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The KMOV scheme is a public key cryptosystem based on an RSA modulus n = pq where p and q are large prime numbers with p ≡ q ≡ 2 (mod 3). It uses the points of an elliptic curve with equation y 2 ≡ x 3 + b (mod n). In this paper, we propose a generalization of the KMOV cryptosystem with a prime power modulus of the form n = p r q s and study its resistance to the known attacks.

Introduction

In 1978, Rivest, Shamir and Adleman [START_REF] Rivest | A Method for Obtaining Digital Signatures and Public-Key Cryptosystems[END_REF] proposed RSA, the first and widely used cryptosystem. The RSA scheme is composed by an RSA modulus of the form n = pq and a pair of keys (e, d) where e is the public exponent and d is the private exponent, related by the congruence ed ≡ 1 (mod (p -1)(q -1)). The security of RSA is based on the difficulty factoring large integers n = pq, especially when p and q are large prime numbers of the same bit-size.

Since its invention, RSA has been intensively studied for vulnerability and for efficiency (see [1,[START_REF] Hinek | Cryptanalysis of RSA and its Variants, Chapman & Hall/CRC Cryptography and Network Security[END_REF]). In order to gain a faster decryption, Takagi [START_REF] Takagi | Fast RSA-Type Cryptosystem Modulo p k q in Advances in Cryptography -Proceedings of CRYPTO[END_REF] proposed a variant of RSA with a modulus n = p r q. For similar reasons, Lim et al. [START_REF] Lim | A Generalized Takagi-Cryptosystem with a modulus of the form p r q s in Advances in Cryptography -Proceedings of Indocrypt[END_REF] presented a variant of RSA and Takagi schemes with a modulus n = p r q s . Such variants are used in cryptography for various applications such as electronic cash [START_REF] Fujioka | ESIGN: An Efficient Digital Signature Implementation for Smard Cards[END_REF] and the design of Okamoto-Uchiyama scheme [START_REF] Okamoto | A New public key cryptosystem as secure as factoring[END_REF]. The exponents in the modulus n = p r q s should be carefully chosen to resist the factorization methods such as the Number Field Sieve and the Elliptic Curve Method. Table 1 presents the optimal number of primes in the modulus n = p r q s according to the study in [4].

In 1985, Miller [START_REF] Miller | Use of elliptic curves in cryptography[END_REF] and Koblitz [START_REF] Koblitz | Elliptic curve cryptosystems[END_REF] independently proposed to use elliptic curves for cryptography (ECC). The security of the ECC systems is based on the discrete logarithm problem. Nowadays, ECC is gaining interests and various applications in cryptography are based on ECC schemes such as the elliptic Modulus size in bits Form of the modulus 2048 pq, p 2 q 3072 pq, p 2 q 3584 pq, p 2 q 4096 pq, p 2 q, p 3 q 8192 pq, p 2 q, p 3 q, p 3 q 2 Table 1. Optimal number of prime factors for a specific modulus size [4].

curve digital signature algorithm (ECDSA) and the elliptic curve Diffie-Hellman (ECDH) protocol for key exchange. We refer to [START_REF] Schmitt | Elliptic Curves. A Computational Approach[END_REF] for more details.

In 1992, Koyama, Maurer, Okamoto and Vanstone [START_REF] Koyama | New public-key schemes based on elliptic curves over the ring Zn[END_REF] proposed a scheme, called KMOV, based on the elliptic curve with equation y 2 ≡ x 3 +b (mod n) over the ring Z/nZ where n = pq is an RSA modulus with p ≡ q ≡ 2 (mod 3). KMOV was extended in various ways, especially to singular cubic curves by Koyama [START_REF] Koyama | Fast RSA type scheme based on singular cubic curve y 2 + axy = x 3 (mod n)[END_REF] with the equation y 2 + axy = x 3 (mod n) and by Kuwakado, Koyama and Tsuruoka [START_REF] Kuwakado | A new RSA-type scheme based on singular cubic curves y 2 ≡ x 3 + bx 2 (mod n)[END_REF] with the singular cubic curve with equation y 2 = x 3 +bx 2 (mod n). Demytko [START_REF] Demytko | A new elliptic curve based analogue of RSA[END_REF] proposed a similar scheme where only one coordinate of a point on an elliptic curve is used. The security of the former systems is based on the difficulty of factoring large composite numbers, especially RSA moduli n = pq where p and q are large prime numbers of the same bit-size.

In this paper, we propose a generalization of the KMOV cryptosystem by considering a prime power RSA modulus n = p r q s and the elliptic curve with equation y 2 ≡ x 3 + b (mod n) over the ring Z/nZ where b is an integer such that gcd(b, pq) = 1. When p ≡ q ≡ 2 (mod 3), we show that the number of points on the curve is p r-1 q s-1 (p + 1)(q + 1). Then, we use this to build a generalized KMOV cryptosystem with key generation, encryption and decryption schemes. We give a detailed study of the security of the new generalization of the KMOV cryptosystem.

The paper is organized as follows. In Section 2, we first give an introduction to elliptic curves over the finite field F p where p ≥ 5 is a prime number, then we present some results on the elliptic curves over a ring Z/nZ with n = pq and finally we present the KMOV cryptosystem. In Section 3, we study the number of solutions of the modular multivariate polynomial equation f (x 1 , . . . , x k ) ≡ 0 (mod n) for n = p r and n = p r q s . In Section 4, we give our generalization of the KMOV system with a modulus of the form n = p r q s . We study the security of the new system in Section 5. Finally, we conclude the paper in Section 6.

Preliminaries

In this section, we present some facts on elliptic curves defined over a finite field F p as well as over a ring Z/nZ where n = pq is an RSA modulus, and present the KMOV cryptosystem.

Elliptic curves over a finite field

Let p ≥ 5 be a prime number and a, b ∈ F p with 4a 3 + 27b 2 ≡ 0 (mod p). An elliptic curve E p (a, b) over F p with parameters a and b is the set of points P = (x, y) ∈ F p × F p satisfying the equation

y 2 ≡ x 3 + ax + b (mod p). ( 1 
)
together with an extra point O, called the point at infinity (see [START_REF] Silverman | The Arithmetic of Elliptic Curves[END_REF][START_REF] Schmitt | Elliptic Curves. A Computational Approach[END_REF][START_REF] Ireland | A Classical Introduction to Modern Number Theory[END_REF] for more details). A very important task in the theory of elliptic curves is counting the number of points. For a curve E p (a, b), the number of points is usually denoted #E p (a, b) and can be computed as

#E p (a, b) = p + 1 + p-1 x=0 x 3 + ax + b p ,
where . p is the Legendre symbol which is defined as

a p =      0 if a ≡ 0 (mod p), 1
if a is a quadratic residue modulo p, -1 if a is a quadratic non-residue modulo p.

When E p (a, b) is defined over F p for a prime number p, #E p (a, b) can be approximated by p + 1 according to Hasse Theorem (see [START_REF] Silverman | The Arithmetic of Elliptic Curves[END_REF][START_REF] Schmitt | Elliptic Curves. A Computational Approach[END_REF]). Theorem 1. Let E p (a, b) be an elliptic curve over F p . Then number of points on

E p (a, b) is #E p (a, b) = p + 1 -t with t ≤ 2 √ p.
In [START_REF] Schoof | Elliptic curves over finite fields and the computation of square roots mod p[END_REF], Schoof presented an algorithm to compute the number of points on an elliptic curve with a running time of O log(p) 8 but this algorithm is not efficient for large primes. The following result gives a more precise value for #E p (a, b) when ab = 0 (see [START_REF] Ireland | A Classical Introduction to Modern Number Theory[END_REF][START_REF] Schmitt | Elliptic Curves. A Computational Approach[END_REF]).

Theorem 2. Let E p (a, b) be an elliptic curve over F p with the equation the

y 2 ≡ x 3 + ax + b (mod p). The number of points on E p (a, b) is #E p (a, b) = p + 1 if a = 0, b = 0, p ≡ 2 (mod 3), p + 1 if a = 0, b = 0, p ≡ 3 (mod 4).
It is well known that the chord-and-tangent rule [START_REF] Silverman | The Arithmetic of Elliptic Curves[END_REF][START_REF] Schmitt | Elliptic Curves. A Computational Approach[END_REF] performs the addition of two points on the elliptic curve E p (a, b) and represents E p (a, b) as an Abelian group. Indeed, the addition of two points P 1 = (x 1 , y 1 ) and P 2 = (x 2 , y 2 ) on an elliptic curve E p (a, b) is defined as follows.

-If P 1 = O, then P 1 + P 2 = P 2 + P 1 = P 2 .

-If x 1 = x 2 and y 1 = -y 2 , then P 1 + P 2 = P 2 + P 1 = O.

-Otherwise P 1 + P 2 = P 2 + P 1 = P 3 = (x 3 , y 3 ) where

x 3 ≡ λ 2 -x 1 -x 2 (mod p) y 3 ≡ λ(x 1 -x 3 ) -y 1 (mod p), with λ ≡ y2-y1 x2-x1 (mod p) if x 1 ≡ x 2 (mod p), 3x 2 1 +a 2y1 (mod p) if x 1 ≡ x 2 (mod p).
The multiplication by an integer k of a point P on the curve is defined as

kP = P + P + . . . + P.
If P is a point of the elliptic curve E p (a, b), then we have (#E)P = O and for any integer k (1 + k#E)P = P . For the specific situations p ≡ 2 (mod 3) and p ≡ 3 (mod 4), we have the following result.

Lemma 1. Let E p (a, b) be an elliptic curve over F p with the equation y 2 ≡ x 3 + ax + b mod p. Then for any integer k

(1 + k(p + 1))P = P if a = 0, b = 0, p ≡ 2 (mod 3), P if a = 0, b = 0, p ≡ 3 (mod 4).

Elliptic curves over a ring Z/nZ

In this section, we give an overview on the theory of elliptic curves over the ring Z/nZ where n = pq is the product of two prime numbers p ≥ 5 and q ≥ 5. Let a, b ∈ Z/nZ such that gcd 4a 3 + 27b 2 , n = 1. As for finite fields, an elliptic curve E n (a, b) is the set of points P = (x, y) satisfying the equation

y 2 ≡ x 3 + ax + b (mod n), (2) 
together with a point O called the point at infinity. We can define an addition on E n (a, b) using the same rules as in the addition operation on E p (a, b). However, the addition of two points P 1 = (x 1 , y 1 ) and P 2 = (x 2 , y 2 ) is not always defined as in the following situations

-if x 1 ≡ x 2 (mod n) and gcd(x 2 -x 1 , n) = 1, -if x 1 ≡ x 2 (mod n) and gcd(2y 1 , n) = 1.
This problem can be reduced by the Chinese Remainder Theorem. The point O is represented by the pair (O p , O q ) of points at infinity of E p (a, b) and E q (a, b) and every point P = (x, y) = O on E n (a, b) can be uniquely represented by a couple (P p , P q ) ∈ E p (a, b) × E q (a, b) with P p = (x (mod p), y (mod p)) and P q = (x (mod q), y (mod q)). Conversely, the points of the form (O, P q ) and (P p , O) can not be represented by this method. When the primes p and q in n = pq are large, it is unlikely that the addition of two points on E n (a, b) is of the form (O, P q ) or (P p , O). In the two cases, this will find the factorization of n since gcd(x 2 -x 1 , n) is p or q or similarly gcd(2y 1 , n) is p or q with inconsiderable probability.

Since every point P = (x, y) on E n (a, b) can be uniquely represented by a couple (P p , P q ) ∈ E p (a, b) × E q (a, b), then using Theorem 2, we get the following result.

Lemma 2.

Let n = pq be the product of two large prime numbers p and q. Let E n (a, b) be an elliptic curve over Z/nZ with equation

y 2 ≡ x 3 + ax + b (mod p).
Then for any integer k,

(1 + k(p + 1)(q + 1))P = P if a = 0, b = 0, p ≡ q ≡ 2 (mod 3), P if a = 0, b = 0, p ≡ q ≡ 3 (mod 4).
Proof. Let n = pq be the product of two distinct primes such that p ≡ q ≡ 2 (mod 3) or p ≡ q ≡ 3 (mod 4).

If P = O = (O p , O q ), then (1 + k(p + 1)(q + 1))O = O
Now, suppose that P = O with P = (x, y). Then, by the Chinese remainder theorem, P can be represented as a pair of points (P p , P q ) with P p = (x (mod p), y (mod p)) and P q = (x (mod q), y (mod q)). If k is an integer, then

(1 + k(p + 1)(q + 1))P = ((1 + k(p + 1)(q + 1))P p , (1 + k(p + 1)(q + 1))P q ) = (P p + k(q + 1)(p + 1)P p , P q + k(p + 1)(q + 1)P q ) = (P p , P q )

= P, where we used (p + 1)P p = O p and (q + 1)P q = O q according to Theorem 2.

The KMOV Cryptosystem

In 1991, Koyama, Maurer, Okamoto and Vanstone [START_REF] Koyama | New public-key schemes based on elliptic curves over the ring Zn[END_REF] proposed three cryptosystems based on elliptic curves over the ring Z/nZ where n = pq is an RSA modulus. In this section, we describe their Type 1 scheme. This scheme is based on a modulus of the form n = pq with p ≡ q ≡ 2 (mod 3) and on an elliptic curve with equation

y 2 ≡ x 3 + b (mod n) with b ≡ 0 (mod p) and b ≡ 0 (mod q).
-Key generation.

1. Choose two large primes p and q with the same bit length, such that p ≡ q ≡ 2 (mod 3). 2. Compute the RSA modulus n = pq. 3. Choose an integer e such that gcd(e, (p + 1) (q + 1)) = 1. The pair (n, e) represents the public key. 4. Compute d ≡ e -1 (mod (p + 1)(q + 1)). The pair (n, d) represents the private key. -Encryption.

Represent the message as

M = (x M , y M ) ∈ Z/nZ × Z/nZ. 2. Compute b ≡ y 2 M -x 3 M (mod n). The elliptic curve E n (0, b) is defined by the equation y 2 ≡ x 3 + b (mod n). 3. Compute (x C , y C ) = e(x M , y M ) on E n (0, b). The point (x C , y C ) is the encrypted message. -Decryption. 1. Compute b ≡ y 2 C -x 3 C (mod n). The elliptic curve E n (0, b) is defined by the equation y 2 ≡ x 3 + b (mod n). 2. Compute M = (x M , y M ) = d(x C , y C ) on E n (0, b). The point (x M , y M )
is the original message.

The correctness of the KMOV scheme is obvious since d ≡ e -1 (mod (p + 1)(q + 1)), then ed -k(p + 1)(q + 1) = 1 for some integer k. Also, we have

b ≡ y 2 M -x 3 M ≡ y 2 C -x 3 C (mod n).
Then, by Lemma 2,

d(x C , y C ) = deM = (1 + k(p + 1)(q + 1))M = M.
In [START_REF] Ibrahimpasic | Cryptanalysis of KMOV cryptosystem with short secret exponent[END_REF] and [START_REF] Nitaj | A new attack on the KMOV cryptosystem[END_REF], two attacks on KMOV have been presented, especially when d is sufficiently small. As a consequence, the private key d in the KMOV should be carefully chosen.

Multivariate Polynomial Equations

In this section, we study the number of solutions of a multivariate polynomial equation modulo a prime power of the form p r . We start with the following lemma.

Lemma 3. Let f (t 1 , . . . , t k ) ∈ Z [t 1 , . . . , t k ] be a polynomial with integer coefficients. For any integers p and r ≥ 2, we have

f t 1 + p r-1 h 1 , . . . , t k + p r-1 h k = f (t 1 , . . . , t k ) + p r-1 k i=1 ∂f ∂t i (t 1 , . . . , t k ) h i (mod p r ).
Proof. Since every polynomial is a finite sum of monomials, it is sufficient to prove the lemma for

f (t 1 , . . . , t k ) = t m1 1 . . . t m k k . We have f t 1 + p r-1 h 1 , . . . , t k + p r-1 h k = t 1 + p r-1 h 1 m1 . . . t k + p r-1 h k m k .
Observe that for i = 1, . . . , k, by a binomial expansion, we get

t i + p r-1 h i mi ≡ t mi i + m i t mi-1 i p r-1 h i (mod p r ).
Then

f t 1 + p r-1 h 1 , . . . , t k + p r-1 h k ≡ t 1 + p r-1 h 1 m1 . . . t k + p r-1 h k m k ≡ t m1 1 . . . t m k k + p r-1 k i=1 m i t m1 1 . . . t mi-1 i . . . t m k k h i (mod p r ) ≡ f (t 1 , . . . , t k ) + p r-1 k i=1 ∂f ∂t i (t 1 , . . . , t k ) h i (mod p r ).
This proves the lemma.

Let p be an integer and r ≥ 1. For a multivariate polynomial f (t 

p r is R p r = c p r -s p r .
The following result gives an inductive relationship between R p r and R p r-1 .

Theorem 3. Let R p r be the number of regular points on the curve f (t 1 , . . . , t k ) ≡ 0 (mod p r ) and R p r-1 be the number of regular points on the curve f (t 1 , . . . , t k ) ≡ 0 (mod p r-1 ). Then

R p r = p k-1 R p r-1 .
Proof. Suppose that f (w 1 , . . . , w k ) ≡ 0 (mod p r ). Then f (w 1 , . . . , w k ) ≡ 0 (mod p r-1 ). Hence, any solution (w 1 , . . . , w k ) of the modular equation Since f (t 1 , . . . , t k ) ≡ 0 (mod p r-1 ), then f (t 1 , . . . , t k ) = up r-1 for some integer u ∈ Z/pZ. This implies that if f (w 1 , . . . , w k ) ≡ 0 (mod p r ), then

f (w 1 , . . . , w k ) ≡ 0 (mod p r ) is of the form (w 1 , . . . , w k ) = (t 1 , . . . , t k ) + p r-1 (h 1 , . . . , h k ) (mod p r ), (3) where 
u + k i=1 ∂f ∂w i (w 1 , . . . , w k ) h i ≡ 0 (mod p). (4) 
If (w 1 , . . . , w k ) is a regular point, then ∂f ∂w i (w 1 , . . . , w k ) = 0 for some i ∈ 1, . . . , k.

Hence ( 4) is an affine equation over the field Z/pZ, which has p k-1 solutions (h 1 , . . . , h k ). Consequently, using (3), we see that any regular point (w 1 , . . . , w k ) on the curve modulo p r is determined by a regular point (t 1 , . . . , t k ) modulo p r-1 and p k-1 points (h 1 , . . . , h k ) modulo p. This leads to

R p r = p k-1 R p r-1 .
This terminates the proof.

As a consequence of Theorem 3, we have the following result.

Corollary 1. Let R p r be the number of regular points on the curve

f (t 1 , . . . , t k ) ≡ 0 (mod p r ). Then R p r = p (k-1)(r-1) R p .
An important consequence concerns curves without any singular points.

Corollary 2. If a curve f (t 1 , . . . , t k ) ≡ 0 (mod p r ) has no singular point, then the number of points on the curve is

c p r = p (k-1)(r-1) c p .
Remark 1. For a univariate polynomial equation with non singular point, we have k = 1 and c p r = c p , which retrieves Hensel's Lemma.

Let p r be a prime power and b be an integer with gcd(p, b) = 1. The following result allows to compute the number of solutions of the equation y 2 ≡ x 3 + b (mod p r ) in terms of the number of solution of the equation y 2 ≡ x 3 +b (mod p).

Corollary 3. Let p r be a prime power and b be an integer with gcd(p, b) = 1.

Then # (x, y) ∈ (Z/p r Z) 2 | y 2 ≡ x 3 + b (mod p r ) = p r-1 # (x, y) ∈ (Z/pZ) 2 | y 2 ≡ x 3 + b (mod p) .
Proof. If y 2 ≡ x 3 + b (mod p r ), then f (x, y) ≡ 0 (mod p r ) where f (x, y) = y 2 -x 3 -b. Since there is no singular point on the curve f (x, y) ≡ 0 (mod p r ), then by Corollary 1, we get c p r = p r-1 c p and proves the corollary.

In the special case p ≡ 2 (mod 3), we have the following explicit result.

Corollary 4. Let p r be a prime power with p ≡ 2 (mod 3) and b be an integer such that gcd(p, b) = 1. Then

# (x, y) ∈ (Z/p r Z) 2 | y 2 ≡ x 3 + b (mod p r ) = p r .
Proof. This follows Theorem 2 and Corollary 3.

Also, when p ≡ 2 (mod 3), we have an explicit result about the number of solutions of the projective curve with equation y 2 z ≡ x 3 + bz 3 (mod p).

Corollary 5.

Let p be a prime number with p ≡ 2 (mod 3) and b be an integer with gcd(p, b) = 1. Then

# (x, y, z) ∈ (Z/pZ) 3 | y 2 z ≡ x 3 + bz 3 (mod p) = p 2 .
Proof. Suppose that p ≡ 2 (mod 3) and b is an integer with gcd(p, b) = 1. If z ≡ 0 (mod p), then the equation y 2 z ≡ x 3 + bz 3 (mod p) can be reduced to y 2 ≡ x 3 + b (mod p). By Theorem 2, the number of points of this elliptic curve is p + 1. Removing the point O, we find that the number of solutions of the equation y 2 ≡ x 3 + b (mod p) is p. If z = 0, then x = 0 and y is any integer with 0 ≤ y ≤ p -1. Hence, the number of solutions of the equation

y 2 z ≡ x 3 + bz 3 (mod p) is (p -1)p + p = p 2 .
The former result can be extended to the equation y 2 z ≡ x 3 + bz 3 (mod p r ).

In the following, we put (x : y : z) to represent the projective point with gcd(p, xyz) = 1 which satisfies the following property

(x : y : z) = {(λx, λy, λz) ∈ (Z/p r Z) 3 , | λ ∈ Z/p r Z, , gcd(p, λ) = 1}.
We denote by P p r the set of such projective points.

Theorem 4. Let p be a prime number with p ≡ 2 (mod 3) and b be an integer with gcd(p, b) = 1. Then the number of non singular points on the curve y 2 z ≡

x 3 + bz 3 (mod p r ) is # (x : y : z) ∈ P p r | y 2 z ≡ x 3 + bz 3 (mod p r ) = p r-1 (p + 1).
Proof. Suppose that p ≡ 2 (mod 3) and b is an integer with gcd(p, b) = 1. Since the only singular point of the curve with equation y 2 z ≡ x 3 + bz 3 (modp r ) is (0, 0, 0) which is not represented in P p r , then by combining Corollary 1 and Corollary 5, the number of regular points is

c p r -1 = p 2(r-1) (c p -1) = p 2(r-1) (p 2 -1).
Also, since each tuple (x : y : z) represents φ (p r ) = p r-1 (p -1) tuples (u, v, w) ∈ (Z/pZ) 3 , then the number of regular solutions (x : y : z) of the equation y 2 z ≡

x 3 + bz 3 (mod p r ) is p 2(r-1) (p 2 -1) p r-1 (p -1) = p r-1 (p + 1).
This terminates the proof.

We can use the former result to find the number of points on the elliptic curve defined by the equation y 2 ≡ x 3 +b (mod p r q s ) by splitting the curve in two pieces. The next result concerns the polynomial equation f (t 1 , . . . , t k ) ≡ 0 (mod p r q s ) where p and q are integers with gcd(p, q) = 1.

Theorem 5. Let c p r q s be the number of points on the curve f (t 1 , . . . , t k ) ≡ 0 (mod p r q s ) where gcd(p, q) = 1. Then

c p r q s = c p r × c q s .
Proof. Since gcd(p, q) = 1, then by the Chinese Remainder Theorem, there is a one to one correspondence from the set of solutions of the equation f (t 1 , . . . , t k ) ≡ 0 (mod p r q s ) to the set of the solutions of the system f (t 1 , . . . , t k ) ≡ 0 (mod p r ), f (t 1 , . . . , t k ) ≡ 0 (mod q s ).

Hence

c p r q s = c p r × c q s .
As a corollary of Theorem 5 and Corollary 4, we have the following result.

Corollary 6. Let p r and q s be two prime powers such that gcd(p, q) = 1, with p ≡ q ≡ 2 (mod 3). Then the number of points on the elliptic curve with equation

y 2 ≡ x 3 + b (mod p r q s ) is # (x, y) ∈ (Z/p r q s Z) 2 | y 2 ≡ x 3 + b (mod p r q s ) ∪ O = p r q s + 1.

Encryption

1. Represent the message as a point

M = (x M , y M ) ∈ (Z/nZ) 2 . 2. Compute b ≡ y 2 M -x 3 M (mod n). 3. Compute C = eM = (x C , y C ) on the elliptic curve y 2 = x 3 + b (mod n).
4. Send the encrypted message C.

Decryption

1. Compute b ≡ y 2 C -x 3 C (mod n). 2.
Compute the message M = dC on the elliptic curve

y 2 = x 3 + b (mod n).
The decryption is exact since de ≡ 1 (mod p r-1 (p + 1) q s-1 (q + 1)) and there exists an integer k such that de = 1 + kp r-1 (p + 1) q s-1 (q + 1). Hence, using Lemma 4, we get dC = deM = 1 + kp r-1 (p + 1)q s-1 (q + 1) M = M.

Security of the New Cryptosystem

In this section, we discuss the security of the proposed scheme.

Factoring the modulus

In our scheme, the modulus is of the form n = p r q s where p and q are two prime numbers with p ≡ q ≡ 2 (mod 3). When p and q are large and the exponents r and s are chosen according to Table 1, the problem is believed hard (see [4,3]) as for the RSA situation where the modulus is n = pq. The factoring methods such as the Elliptic Curve Method [START_REF] Lenstra | Factoring integers with elliptic curves[END_REF] and the Number Field Sieve [START_REF] Lenstra | The development of the number field sieve[END_REF] are ineffective for large primes p and q.

Finding the order

For an elliptic curve curve with equation

y 2 ≡ x 3 + ax + b (mod p),
where p is a large prime number, there is no known method to find the number of solutions of the underlying equation. This is valid when the equation is in the form

y 2 ≡ x 3 + ax + b (mod n),
where n is the product of large unknown prime factors. This shows that finding the order ψ(n) = p r-1 q s-1 (p + 1)(q + 1) in the new scheme is unfeasible. Comparatively, in the original KMOV, the modulus is n = pq and the order is (p + 1)(q + 1) while in the standard RSA the modulus is similar and the order is (p -1)(q -1). Finding one of these orders is known to be computationally equivalent to factoring the modulus n = pq. In our new scheme, the modulus is n = p r q s and the order is ψ(n) = p r-1 q s-1 (p+1)(q +1). Hence, finding the order ψ(n) will lead to p and q. It follows that finding the order in the new scheme is also equivalent to factoring the modulus.

On the other hand, note that the order ψ(n) represents the number of points on the elliptic curve with equation

y 2 z ≡ x 3 + bz 3 (mod n),
where the factorization of n is unknown. It is known that by the Chinese Remainder Theorem, finding a solution modulo n can be done by finding a solution modulo p r and modulo q s . Since the factorization of n is unknown, this is infeasible.

Solving the elliptic curve discrete logarithm

In the new scheme, the public parameters are the modulus n = p r q s , the exponent e, the ciphertext C = (x C , y C ) which is computed as C = eM = e(x M , y M ) on the elliptic curve with equation

y 2 ≡ x 3 + b (mod n), b ≡ y 2 M -x 3 M (mod n).
Solving the equation C = eM for M is equivalent to solving the discrete logarithm problem since if P is a point on the elliptic curve such that M = uP , then C = eM = euP and finding u is computationally infeasible since the elliptic curve discrete logarithm problem is hard (see [START_REF] Joux | The past, evolving present, and future of the discrete logarithm[END_REF]).

Solving the key equation

In the new scheme, the public exponent e and the private exponent d are related with the modular equation ed ≡ 1 (mod p r-1 q s-1 (p + 1)(q + 1)), or equivalently by the equation ed -kp r-1 q s-1 (p + 1)(q + 1) = 1.

This equation is related to the prime power RSA key equation ed -kp r-1 q s-1 (p -1)(q -1) = 1, which has been intensively studied. In [START_REF] Lu | Cryptanalysis of an RSA variant with Moduli N = p r q[END_REF], it is shown that if r, s > 1, and

d < n 1-3r+s (r+s) 2 ,
then one can find d and factor the modulus n = p r q s . In [START_REF] Lu | Solving Linear Equations Modulo Unknown Divisors: Revisited[END_REF], for s = 1, the bound is d < n r(r-1) (r+1) 2 . Observe that the key equation in our scheme is slightly different from the prime power RSA key equation, nevertheless, the techniques are similar and we conclude that when d is sufficiently large, then the equation is not vulnerable to the former attacks. For comparison, in the standard RSA and KMOV, the bound for vulnerability is d < n 0.292 (see [2,[START_REF] Ibrahimpasic | Cryptanalysis of KMOV cryptosystem with short secret exponent[END_REF]).

Impossible addition on the elliptic curve method

As the elliptic curve is defined over the ring Z/p r q s Z, then the addition is not always defined if one of the inversion modulo p r or modulo q s is not possible. This situation can be used to factor the modulus n = p r q s . On the other hand, this scenario is very unlikely to happen and the following result gives a precise probability.

Corollary 7. The probability that the sum of two points on the elliptic curve with equation y 2 ≡ x 3 + b (mod p r q s ) is not defined is approximately p r-1 (p + 1) q s-1 (q + 1) -(p r q s + 1) p r-1 (p + 1) q s-1 (q + 1) ≈ p + q (p + 1)(q + 1) .

Proof. We first give an estimation of solutions (x : y : z) of the equation y 2 z ≡ x 3 + bz 3 (mod p r q s ), with gcd(pq, z) = 1. Notice that (x : y : z) ∈ P p r q s , p z, q z | zy 2 ≡ x 3 + bz 3 (mod p r q s ) = (x : y : 1) ∈ P p r q s , | y 2 ≡ x 3 + b (mod p r q s ) = (x, y) ∈ Z/nZ | y 2 ≡ x 3 + b (mod p r q s ) therefore # (x : y : z) ∈ (Z/p r q s Z) 3 | gcd(pq, z) = 1, zy 2 = x 3 + bz 3 ∪ O = p r q s + 1

We know that the sum of two points on the curve zy 2 ≡ x 3 + bz 3 (mod p r q s ) is not defined if and only if the third coordinate of the sum is divisible by p or q but not divisible by p r q s . The probability of such situations is p r-1 (p + 1)q s-1 (q + 1) -(p r q s + 1) p r-1 (p + 1)q s-1 (q + 1) = p + q (p + 1) (q + 1) + p r-1 q s-1 -1 p r-1 (p + 1) q s-1 (q + 1)

≈

p + q (p + 1)(q + 1) This shows that the probability that the sum of two points is not defined is very low since when p and q are large and of the same bit size, then p+q (p+1)(q+1) ≈ 1 √ pq .

Conclusion.

We presented a generalization of the KMOV cryptosystem by using an elliptic curve defined on the ring Z/nZ where n = p r q s is a prime power modulus. We described the theory for computing the number of points on the elliptic curve y 2 ≡ x 3 + b (mod n) and gave an explicit estimation when p ≡ q ≡ 2 (mod 3). Finally, we studied the security of the new system and showed that it is mainly based on factoring the modulus.

  1 , . . . , t k ), we consider the curve defined by the equation f (t 1 , . . . , t k ) ≡ 0 (mod p r ). Every integer solution (t 1 , . . . , t k ) will be considered as a point on the curve. In the following definition, we introduce the notion of a singular point.

Definition 1. Let f (t 1 , . . . , t k ) ∈ Z [t 1 , . . . , t k ] be a polynomial and p r be a prime power integer. A point (t 1 , . . . , t k ) on the curve f (t 1 , . . . , t k ) ≡ 0 (mod p r ) is called a singular point if for all i = 1, . . . , k, we have

∂f ∂t i (t 1 , . . . , t k ) ≡ 0 (mod p).

A non singular point is called a regular point.

In the following definition, we define the number of singular and regular points on a curve. Definition 2. Let f (t 1 , . . . , t k ) ∈ Z [t 1 , . . . , t k ] be a polynomial and p r be a prime power integer. The number of points on the curve f (t 1 , . . . , t k ) ≡ 0 (mod p r ) is denoted c p r with c p r = # (t 1 , . . . , t k ) ∈ (Z/p r Z) k | f (t 1 , . . . , t k ) ≡ 0 (mod p r ) and the number of singular points is denoted s p r with s p r = #{(t 1 , . . . , t k ) ∈ (Z/p r Z) k |f (t 1 , . . . , t k ) ≡ 0 (mod p r ), ∂f ∂t i (t 1 , . . . , t k ) ≡ 0 (mod p), i = 1, . . . , k}. A non-singular point is called a regular point. The number of regular points modulo

  (t 1 , . . . , t k ) is a modular root of f (t 1 , . . . , t k ) ≡ 0 (mod p r-1 ) and (h 1 , . . . , h k ) ∈ (Z/pZ) k . Also note that, since for i = 1, . . . , k, we have

	∂f ∂w i	(w 1 , . . . , w k ) ≡	∂f ∂t i	(t 1 , . . . , t k ) (mod p),

then (w 1 , . . . , w k ) is regular if and only if (t 1 , . . . , t k ) is regular. Using (3) in Lemma 3, we get f (w 1 , . . . , w k ) ≡ f (t 1 , . . . , t k ) + p r-1 k i=1 ∂f ∂w i (w 1 , . . . , w k ) h i (mod p r ).

Proof. This is immediate since, by Corollary 4, we have # (x, y) ∈ (Z/p r Z) 2 | y 2 ≡ x 3 + b (mod p r ) = p r and # (x, y) ∈ (Z/q s Z)

Then, by the Chinese Remainder Theorem, we get

Adding the point at infinity O, we get the result.

is the set of points that we use for encryption in practice.

The Proposed Generalization of the KMOV Cryptosystem

In this section, we propose a generalization of the KMOV cryptosystem to elliptic curves with equation y 2 ≡ x 3 + b (mod p r q s ) where gcd(b, pq) = 1. We will need the following lemma which is a consequence of Theorem 4 combined with the Chinese Remainder Theorem.

Lemma 4. Let n = p r q s be a prime power RSA modulus. Then, for any point P on the elliptic curve with equation y 2 ≡ x 3 + b (mod p r q s ) and any integer k, we have 1 + kp r-1 q s-1 (p + 1)(q + 1) P = O.

Recall that the previous lemma reveals why we have used the projective points rather that the affine ones, since :

1. The projective coordinates give the cardinality p r-1 (p + 1) of the curve modulo p r , which satisfies p r-1 (p + 1) P = O, while the affine coordinates fail to do that because the number of points of the elliptic curve with equation y 2 ≡ x 3 + b (mod p r ) is p r and we have p r < p r-1 (p + 1). 2. There is no need to add the point at infinity in the cardinality, since it is counted in P p r from the beginning.

Next, we describe the generalization of the KMOV cryptosystem by presenting the key generation, the encryption and the decryption.