on the ring Z/nZ where n = prqs is a prime power modulus. We
described the theory for computing the number of points on the elliptic curve
y2 ≡ x3 + b (mod n) and gave an explicit estimation when p ≡ q ≡ 2 (mod 3).
Finally, we studied the security of the new system and showed that it is mainly
based on factoring the modulus.
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