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A generalized attack on RSA type cryptosystems

Let N = pq be an RSA modulus with unknown factorization. Some variants of the RSA cryptosystem, such as LUC, RSA with Gaussian primes and RSA type schemes based on singular elliptic curves use a public key e and a private key d satisfying an equation of the form edk p 2 -1 q 2 -1 = 1. In this paper, we consider the general equation ex -p 2 -1 q 2 -1 y = z and present a new attack that finds the prime factors p and q in the case that x, y and z satisfy a specific condition. The attack combines the continued fraction algorithm and Coppersmith's technique and can be seen as a generalization of the attacks of Wiener and Blömer-May on RSA.

Introduction

In 1978, Rivest, Shamir and Adleman [START_REF] Rivest | A Method for Obtaining digital signatures and public-key cryptosystems[END_REF] proposed RSA, the first and widely most used public key cryptosystem. The security of RSA is mainly based on the hardness of factoring large composite integers, nevertheless, RSA has been extensively studied for vulnerabilities by various non factorization attacks. The public parameters in RSA are the RSA modulus N = pq which is the product of two large primes of the same bit-size and a public exponent e satisfying gcd(e, (p -1)(q -1)) = 1. The correspondent private exponent is the integer d < N satisfying ed ≡ 1 (mod (p -1)(q -1)) which can be rewritten as a key equation ed -k(p -1)(q -1) = 1. In RSA, the encryption and decryption time are proportional to the bit-length of the public and the private exponents. To reduce encryption or decryption time, one may be tempted to use small public exponents or private exponents. While a few attacks on RSA with small public exponent e have been launched (see [START_REF] Hastad | Solving simultaneous modular equations of low degree[END_REF]), many attacks on RSA with small or special private exponent d exploit the algebraic properties of the key equation. In 1990, Wiener [START_REF] Wiener | Cryptanalysis of short RSA secret exponents[END_REF] presented an attack on RSA that solves the key equation and factors N if d is sufficiently small, namely d < 1 3 N 0.25 . Wiener's attack consists on finding k d among the convergents of the continued fraction expansion of e N and then using k d to factor N . Wiener's attack on RSA has been extended in many ways using lattice reduction and Coppersmith's method [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF] (see [START_REF] Boneh | Twenty years of attacks on the RSA cryptosystem[END_REF], [START_REF] Hinek | Cryptanalysis of RSA and its variants[END_REF], [START_REF] May | New RSA Vulnerabilities Using Lattice Reduction Methods[END_REF]). In 1997, Boneh and Durfee [START_REF] Boneh | Cryptanalysis of RSA with private key d less than N 0.292[END_REF] used lattice reduction and Coppersmith's method to improve the bound to d < N 0.292 . In 2004, Blömer and May studied the variant equation ex + y ≡ 0 (mod (p -1)(q -1)) and showed that the RSA modulus can be factored if the unknown parameters satisfy x < 1 3 N 0.25 and |y| ≤ cN -34 ex for some constant c ≤ 1. In order to improve the implementation of the RSA cryptosystem, many schemes have been presented giving rise to RSA type cryptosystems [START_REF] Boneh | Fast Variants of RSA[END_REF]. One way to extend RSA is to consider a prime-power modulus of the form N = p r q with r ≥ 2 (see [START_REF] Takagi | Fast RSA-type cryptosystem modulo p k q[END_REF]) or a multi-prime modulus of the form N = p 1 p 2 . . . p r . Another way to extend RSA is to consider the modulus N = pq and the exponent e with specific arithmetical operations such as elliptic curves [START_REF] Kuwakado | A new RSA-type scheme based on singular cubic curves y 2 = x 3 + bx 2 (mod n)[END_REF] [13], Gaussian domains [START_REF] Elkamchouchi | Extended RSA cryptosystem and digital signature schemes in the domain of Gaussian integers[END_REF] and quadratic fields [START_REF] Paulus | A new public key cryptosystem over quadratic orders with quadratic decryption time[END_REF]. In 1995, Kuwakado, Koyama and Tsuruoka [START_REF] Kuwakado | A new RSA-type scheme based on singular cubic curves y 2 = x 3 + bx 2 (mod n)[END_REF] presented a scheme based on using an RSA modulus N = pq and a singular cubic equation with equation y 2 = x 3 + bx 2 mod N where a message M = (m x , m y ) is represented as a point on the singular cubic equation. In this system, the public exponent e and the private exponent d satisfy an equation of the form ed -k p 2 -1 q 2 -1 . In 2002, Elkamchouchi, Elshenawy and Shaban [START_REF] Elkamchouchi | Extended RSA cryptosystem and digital signature schemes in the domain of Gaussian integers[END_REF] adapted RSA to the Gaussian domain by using a modulus of the form N = P Q where P and Q are two Gaussian primes. The public exponent e and the private exponent d satisfy ed ≡ 1 (mod (|P | -1) (|Q| -1)). When P = p and Q = q are integer prime numbers, the equation becomes ed ≡ 1 (mod p 2 -1 q 2 -1 ) = 1. In 1993, Smith and Lennon proposed LUC [START_REF] Smith | LUC: a new public-key cryptosystem[END_REF], where the public exponent e and the private exponent d are such that ed ≡ 1 (mod p 2 -1 q 2 -1 ). In 2007, in connection with LUC, Castagnos [START_REF] Castagnos | An efficient probabilistic public-key cryptosystem over quadratic field quotients[END_REF] proposed a scheme that uses an RSA modulus N = pq and a public exponent e. The two public parameters N and e are such that gcd e, p 2 -1 q 2 -1 = 1 which implies the existence of two positive integers d and k satisfying the equation ed-k p 2 -1 q 2 -1 = 1. The former four variants of RSA use a modulus N = pq and a public exponent e satisfying an equation of the form ed -k p 2 -1 q 2 -1 = 1. In [START_REF] Bunder | A new attack on three variants of the RSA cryptosystem[END_REF], an attack is presented that solves the former equation when

d satisfies d < 2N 3 -18N 2 e .
The attack, which is related to Wiener's attack on RSA, is based on applying the continued fraction algorithm to find k d among the covergents of the continued fraction expansion of e N 2 -9

The new attack uses the convergents of the continued fraction expansion of e N 2 +1-9 4 N to find y

x and then applies Coppersmith's technique [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF] to find p and q.

The remainder of the paper is organized as follows. In section 2, we recall some RSA type schemes that are based on a modulus of the form N = pq with a public exponent satisfying gcd e, p 2 -1 q 2 -1 = 1. In Section 3, we briefly review some basic results used in the paper, including continued fractions and Coppersmith's technique. In Section 4, we present some lemmas that will be used in the paper. In Section 5, we present our new method. In Section 6, we give a numerical example. We conclude the paper in Section 7.

Variant RSA schemes

Let N = pq be an RSA modulus and e a public integer. In this section, we briefly describe three schemes that are variants of the RSA cryptosystem with a modulus N = pq and with a public key e and a private key d satisfying ed-k p 2 -1 q 2 -1 = 1. As this equation does not depend on the underlying variant schemes, we then generalize it to the equation ex -p 2 -1 q 2 -1 y = z which is the main focus of this paper.

LUC cryptosystem

In 1993, Smith and Lennon [START_REF] Smith | LUC: a new public-key cryptosystem[END_REF] proposed a variant of the RSA cryptosystem, called LUC, based on a Lucas functions. In LUC, the modulus is a RSA modulus N = pq and the public exponent e is a positive integer satisfying gcd e, p 2 -1 q 2 -1 which can be rewritten as an equation edk p 2 -1 q 2 -1 = 1. A more general equation is ex -p 2 -1 q 2 -1 y = z with the unknown parameters x, y and z.

Castagnos cryptosystem

In 2007, Castagnos [START_REF] Castagnos | An efficient probabilistic public-key cryptosystem over quadratic field quotients[END_REF] proposed a cryptosystem related to LUC and RSA where the modulus N = pq and the public exponent e satisfy the condition gcd e, p 2 -1 q 2 -1 or equivalently ed -k p 2 -1 q 2 -1 = 1 for some integers d and k. This equation can be extended to a more general one, namely ex -p 2 -1 q 2 -1 y = z.

RSA with Gaussian primes

In 2002, Elkamchouchi, Elshenawy and Shaban [START_REF] Elkamchouchi | Extended RSA cryptosystem and digital signature schemes in the domain of Gaussian integers[END_REF] proposed a generalization of the RSA cryptosystem to the domain of Guassian integers. A Gaussian integer is a complexe number z = a + bi where a and b are both integers. A Gaussian prime is a Gaussian integer that is not the product of two non-unit Gaussian integers, the only units being ±1 and ±i. The Gaussian primes are of one of the following forms

• P = ±1 ± i,
• P = a where |a| is an integer prime with |a| ≡ 3 (mod 4),

• P = ai where |a| is an integer prime with |a| ≡ 3 (mod 4),

• P = a + ib where |P | = a 2 + b 2 ≡ 1 (mod 4
) is an integer prime.

In the RSA variant with Gaussian integers, the modulus is N = P Q, a product of two Gaussian integer primes P and Q. The Euler totient function is φ(N ) = (|P | -1) (|Q| -1) and the public exponent e is a positive integer satisfying gcd(e, φ(N )) = 1. When P = p and Q = q are integer primes, then φ(N ) = p 2 -1 q 2 -1 and the public exponent satisfies the key equation ed -k p 2 -1 q 2 -1 = 1 which can be extended to a more general equation ex -p 2 -1 q 2 -1 y = z.

RSA type schemes based on singular cubic curves

Let N = pq be an RSA modulus. For an integer b ∈ Z/nZ, consider the cubic curve E N (b) defined over the ring Z/nZ given by the Weierstrass equation

E N (b) : y 2 = x 3 + bx 2 mod N.
In 1995, Kuwakado, Koyama, and Tsuruoka [START_REF] Kuwakado | A new RSA-type scheme based on singular cubic curves y 2 = x 3 + bx 2 (mod n)[END_REF] proposed a new cryptosystem based the elliptic curve E N (b). The encryption key is a positive integer satisfying gcd e, p 2 -1 q 2 -1 and the decryption key is the integer d satisfying ed ≡ 1 (mod p 2 -1 q 2 -1 ), or equivalently ed -k p 2 -1 q 2 -1 = 1. The encryption and the decryption procedures use operations on the singular cubic curve E N (b). Using the continued fraction algorithm, it is possible to attack the scheme using the key equation ed -k p 2 -1 q 2 -1 = 1. A more general attack on the scheme can be launched by using the equation ex -p 2 -1 q 2 -1 y = z and by combining the continued fraction algorithm and Coppersmith's method.

Continued fractions

Let x be a real number. Define the sets (x 0 , x 1 , . . .) and [a 0 , a 1 , . . .] by x 0 = x and by the recurrences

a i = x i , x i+1 = 1 x i -a i , i = 0, 1, . . . .
The set [a 0 , a 1 , • • • ] is the continued fraction expansion of x and satisfies

x = a 0 + 1 a 1 + 1 a 2 + 1 . . . .
The convergents of x are the rational numbers pn qn , n = 0, 1, . . . satisfying

p n q n = a 0 + 1 a 1 + 1 a 2 + 1 . . . + 1 a n .

Continued fractions have numerous properties and applications in cryptography.

The following useful result characterizes the approximations to a real number x (see Theorem 184 of [START_REF] Hardy | An Introduction to the Theory of Numbers[END_REF]).

Theorem 1 (Legendre) If a, b be positive integers and

0 < x - a b < 1 2b 2
then a b is a convergent of the continued fraction of x.

Note that when x = r s is a rational number, then the list of the convergents of the continued fraction expansion of r s can be done in polynomial time in log(max(a, b)).

Coppersmith's method

In 1997, Coppersmith [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF] introduced an algorithm to find small solutions of univariate modular polynomial equations and another algorithm to find small roots of bivariate polynomial equations. Since then, Coppersmith's method has been applied in various applications in cryptography, mainly to attack the RSA cryptosystem. A typical example is the following result.

Theorem 2 Let N = pq be the product of two unknown primes such that q < p < 2q. Given an approximation p of p with an additive error term at most N 1 4 , one can find p and q in polynomial time in log(N ).

As a consequence of Coppersmith's Theorem, one can show that if N = pq with |p -q| < N 1 4 , then N can be factored (see [START_REF] Nitaj | Another generalization of Wiener's attack on RSA[END_REF]). Thus, throughout this paper, we will consider that the prime difference p -q satisfies |p -q| > N 

Useful Lemmas

One of the main RSA standard recommendations for safe parameters is to choose the prime factors factors p, q of the same bit-size. More precisely, p and q should satisfy 1 < p q < 2 or equivalently q < p < 2q. Under this assumption, one can find intervals for p, q, p -q, p + q and p 2 + q 2 in terms of N . We begin by the following results (see [START_REF] Nitaj | Another generalization of Wiener's attack on RSA[END_REF]).

Lemma 1 Let N = pq be an RSA modulus with q < p < 2q. Then √ 2 2

√ N < q < √ N < p < √ 2 √ N and 0 < p -q < √ 2 2 √ N .
We will need the following result.

Lemma 2 Let N = pq be an RSA modulus with q < p < 2q. Then

2 √ N < p + q < 3 √ 2 2

√

N and 2N < p 2 + q 2 < 5 2 N.

Proof. Assume that N = pq with q < p < 2q. Then 1 < p q < 2. The function

f (x) = x + 1 x is increasing on [1, +∞). Hence, f (1) < f ( p q ) < f (2), that is 2 < p q + q p < 5 2 . 
Multiplying by N = pq, we get

2N < p 2 + q 2 < 5 2 N.
Similarly, since 1

< p q < √ 2, then f (1) < f ( p q ) < f ( √ 2), or equivalently 2 < p q + p q < 3 √ 2 2 .
Hence, multiplying by

√ N = √ pq, we get 2 √ N < p + q < 3 √ 2 2 √ N .
This terminates the proof.

Corollary 1 Let N = pq be an RSA modulus with q < p < 2q. Let e < p 2 -1 q 2 -1 be a public exponent. If the private exponent d satisfies

d < 2N -4 √ 2N 3 4 
, then one can find p and q in polynomial time in log(N ).

Proof. Suppose that q < p < 2q and e < p 2 -1 q 2 -1 . Since the private exponent d satisfies ed -k p 2 -1 q 2 -1 = 1 for a positive integer k, then

k = ed -1 (p 2 1) (q 2 -1) < d • e (p 2 -1) (q 2 -1) < d. Then dk < d 2 . Now, assume that d 2 < 2N -4 √ 2N 3 4 . Then, dk < 2N -4 √ 2N 3 4
and d, k fulfill the conditions of Theorem 3 wich leads to the factorization of N in polynomial time in log(N ).

A Numerical Example

In this section we give a detailed numerical example to explain our method as developed in Theorem 3. Let us consider the small public key

N = 204645825996541, e = 26384989321053458213237.
It is obvious that equation ex -p 2 -1 q 2 -1 y = z has infinitely many solutions (x, y, z) with positive integers x, y and non zero integer z. Our aim is to find the solution that satisfies the conditions of Theorem 3, if any. Define We want to find y x among the convergents of the continued fraction expansion of 

Conclusion

In this paper, we considered some variants of the RSA cryptosystem that use a modulus N = pq and a public exponent d satisfying gcd e, p 2 -1 q 2 -1 . We studied the general equation ex -p 2 -1 q 2 -1 y = z and combined the continued fraction algorithm with Coppersmith's technique to find x and y and then to factor the RSA modulus N . Our new method can considered as an extension to some RSA type schemes of two former methods that work for RSA, namely Wiener's attack and Blömer-May attack.

e N 2 4 √ 2N 3 4 ≈ 4 .

 2434 +1-9 4 N . Following the technique of Theorem 3, for each convergent yx of e N 2 +1-9 4 N with xy < 2N -089×10 14 , we compute an approximation p of p using p ≈ 19126518. Coppersmith's Theorem outputs the prime factor p = 19126831 from which we deduce the second prime factor q = N p = 10699411. This completes the factorization of N .

N +1 . In this paper, we consider an extension of this attack by studying the more general equation ex-p 2 -1 q 2 -1 y = z where the unknown parameters x, y, z satisfy

PreliminariesIn this section, we present the mathematical preliminaries.

The New Attack

In this section, we present our new attack to solve the equation ex-p 2 -1 q 2 -1 y = z when x, y and z are suitably small. The new method combines two techniques, the continued fraction algorithm and Coppersmith's method.

Theorem 3 Let N = pq be an RSA modulus with q < p < 2q. Let e be a public exponent satisfying an equation ex -p 2 -1 q 2 -1 y = z with coprime positive integers x and y. If

and |z| < (p -q)N 1 4 y, then one can find p and q in polynomial time in log(N ).

Proof. Suppose that N = pq with q < p < 2q and that a public exponent e satisfies the equation

with x > 0, y > 0 and gcd(x, y) = 1. Then

From this we deduce

Using Lemma 2, we get that p 2 + q 2 -9 4 N < 1 4 N . Suppose in addition that |z| < |p -q|N 1 4 y. Then, using Lemma 1, we get

Hence (3) leads to

Now, suppose that

.

and

4N 2 +4-9N < 1 2xy . Using this in (5), we get

Hence, if this condition is fulfilled, then one can find y x amongst the convergents of the continued fraction expansion of e N 2 +1- 9 4 N as stated in Theorem 1. Moreover, since gcd(x, y) = 1, the values of x and y are the denominator and numerator of the convergent. Plugging x and y in (1), we get

Adding 2N to both sides of (6), we get

Similarly, subtracting 2N to both sides of (6), we get

Observe that ( 7) can be transformed into

from which we deduce

.

y and by Lemma 2 we have p + q > 2 √ N . Then

This means that (N + 1) 2 -ex y is an approximation of p + q with error term less than N 1 4 . In a similar way, using (8), we get

Using the assumption |z| < (p -q)N 1 4 y, we get

Hence, (N -1) 2 -ex y is an approximation of p -q with an error term less than N 1 4 . Combing the approximations of p + q and p -q, we get

This gives an approximation of p with an error term of at most N 1 4 . Hence, using Coppersmith's Theorem 2, one can p which leads to q = N p . Since every step in the proof can be done in polynomial time in log(N ), then the factorization of N can be obtained in polynomial time in log(N ).

We note that, when gcd ex, p 2 -1 q 2 -1 = 1, the diophantine equation ex -p 2 -1 q 2 -1 y = z is equivalent to the modular equation ex ≡ z (mod p 2 -1 q 2 -1 ). Moreover, the exponent e satisfies e ≡ z x (mod p 2 -1 q 2 -1 ).

Hence, Theorem 3 implies that one can factor N = pq for such exponents e in the case where xy < 2N -4 √ 2N We now consider an application of Theorem 3 to the private exponent d. We recall that d satisfies ed ≡ 1 (mod p 2 -1 q 2 -1 ). Instead of this modular equation, we consider the key equation ed -k p 2 -1 q 2 -1 = 1.