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Abstract. Let (n = pq, e = nβ) be an RSA public key with private expo-
nent d = nδ, where p and q are large primes of the same bit size. At Eurocrypt
96, Coppersmith presented a polynomial-time algorithm for finding small roots
of univariate modular equations based on lattice reduction and then succussed
to factorize the RSA modulus. Since then, a series of attacks on the key equa-
tion ed − kφ(n) = 1 of RSA have been presented. In this paper, we show that
many of such attacks can be unified in a single attack using a new notion called
Coppersmith’s interval. We determine a Coppersmith’s interval for a given RSA
public key (n, e). The interval is valid for any variant of RSA, such as Multi-
Prime RSA, that uses the key equation. Then we show that RSA is insecure if
δ < β+ 1

3
α− 1

3

√
12αβ + 4α2 provided that we have approximation p0 ≥

√
n

of p with |p− p0| ≤ 1
2
nα, α ≤ 1

2
. The attack is an extension of Coppersmith’s

result.
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1 Introduction

The RSA cryptosystem invented by [13], is the most popular and widely used cryp-
tosystem in the world. It can be used for encryption without the need to exchange a
secret key separately.

In RSA, the modulus n = pq is a product of two large primes p, q of the same
bit-size with p > q. The public exponent e and the private exponent d satisfy ed ≡ 1
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(mod φ(n)) where φ(n) = (p − 1)(q − 1) is Euler’s totient function. The security of
RSA is based mainly on factoring the modulus n. To encrypt a message m ∈ Z?n one
computes c ≡ me (mod n) using the public key (n, e). To recover the messagem, one
computes cd (mod n). The main drawback of RSA is its efficiency, in particular for
some devices with limited computing power such as smart cards. The RSA encryption
and decryption take timeO((log e)(log n)2) andO((log d)(log n)2) respectively. Many
ways have been considered when implementing RSA to speed up the time of decryption
(similarly, signature-generation). For example, one might be tempted to use small pri-
vate exponents to speed up the decryption/signing process. Unfortunately, [20] showed
that RSA is insecure if d < 1

3n
1
4 . Wiener’s attack is based on searching d among the

denominators of the convergents of the continued fraction expansion of e
n . The bound

was improved to d < n0.292 by [2]. Their attack is based on the method of [3] for find-
ing small solutions of modular polynomial equations, which in turn uses the LLL lattice
reduction algorithm by [9]. Therefore, people have been looking for vulnerabilities of
RSA using Coppersmith’s method. Although none of these attacks totally break RSA,
they show in which cases it is insecure.

The starting point of the most known attacks on RSA is the study of the key modular
equation ed ≡ 1 (mod φ(n)) and its linear form ed − kφ(n) = 1 in addition to some
extra information on the size of the private exponent d or the prime factors p, q of the
modulus n = pq. Wiener [20] tried to solve the key equation ed − kφ(n) = 1 by
transforming it into an inequality of the form

∣∣ e
n −

k
d

∣∣ < 1
2d2 , which can be efficiently

solved by the continued fraction algorithm when d < 1
3n

1
4 . Note that the attack of

Wiener takes advantage of the approximation φ(n) ≈ n. In a different approach, Boneh
and Durfee [2] transformed the equation ed−kφ(n) = 1 using φ(n) = n+1−p−q and
considered the modular equation k

(
n+1
2 −

p+q
2

)
+ 1 ≡ 0 (mod e). Then they applied

the method of [3] to find the small solutions of the polynomial equation f(x, y) = 0

(mod e) where f(x, y) = x(n+1
2 + y) + 1. In [19], de Weger studied the situation

when the prime difference |p − q| = nθ is small. Following the method of Boneh and
Durfee, de Weger showed that RSA is unsafe if δ < 1

6 (4θ+ 5)− 1
3

√
(4θ + 5)(4θ − 1).

Observe that when the prime factors p, q of the RSA modulus n = pq are of the same
bit size, then one can assume, without loss of generality, that q < p < 2q. This easily
leads to the inequalities

√
2
2

√
n < q <

√
n < p <

√
2
√
n. It follows that when

|p− q| is small, then p and q are close to
√
n and, consequently, φ(n) ≈ n+ 1− 2

√
n.

This was an advantage for the attack of de Weger. Similarly, if the prime difference
|2q − p| is small, then one can show that q ≈

√
2
2

√
n and p ≈

√
2
√
n. This shows

that φ(n) ≈ n + 1 − 3
√
3

2

√
n and this was an advantage for the attack of [10]. Indeed,

in case of e ≈ n, d < nδ and |2q − p| < nγ , they showed that RSA is insecure if
δ < 1

6 (4γ+5)− 1
3

√
(4γ + 5)(4γ − 1). Sometimes, one can get more important results

if we assume that the private exponent d or the prime factors p, q are of special forms.
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These attacks are called partial key exposure attacks. Sun et al. [17] considered the
situation when the prime factors share an amount of their least significant bits. Namely,
if p− q = 2uz for some known u, then p+ q = 22uv + 2v0 where

v0 ≡ p0 +

(
n− p20

)
p−10

2
(mod 22u),

and p0 is a solution of the congruence x2 ≡ n (mod 2u). Then, using the key equa-
tion ed − kφ(n) = 1 with φ(n) = n + 1 − 2v0 − 22uv and taking e = nβ , 2u =

nγ and d < nδ , Sun et al. showed that RSA is insecure whenever δ < 7
6 −

2
3γ −

1
3

√
−24βγ + 16γ2 + 6β − 8γ + 1.

Our Contributions. In this paper, we unify most of the attacks on RSA that are based
on applying Coppersmith’s technique for solving modular polynomial equations de-
rived from the equation ed − kφ(n) = 1. We introduce the notion of Coppersmith’s
intervals. Let n be an RSA modulus and e, d be public and private exponents respec-
tively, satisfying ed − kφ(n) = 1. We said that the interval I is a Coppersmith’s in-
terval for the public key (n, e) if for every positive integer m ∈ I , the solution (d, k)

of the equation ed − kφ(n) = 1 can be found by applying Coppersmith’s method
to a modular polynomial equation involving a polynomial fm(x, y) derived from the
key equation ed − kφ(n) = 1. Then we show that for e = nβ , d = nδ , the interval
I = [φ(n)− nα, φ(n) + nα] is a Coppersmith’s interval for (n, e) if

δ < β +
1

3
α− 1

3

√
12αβ + 4α2.

This interval is also Coppersmith’s interval for any variant of RSA that uses the equation
ed − kφ(n) = 1. Then we use the obtained Coppersmith’s interval to show that some
former attacks on RSA can be reformulated using Coppersmith’s interval. This includes
attacks of [2], [19] and [10] as well as [17]. We also use the obtained Coppersmith’s
interval to factor an RSA modulus n = pq when an approximation p0 of p is given.
Finally, we show that the obtained Coppersmith’s interval can be applied to multi-prime
RSA to extend the attack of [19].
We note that the notion of Coppersmith’s interval is equivalent to finding a lower bound
φ(n)− nα and an upper bound φ(n) + nα for φ(n) so that Coppersmith’s method will
succeed in solving the modular polynomial equation xy + mx + 1 ≡ 0 (mod e) for
any m lying between the two bounds.

This paper is organized as follows. In Section 2, we present some well known facts
and method that will be used through the paper. In Section 3, we define Coppersmith’s
interval for a given RSA public key (n, e). Then we determine Coppersmith’s inter-
val for (n, e). In Section 4, we present our application of Coppersmith’s interval to
attack RSA. This includes that (1) how one can obtain some former attacks on RSA
(e.g. [2], [19] and [10]) from Coppersmith’s interval; (2) a revised version of Copper-
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smith attack on RSA; and (3) an extension of the attack of [19] on RSA to multi-prime
RSA. We conclude in Section 6.

2 Preliminaries

Throughout the paper, the values nα, nβ , nδ , nγ , nθ represent positive integers.
In this section, we present a few basic facts about lattice basis reduction. Also, we
mention some useful facts and results related to the prime factors of an RSA modulus
n = pq.

2.1 Lattice

Let u1, . . . , uω ∈ Zn be ω linearly independent vectors with ω ≤ n. A latticeL spanned
by (u1, . . . , uω) is the set of all integer linear combinations of u1, . . . , uω , that is

L =

{
ω∑
i=1

aiui | ai ∈ Z

}
.

The set (u1, . . . , uω) is called the basis of the lattice L. Let (u∗1, . . . , u
∗
ω) be the result

of applying Gram-Schmidt orthogonalization to the basis vectors. Then the determinant
of L is defined as

det(L) =

ω∏
i=1

‖u∗i ‖,

where ‖v‖ denotes the Euclidean norm of the vector v. If ω = n, then L is a full
rank lattice and the determinant of L is equal to the absolute value of the determinant
of a lattice basis matrix. The well known LLL algorithm, due to [9] has proved to be
a very efficient lattice reduction algorithm and very useful in cryptanalysis. The LLL
algorithm outputs an approximation of a shortest lattice vector in time polynomial in ω
and maxi ‖ui‖. Next we show the result of the output of the LLL algorithm (see [11]).

Theorem 1. [11] Let L be a lattice spanned by a basis (u1, . . . , uω). The LLL algo-
rithm produces a basis (b1, . . . , bω) of L satisfying

‖b1‖ ≤ ‖b2‖ ≤ . . . ≤ ‖bi‖ ≤ 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i .

Using the LLL algorithm, [3] presented an algorithm that allows to efficiently and
rigourously compute small integer roots of bivariate polynomials and small modular
roots of univariate polynomials. The two techniques are based on the same idea: using
the univariate or the bivariate polynomial to create a lattice, applying lattice reduction
to find a second polynomial that has the same root as the first one, and then solving
it over the integers. Later, [7] and [8] revisited the idea of Coppersmith and proposed



A Unified Method for Private Exponent Attacks on RSA using Lattices 5

alternative simplifications.
The strategy of [8] is a technique that allows to find a lattice with good properties.
Using an initial polynomial f(x1, . . . , xn), the technique creates m new polynomials
fi(x1, . . . , xn), i = 1, . . . ,m, such that the coefficients of these polynomials form a
triangular matrix with easy properties for lattice reduction.

Coppersmith’s method has been adapted to various multivariate modular polyno-
mial equations under the following assumption.

Assumption 2. [8], [8] Let f1, . . . , fn ∈ Z[x1, . . . , xn] be the polynomials that are
found by applying Coppersmith’s method. The resultant computations for the polyno-
mials f1, . . . , fn yield non-zero polynomials. Equivalently, the ideal generated by the
polynomial equations f1(x1, . . . , xn) = 0, . . . , fn(x1, . . . , xn) = 0 has dimension
zero.

The following theorem is due to [7] where it is used to derive conditions under
which the polynomial f(x, y) ∈ Z[x, y] with the modular solution f(x0, y0) ≡ 0

(mod eu) has the same root over integer, that is f(x0, y0) = 0. The theorem uses the
Euclidean norm of a bivariate polynomial f(x, y) =

∑
ai1,i2x

i1yi2 which is defined as

‖f(x, y)‖ =
√∑

a2i1,i2 .

Theorem 3. [7] Let f(x, y) ∈ Z[x, y] be a polynomial which is a sum of at most ω
monomials. Let e, u, X and Y be positive integers. Suppose that

f (x0, y0) ≡ 0 (mod eu), where |x0| < X, |y0| < Y,

‖f(xX, yY )‖ < eu√
ω
.

Then f (x0, y0) = 0 holds over the integers.

In the following theorem, it has been shown a general case in which the small inverse
problem can be solved. The small inverse problem is to find small integers x and y
satisfying x(A+ y) ≡ 1 (mod B) for two large integers A and B.

Theorem 4. [18] Given two large integersA andB, let (x0, y0) be a solution of x(A+

y) ≡ 1 (mod B) with |x0| < Bu and |y0| < Bv for some 0 < u, v < 1. Then (x0, y0)

can be obtained in polynomial time when

u < 1−
√
v for

1

4
≤ v < 1,

u < 1− 2

3
(
√

(3 + 4v)v − v) for 0 < v <
1

4
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2.2 Useful lemmas

We terminate this section by some useful results related to the prime factors of an RSA
modulus n = pq.

Lemma 1. [12], [19] Let n = pq be an RSA modulus such that q < p < 2q. Then

√
2

2

√
n < q <

√
n < p <

√
2
√
n, (1)

0 < p− q <
√

2

2

√
n, (2)

2
√
n < p+ q <

3
√

2

2

√
n. (3)

Lemma 2. [19] Let n = pq be an RSA modulus such that q < p < 2q. Then

0 < p+ q − 2
√
n <

(p− q)2

4
√
n

.

Proposition 1. [10] Let l be a positive integer. If q > 2l+2
4l+1p, then∣∣∣∣ 3√

2

√
n− (p+ q)

∣∣∣∣ < l(2q − p)2

( 3√
2

+ 2)
√
n
.

The following lemma showed that if p, q share m bits of their least significant bits,
then these sharing bits and 2m least significant bits of p + q can be computed in poly-
nomial time.

Lemma 3. [14] Let n = pq be an RSA modulus with q < p < 2q. Suppose that
p− q = 2uz for a known value u. Then p = 2up1 + p0 and q = 2uq1 + p0 where p0 is
a solution of the equation x2 ≡ n (mod 2u) and p+ q = 22uv + 2v0 with

v0 ≡ p0 +

(
n− p20

)
p−10

2
(mod 22u).

3 The Lattice Result

In this section we introduce the notion of Coppersmith’s interval for a given public-key
RSA (n, e). It is based on Coppersmith’s method. In literature [3,11,8,5,22], the term
Coppersmith’s method is used to refer to lattice basis reduction techniques for finding
small roots of polynomials modulo an integer n with unknown factorization.
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3.1 Definitions

We start this section by giving definition of Coppersmith’s root and Coppersmith’s in-
terval. Then we determine a Coppersmith’s interval for a given public-key RSA (n, e)

related the to key equation equation ed − kφ(n) = 1. We start with the following
definition in regards of a bivariate polynomial.

Definition 1. (Coppersmith’s root) Let x0, y0 be two integers. The tuple (x0, y0) is
a Coppersmith’s root of the polynomial f(x, y) ∈ Z[x, y] modulo an integer e if
f(x0, y0) ≡ 0 (mod e), where (x0, y0) can be computed in polynomial time using
Coppersmith’s method.

Let (n, e) be an RSA public key satisfying the equation ed − kφ(n) = 1. Then
kφ(n) + 1 ≡ 0 (mod e). Let m be an integer. Then k(φ(n) − m) + mk + 1 ≡ 0

(mod e) This can be rewritten as xy+mx+1 ≡ 0 (mod e) with x = k, y = φ(n)−m.
This leads to a bivariate polynomial f(x, y) = xy +mx+ 1 ∈ Z[x, y].

Definition 2. (Coppersmith’s interval) Let (n, e) be an RSA public key with private ex-
ponent d satisfying ed = 1+kφ(n). An interval I is said to be a Coppersmith’s interval
for (n, e) if for every integer m ∈ I , (x0, y0) = (k, φ(n)−m) is a Coppersmith’s root
of the polynomial f(x, y) = xy +mx+ 1 modulo e.

3.2 Explicit Coppersmith’s interval

Now we determine a Coppersmith’s interval for an RSA public-key (n, e). It is natural
to determine a Coppersmith’s interval in terms of φ(n) since most small private expo-
nent attacks on RSA try to find a good approximation of φ(n) in order to solve the key
equation ed − kφ(n) = 1. We note that the following result relies on the widely used
and accepted Assumption 2 in order to extract the final solutions efficiently. We present
in Subsection 3.3 various experimental results to verify the correctness of the attack in
practice.

Theorem 5. Let (n, e = nβ) be an RSA public key with private exponent d = nδ. Then

I = [φ(n)− nα, φ(n) + nα] (4)

is a Coppersmith’s interval for (n, e), where

δ < β +
1

3
α− 1

3

√
12αβ + 4α2. (5)

Proof. Suppose that φ(n) 6= m ∈ I . Then |φ(n)−m| < nα. Since ed = kφ(n) + 1,
then kφ(n) + 1 ≡ 0 (mod e). This can be rewritten as k(φ(n) −m) + km + 1 ≡ 0
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(mod e). Consider the polynomial f(x, y) = xy + mx + 1. Then f(x, y) has root
(x0, y0) = (k, φ(n)−m) modulo e. Observe that

x0 = k < d = nδ, y0 = |φ(n)−m| < nα.

Hence, if δ and α are suitably small, then using Coppersmith’s method we can find
(k, φ(n) − m) among the small roots of the polynomial f(x, y) modulo e. The main
target of the proof is to show that (x0, y0) is also a root of some polynomial g(x, y) over
integers and that polynomial can be constructed form f(x, y) by using Jochemsz-May
strategy for small modular roots (see [8]). Define the bounds X and Y as

X = nδ, Y = nα.

Let u and r be positive integers to be specified later. For 0 ≤ t ≤ u, define

Mt =
⋃

0≤j≤r

{xi1yi2+j : xi1yi2 monomial of fu(x, y)

xi1yi2

(xy)t monomial of fu−t(x, y)}.

Observe that fu(x, y) satisfies

fu(x, y) = (x(y +m) + 1)u

=

u∑
i1=0

(
u
i1

)
xi1(y +m)i1

=

u∑
i1=0

(
u
i1

)
xi1

(
i1∑
i2=0

(
i1
i2

)
yi2mi1−i2

)

=

u∑
i1=0

i1∑
i2=0

(
u
i1

)
xi1
((
i1
i2

)
yi2mi1−i2

)
Hence, xi1yi2 is a monomial of fu(x, y) if

i1 = 0, . . . , u and i2 = 0, . . . i1.

Consequently, xi1yi2 is a monomial of fu−t(x, y) if

i1 = 0, . . . , u− t and i2 = 0, . . . i1.

Also, for 0 ≤ t ≤ u, when xi1yi2 is a monomial of fu(x, y), then xi1yi2

(xy)t is a monomial
of fu−t if

i1 = t, . . . , u and i2 = t, . . . i1.

Hence, for 0 ≤ t ≤ u, we obtain

xi1yi2 ∈Mt if i1 = t, . . . , u and i2 = t, . . . i1 + r.
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Similarly,

xi1yi2 ∈Mt+1 if i1 = t+ 1, . . . , u and i2 = t+ 1, . . . i1 + r.

Note that, for 0 ≤ t ≤ u, we find that xi1yi2 ∈Mt \Mt+1 if and only if

{i1 = t, . . . , u with i2 = t} or

{i1 = t with i2 = t+ 1, . . . , i1 + r}.

For 0 ≤ t ≤ u, define the polynomials

gt,i1,i2(x, y) =
xi1yi2

(xy)t
f t(x, y)eu−t with xi1yi2 ∈Mt \Mt+1.

For i1 = t, . . . , u and i2 = t, the polynomials gt,i1,i2(x, y) reduce to

gt,i1,t(x, y) = Gt,i1(x, y) = xi1−tf t(x, y)eu−t for i1 = t, . . . , u

For i1 = t and i2 = t+ 1, . . . , t+ r the polynomials gt,i1,i2(x, y) reduce to

gt,t,i2(x, y) = Ht,i2(x, y)

= yi2−tf t(x, y)eu−t for i2 = t+ 1, . . . , t+ r.

LetL be the lattice spanned by the coefficient vectors of the polynomialsGt,i1(xX, yY )

and Ht,i2(xX, yY ). The ordering of the monomials is such that the matrix M is trian-
gular. It is as follows: if i1 < i′1, then xi1yi2 < xi

′
1yi
′
2 and if i1 = i′1 and i2 < i′2, then

xi1yi2 < xi
′
1yi
′
2 . From the triangular form of the matrix, the determinant of L is

det(L) = eaeXaXY aY . (6)

From the construction of the polynomials Gt,i1(xX, yY ) and Ht,i2(xX, yY ) we get

ae =

u∑
t=0

u∑
i1=t

(u− t) +

u∑
t=0

t+r∑
i2=t+1

(u− t)

=
1

6
u(u+ 1)(2u+ 3r + 4)

Similarly, we have

aX =

u∑
t=0

u∑
i1=t

i1 +

u∑
t=0

t+r∑
i2=t+1

t =
1

6
u(u+ 1)(2u+ 3r + 4)

and

aY =

u∑
t=0

u∑
i1=t

t+

u∑
t=0

t+r∑
i2=t+1

i2

=
1

6
(u+ 1)(u2 + 3ur + 3r2 + 2u+ 3r).
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The dimension of L is calculated as

ω =

u∑
t=0

u∑
i1=t

1 +

u∑
t=0

t+r∑
i2=t+1

1 =
1

2
(u+ 1)(u+ 2r + 2).

Let r = uτ. Then

ae =
1

6
u(u+ 1)(2u+ 3uτ + 4) =

1

6
(2 + 3τ)u3 + o(u3)

similarly, we have

aX =
1

6
u(u+ 1)(2u+ 3uτ + 4) =

1

6
(2 + 3τ)u3 + o(u3)

and

aY =
1

6
(u+ 1)(u2 + 3u2τ + 3u2τ2 + 2u+ 3uτ)

=
1

6
(1 + 3τ + 3τ2)u3 + o(u3).

Also,

ω =
1

2
(u+ 1)(u+ 2r + 2) =

1

2
(u+ 1)(u+ 2uτ + 2)

=
1

2
(1 + 2τ)u2 + o(u2).

To solve the original multivariate equation xy + mx + 1 ≡ 0 (mod e), we need two
algebraically independent integer polynomial equations f1(x, y) = 0 and f2(x, y) =

0. These two polynomial equations can be found by reducing the lattice basis of L
using the LLL algorithm and by assuming Assumption 2. Indeed, by applying the LLL
algorithm to the latticeL, the two shortest vectors in the reduced basis satisfy Theorem 1
with i = 2, that is

‖f1(x, y)‖ ≤ ‖f2(x, y)‖ ≤ 2
ω
4 det(L)

1
ω−1 .

To apply Howgrave-Graham’s Theorem 3 to the two shortest vectors in the LLL-reduced
basis of L, we have to set

2
ω
4 det(L)

1
ω−1 <

eu√
ω
.

This transforms to
det(L) <

1

2
ω
4
√
ω
eu(ω−1).

By Neglecting 2
ω
4 and

√
ω, we get

det(L) < euω.
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Using Eq. (6), we get
eaeXaXY aY < euω.

Since e = nβ , X = nδ, and Y = nα. Then

nβaenδaXnαaY < nuβω.

Taking logarithms, we get βae+δaX+αaY < uβω. Plugging the values of ae, aX , aY
and ω, we get

1

6
(2 + 3τ)β +

1

6
(2 + 3τ)δ +

α

6
(1 + 3τ + 3τ2)

− 1

2
(1 + 2τ)β < 0. (7)

The optimal value for τ in the left side is τ = β−δ−α
2α , which leads to

1

6
αβ − α2

6
− α

3
(β − δ − α)− 1

8
(β − δ − α)2 < 0.

Solving for δ, we get

δ < β +
1

3
α− 1

3

√
12αβ + 4α2.

This terminates the proof.

Remark 1.

1. There is no condition on the prime factors of n. Thus, I is also Coppersmith’s
interval for any variant of RSA that uses the relation ed ≡ 1 (mod φ(n)).

2. The Coppersmith interval in Theorem 5 is neither a unique nor a maximal Cop-
persmith’s interval. For example, we can use Herrman-May [15] linearization tech-
nique to show that the interval

I ′ = [φ(n)− nγ , φ(n) + nγ ]

is another Coppersmith’s interval when

δ < β −
√
βγ. (8)

Suppose that we have a monomial u = xy + 1. The polynomial f(x, y) = xy +

mx+1 modulo e can be rewritten in terms of the monomial u as a linear polynomial
f̄(u, x) = u+mx with xy = u− 1.

Define,

ḡi,k(u, x) = xif̄kes−k for k = 0, 1, . . . , s and i = 0, 1, . . . , s− k,
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and for a positive integer t ≤ s (to be specified latter),

h̄j,k(u, x, y) = yj f̄kes−k for j = 1, 2, . . . , t and k = bs
t
cj, . . . , s.

Let X = nδ, Y = nγ , U = Nδ+γ and let L be the lattices spanned by the
coefficient vectors of the polynomials ḡi,k(uU, xX) and h̄j,k(uU, xX, yY ). The
ordering of the monomials is such that the matrix M is triangular. The monomial
is either in the form xi1ui

′
1 (of order xi1+i

′
1yi
′
1 ) or in the form yi2ui

′
2 (of order

xi
′
2yi2+i

′
2 ). The monomial of order xiyj precedes the monomials of order xi

′
yj
′

when either i < i′ or i = i′ and j < j′. In Herrmann-May [15], it has been shown
that, from the triangular form of the matrix, the determinant of L is

det(L) = XsxY syUsuese ,

where

sx =

s∑
k=0

s−k∑
i=0

i =
1

6
s3 + o(s3),

sy =

τs∑
j=1

s∑
k= 1

τ j

j =
τ2

6
s3 + o(s3),

su =

s∑
k=0

s−k∑
i=0

k +

τs∑
j=1

s∑
k= 1

τ j

k = (
1

6
+
τ

3
)s3 + o(s3),

se =

s∑
k=0

s−k∑
i=0

(s− k) +

τs∑
j=1

s∑
k= 1

τ j

(s− k) = (
1

3
+
τ

6
)s3 + o(s3),

dim(L) =

s∑
k=0

s−k∑
i=0

1 +

τs∑
j=1

s∑
k= 1

τ j

1 = (
1

2
+
τ

2
)s2 + o(s2).

By applying Howgrave-Graham’s theorem (Theorem 3) to the two shortest vectors
in the reduced basis hat satisfy Theorem 1 with i = 2, we obrain

det(L) = XsxY syUsuese < es dim(L).

Using e = nβ , X = nδ, and Y = nα, this is verified if

δ

6
+
τ2α

6
+

(
1

6
+
τ

3

)
(α+ δ) +

(
1

3
+
τ

6

)
β −

(
1

2
+
τ

2

)
β < 0.

The optimized value for τ is τ = β−δ−α
α . Plugging this value, we get

αβ − β2 + 2βδ − δ2 < 0,

which is satisfied for
δ < β −

√
βα.
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3. Also, the interval
I ′ = [φ(n)− nα

′
, φ(n) + nα

′
],

is another Coppersmith’s interval when

δ < β −
√
βα′ for

β

4
≤ α′ < β,

δ < β − 2

3
(
√

(3β + 4α′)α′ − α′) for 0 < α′ <
β

4
.

This is because of the following: The equation ed = 1 + kφ(n) can be rewritten
as ed = 1 + k(m + φ(n) −m) where m ∈ I ′. Since |k| < d = nδ = eδ/β and
|φ(n)−m| < nα

′
= eα

′/β , obtaining k and φ(n)−m is a small inverse problem
in which the two known large integers are m and e, i.e., (−k, φ(n) −m) is a root
of the modular equation x(m + y) ≡ 1 (mod e). According to Theorem 4, this
modular equation is solvable when

δ

β
< 1−

√
α′

β
for

1

4
≤ α′

β
< 1,

δ

β
< 1− 2

3

(√(
3 + 4

α′

β

)
α′

β
− α′

β

)

for 0 <
α′

β
<

1

4
.

Therefore, the interval [φ(n)− nα′ , φ(n) + nα
′
] is another Coppersmith’s interval

when

δ < β −
√
βα′ for

β

4
≤ α′ < β

δ < β − 2

3
(
√

(3β + 4α′)α′ − α′) for 0 < α′ <
β

4
.

This leads to an interesting question what is the maximal Coppersmith’s interval.

3.3 Experimental results

We experimented the attack on 1000 RSA instances with moduli n = pq, e = nβ ,
d = nδ and m ∈ [φ(n) − nα, φ(n) + nα] for various values of α and β. In all cases,
Assumption 2 was verified and we were able to find the small solution (x0, y0) =

(k, φ(n) − m) of the equation f(x, y) = xy + mx + 1 ≡ 0 (mod e) for any m in
the Coppersmith interval I = [φ(n) − nα, φ(n) + nα] where x0 = k < d = nδ ,
y0 = |φ(n)−m| < nα, with the condition δ < β+ 1

3α−
1
3

√
12αβ + 4α2. In Table 1,

we present the bounds for δ for various values of β and α.
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α 0.50 0.50 0.45 0.45 0.40 0.40 0.35 0.35
β 0.987 0.990 0.998 0.975 0.984 0.973 0.995 0.992
δ 0.276 0.278 0.318 0.303 0.345 0.338 0.391 0.390
lattice
param-
eters

u = 5,

r = 1,

dim =

27

u = 5,

r = 1,

dim =

27

u = 4,

r = 1,

dim =

20

u = 5,

r = 1,

dim =

27

u = 4,

r = 1,

dim =

20

u = 4,

r = 1,

dim =

20

u = 3,

r = 1,

dim =

14

u = 3,

r = 1,

dim =

14

Table 1. Bounds for δ in terms of α, β and the lattice dimension.

4 Cryptanalysis of RSA using Coppersmith’s interval

In this section, we give an application of Coppersmith’s interval to attack the RSA
cryptosystem. We show that four well-known and important attacks on RSA can be
derived from Theorem 5. We also present a new attack related to Theorem 5. Then
we show that the result of [19] on RSA can be extended to Multi-prime RSA using
Coppersmith’s interval.

4.1 Application to former attacks

We show that the attack of [2] and its improvements by [19] and [10] as well as the
attack presented by [17] can be obtained from Theorem 5

Corollary 1. [Boneh-Durfee] Let (n, e) be an RSA public key with a full size public
exponent e and a private exponent d = nδ, δ < 0.284 where n is a product of two large
primes p and q such that q < p < 2q. Then n ∈ I (as in Eq. (4)).

Proof. Using Eq. (3), we have

0 < n− φ(n) = p+ q − 1 <
3
√

2

2

√
n.

It follows that

n− φ(n) =
3
√

2

2
nα, with α =

1

2
.

Suppose that e = nβ . If

δ < β +
1

6
− 1

3

√
6β + 1,

then by Theorem 5, n ∈ I (as in Eq. (4)) and we can factor n = pq. For the particular
case where e is full size, that is β ≈ 1, the bound of d is

δ <
7

6
−
√

7

3
≈ 0.284.

This is precisely the first result of [2].
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However, if δ < 0.292, then n ∈ I (as in Eq. (8)) by taking γ = α = 1/2.

Corollary 2. [de Weger] Let (n, e) be an RSA public key with a full size public expo-
nent e and a private exponent d = nδ, where n is a product of two primes p and q such
that q < p < 2q and p− q = nθ, 14 < θ < 1

2 . If

δ <
1

6
(4θ + 5)− 1

3

√
(4θ + 5)(4θ − 1),

then bn+ 1− 2
√
nc ∈ I (as in Eq. (4)).

Proof. Using Eq. (2), we have p − q = nθ, with θ < 1
2 . Note that, if θ ≤ 1

4 , then
using Fermat’s method, it is possible to compute p and q which breaks the RSA system
(see [19] and [12]). In the following, we restrict θ such that 1

4 < θ < 1
2 . Let m =

bn+ 1− 2
√
nc. Then 0 < m− φ(n) ≤ n+ 1− 2

√
n− φ(n) = p+ q − 2

√
n. Using

Lemma 2, we get

0 < m− φ(n) <
(p− q)2

4
√
n

=
1

4
n2θ−

1
2 .

If m = bn+ 1− 2
√
nc, then

m− φ(n) <
1

4
nα with α = 2θ − 1

2
.

Since e is full size public key, then e = nβ with β ≈ 1. Replacing α by 2θ − 1
2 and by

taking β = 1 in Eq. (5), we get

δ < 1 + 1
3 (2θ − 1

2 )− 1
3

√
12(2θ − 1

2 ) + 4(2θ − 1
2 )2

= 1
6 (4θ + 5)− 1

3

√
16θ2 + 16θ − 5

= 1
6 (4θ + 5)− 1

3

√
(4θ + 5)(4θ − 1).

Then according to Theorem 5, bn + 1 − 2
√
nc ∈ I (as in Eq. (4)). Moreover, this

matches the bound found in [19].

Corollary 3. [Maitra-Sarkar] Let (n, e) be an RSA public key with a full size public
exponent e and a private exponent d = nδ, where n is a product of two primes p and q
such that q < p < 2q and 2q − p = nγ with γ ≤ 1

2 . Suppose that l is a positive integer
such that q > 2l+2

4l+1p. If

δ <
1

6
(4γ + 5)− 1

3

√
(4γ + 5)(4γ − 1),

then
⌈
n+ 1− 3

√
2

2

√
n
⌉
∈ I (as in Eq. (4)).
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Proof. Let m =
⌈
n+ 1− 3√

2

√
n
⌉
. Then

0 < φ(n)−

⌈
n+ 1− 3

√
2

2

√
n

⌉

≤ φ(n)−

(
n+ 1− 3

√
2

2

√
n

)

=
3
√

2

2

√
n− (p+ q).

If q > 2l+2
4l+1p for a positive integer l, then, using Proposition 1, we get

0 <
3
√

2

2

√
n− (p+ q) <

l(2q − p)2(
3
√
2

2 + 2
)√

n
<

l
3
√
2

2 + 2
n2γ−

1
2 .

It follows that if m = dn+ 1− 3√
2

√
ne, then

φ(n)−m <
l

3
√
2

2 + 2
nα with α = 2γ − 1

2
.

Since e is full size public key, then e = nβ with β ≈ 1. Replacing α by 2γ − 1
2 and by

taking β = 1 in Eq. (5), we get

δ < 1 + 1
3 (2γ − 1

2 )− 1
3

√
12(2γ − 1

2 ) + 4
(
2γ − 1

2

)2
= 1

6 (4γ + 5)− 1
3

√
16γ2 + 16γ − 5

= 1
6 (4γ + 5)− 1

3

√
(4γ + 5)(4γ − 1).

Then according to Theorem 5, dn + 1 − 3√
2

√
ne ∈ I (as in Eq. (4)). We note that the

bound on δ is the same as the bound found in [10].

Corollary 4. [Sun et al.] Let (n, e) be an RSA public key with a public exponent e =

nβ and a private exponent d = nδ, where n is the product of two primes p and q such
that q < p < 2q and p− q = 2uz for some known u with 2u = nγ . If

δ <
7

6
− 2

3
γ − 1

3

√
−24βγ + 16γ2 + 6β − 8γ + 1.

then n+ 1− 2v0 ∈ I (as in Eq. (4)) where

v0 ≡ p0 +

(
n− p20

)
p−10

2
(mod 22u),

and p0 is a solution of the congruence x2 ≡ n (mod 2u).
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Proof. Suppose that p − q = 2uz for a known value u with 2u = nγ . Then p + q =

22uv + 2v0 where v0 is computed as mentioned in Lemma 3. Hence φ(n) = n + 1 −
(p+ q) = n+ 1− 2v0 − 22uv. Define m = n+ 1− 2v0. Hence |φ(n)−m| = 22uv.

Using Eq. (3), we get

v <
p+ q

22u
<

3
√

2

2
n

1
2−2γ .

On the other hand, since ed− kφ(n) = 1, then

k =
ed− 1

φ(n)
<

ed

φ(n)
<
nβ+δ

n
2

= 2nβ+δ−1.

Hence, the equation ed− kφ(n) = 1 with φ(n) = n+ 1− 2v0 − 22uv transforms into
k (φ(n)− (n+ 1− 2v0)) + k(n+ 1− 2v0) + 1 ≡ 0 (mod e), or equivalently

−22ukv + k(n+ 1− 2v0) + 1 ≡ 0 (mod e),

which gives rise to the polynomial g(x, y) = 22uxy+x(n+ 1− 2v0) + 1 with the root
(x0, y0) = (k,−v) satisfying the bounds

|x0| < X = 2nβ+δ−1, |y0| < Y =
3
√

2

2
n

1
2−2γ .

Replacing δ by β + δ − 1 and α by 1
2 − 2γ in Eq. (7), we get

1

12
(−12γ + 3)τ2 +

1

12
(6δ − 12γ − 3)τ +

1

6
β +

1

3
δ

− 1

3
γ − 1

4
< 0

The left hand side is minimized at τ0 = 1+4γ−2δ
2(1−4γ) , which leads to

−12δ2 + (28− 16γ)δ − 32βγ + 16γ2 + 8β + 8γ − 15 < 0.

Solving for δ, we get

δ <
7

6
− 2

3
γ − 1

3

√
−24βγ + 16γ2 + 6β − 8γ + 1.

Notice that this can be written as

δ <
2

3

(
1

2
− γ
)

+

5

6
− 4

3

√(
1

2
− γ
)2

+

(
3

2
β − 1

2

)(
1

2
− γ
)
− 6β − 1

16
.

This is the same bound found by [17].
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4.2 Revising Coppersmith’s Result

In the following theorem, we study the factorization of n when we know an approx-
imation p0 of p with |p− p0| ≤ 1

2n
α, α ≤ 1

2 . We show that the RSA is insecure if
δ < β + 1

3α−
1
3

√
12αβ + 4α2 where e = nβ , d = nδ.

Theorem 6. Let (n, e) be an RSA public key with a public exponent e = nβ and a
private exponent d = nδ, where n is the product of two large primes p and q such
that q < p < 2q. Let p0 ≥

√
n be an approximation for p with |p− p0| ≤ 1

2n
α where

α ≤ 1
2 . If δ < β+ 1

3α−
1
3

√
12αβ + 4α2, then [n+1−λ1, n+1−λ2] is a Coppersmith’s

interval for (n, e), where

(λ1, λ2) =



(p0 + n
p0

+ 1
2n

α, p0 + n
p0+

1
2n

α ),

if p0 ≤ p;

(p0 + n
p0− 1

2n
α ,

n
p0

+ p0 − 1
2n

α),

if p ≤ p0 and
√
n ≤ p0 − 1

2n
α,

(2
√
n + 1

2n
α,
√
n+ n√

n+ 1
2n

α ),

if p ≤ p0 and p0 − 1
2n

α <
√
n.

Proof. Suppose that p0 is an approximation for p such that |p− p0| ≤ 1
2n

α. Our strat-
egy is to apply Theorem 5 by showing that there exists an interval [n + 1 − λ1, n +

1 − λ2] that is a Coppersmith’s interval for (n, e). More precisely, we show that λ1
and λ2 are such that [n + 1 − λ1, n + 1 − λ2] ⊆ [φ(n) − nα, φ(n) + nα] where
δ < β + 1

3α −
1
3

√
12αβ + 4α2 as it is required for applying Theorem 5. Since

[n+ 1− λ1, n+ 1− λ2] = [φ(n)− (λ1 − p− q), φ(n) + (p+ q− λ2)], it is sufficient
to show that

0 ≤ λ1 − p− q ≤ nα and 0 ≤ p+ q − λ2 ≤ nα. (9)

The proof is divided into three cases according to p0 ≤ p or p ≤ p0.
Case 1: Suppose that p0 ≤ p. Then |p− p0| ≤ 1

2n
α and q = n

p , we get

p0 ≤ p ≤ p0 +
1

2
nα,

n

p0 + 1
2n

α
≤ q ≤ n

p0
.

Define,

λ1 = p0 +
n

p0
+

1

2
nα, λ2 = p0 +

n

p0 + 1
2n

α
.
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Then, λ1 and λ2 satisfy λ1 ≥ p + q and λ2 ≤ p + q. Observe that p0 − p ≤ 0 and
n
p0
− q = q(p−p0)

p0
≤ 1

2n
α. Also,

λ1 − p− q =
1

2
nα + (p0 − p) +

(
n

p0
− q
)
≤ nα.

It follows that 0 ≤ λ1− p− q ≤ nα which satisfies Eq. (9). On the other hand, observe
that p− p0 ≤ 1

2n
α and q ≤ n

p0
. Then

p+ q − λ2 = p+ q − p0 −
n

p0 + 1
2n

α

≤ 1

2
nα +

n

p0
− n

p0 + 1
2n

α

=
1

2
nα +

n1+α

2p0(p0 + 1
2n

α)

≤ nα,

where we used n1+α

2p0(p0+
1
2n

α)
≤ 1

2n
α which is valid since p0 ≥

√
n. Consequently, λ2 is

such that 0 ≤ p+ q − λ2 ≤ nα which satisfies Eq. (9). This proves the first case.
Case 2: Suppose that p ≤ p0 and

√
n ≤ p0 − 1

2n
α. Then, using |p − p0| ≤ 1

2n
α and

q = n
p , we get

p0 −
1

2
nα ≤ p ≤ p0,

n

p0
≤ q ≤ n

p0 − 1
2n

α
.

Next, define,

λ1 = p0 +
n

p0 − 1
2n

α
, λ2 =

n

p0
+ p0 −

1

2
nα.

Then, we easily get λ1 ≥ p+ q. Using p0 − p ≤ 1
2n

α and n
p0
≤ q, we get

λ1 − p− q = p0 +
n

p0 − 1
2n

α
− p− q

≤ 1

2
nα +

n

p0 − 1
2n

α
− n

p0

=
1

2
nα +

n1+α

2p0(p0 − 1
2n

α)

≤ nα,
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where we used n1+α

2p0(p0− 1
2n

α)
≤ 1

2n
α for p0 − 1

2n
α ≥
√
n. This shows that λ1 satisfies

Eq. (9). Similarly, we have λ2 ≤ p+ q and using p ≤ p0 and q ≤ n
p0− 1

2n
α , we get

p+ q − λ2 = p+ q − n

p0
− p0 +

1

2
nα

≤ n

p0 − 1
2n

α
− n

p0
+

1

2
nα

=
n1+α

2p0(p0 − 1
2n

α)
+

1

2
nα

≤ nα.

It follows that λ2 also satisfies Eq. (9). This proves the second case.
Case 3: Suppose that p ≤ p0 and p0− 1

2n
α <
√
n. Then p−

√
n ≤ 1

2n
α, which means

that
√
n is an approximation of p satisfying Case 1. Then, plugging p0 =

√
n in Case

1, we get that the interval[
n+ 1− (2

√
n+

1

2
nα), n+ 1− (

√
n+

n
√
n+ 1

2n
α

)

]
,

is a Coppersmith’s interval for (n, e).

In [16], Sarkar, Maitra and Sarkar presented an attack on RSA when e ≈ n, d = nδ ,
|p − p0| < nα and showed that n = pq can be factored if δ < 1 + α

3 −
2
3

√
α(α+ 3).

This can be retrieved by our attack when β = 1 in the inequality of Theorem 6. Hence,
our attack is actually a generalization of the attack of Sarkar et al.
Figure 1 illustrates the difference between our attack and the previous attacks assuming
that e has the same size of n and we have an approximation p0 for p where |p − p0| <
1
2n

α, α < 1
2 .

4.3 Extending de Weger’s Attack to Multi-Prime RSA

In Multi-prime RSA (MPRSA), the modulus n is the product of r ≥ 3 primes, that is
n = p1 · · · pr, where p1 < p2 < · · · < pr. As with RSA, we only consider 1

2n
1/r <

pi < 2n1/r for 1 ≤ i ≤ r. In this case, n is said to be a product of distinct r-balanced
primes.

Let pr−p1 = nθ, θ < 1/r. In the case of standard RSA, i.e., r = 2, [19] has showed
that d can be recovered if δ < 1

6 (4θ + 5) − 1
3

√
(4θ + 5)(4θ − 1). In this section, we

extend de Weger’s result in the case of MPRSA, i.e., r ≥ 3, we show that d can be
recovered if

δ < β+
θ

3
+

r − 2

3r
− 2

3

√
3βθ +

3β(r − 2)

r
+

(
θ +

r − 2

r

)2

.
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Fig. 1. Comparison between our attack and previous attacks, where δ and α as in Theorem 6.

To find an approximation of φ(n), define Γ as

Γ =

r∑
i

n

n1/r
−

r∑
i,j
i<j

n

n2/r
+

r∑
i,j,k=1
i<j<k

n

n3/r
+ ...− (−1)r,

following by [1]

Λ = n− φ(n)

=

r∑
i

n

pi
−

r∑
i,j=1
i<j

n

pipj
+

r∑
i,j,k=1
i<j<k

n

pipjpk
+ ...− (−1)r.

The relation between Γ and Λ is given in the following proposition.

Proposition 2. [ [1]] Let n = p1p2 · · · pr be a product of distinct r-balanced primes
and pr − p1 = nθ, θ ≤ 1/r. Suppose that k is an integer such that 2 ≤ k ≤ r. If
2k(2k − 1)

(
r
k

)
≤ n1/r

r−1 , then

|Λ− Γ | < 3rn1+θ−2/r.

Theorem 7. Let n = p1p2 · · · pr be an MPRSA modulus and a product of distinct
(r ≥ 3)-balanced primes with pr − p1 = nθ, θ ≤ 1/r. Let e = nβ be a public
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exponent with a private exponent d = nδ . Suppose that 2k(2k−1)
(
r
k

)
≤ n1/r

r−1 for every
2 ≤ k ≤ r. If

δ < β+
θ

3
+

r − 2

3r
− 2

3

√
3βθ +

3β(r − 2)

r
+

(
θ +

r − 2

r

)2

,

then d can be recovered.

Proof. By choosing m = n − Γ, we show that m ∈ I, where I is the Coppersmith’s
interval given in Theorem 5. Using Proposition 2, we have

|m− φ(n)| = |Λ− Γ | < 3rn1+θ−2/r.

By neglecting 3r and replacing α by 1 + θ − 2
r in Eq. (5), we get m ∈ I if

δ < β +
1

3

(
1 + θ − 2

r

)

− 1

3

√
12β

(
1 + θ − 2

r

)
+ 4

(
1 + θ − 2

r

)2

= β +
θ

3
+
r − 2

3r

− 2

3

√
3βθ +

3β(r − 2)

r
+

(
θ +

r − 2

r

)2

.

This terminates the proof.

For the particular case when θ = 1/r and e is full size, i.e., β ≈ 1, the bound of
Theorem 7 gives

δ <
1

3r
(4r − 1− 2

√
(r − 1)(4r − 1)).

This is precisely the result of [5].

Remark 2. Suppose for simplicity that β/4 ≤ α′ < β. As stated in Remark 1, the
interval

I ′ = [φ(n)− nα
′
, φ(n) + nα

′
]

with δ < β −
√
βα′ is also Coppersmith’s interval. Thus, for β/4 + 2/r − 1 ≤ θ <

β + 2/r − 1, d in Theorem 7 can be recovered when

δ < β −
√
β + βθ − 2β/r (10)

This is because of the following: using Proposition 2, if we set m = n − Γ, then
|m−φ(n)| = |Λ−Γ | < 3rn1+θ−2/r. By neglecting 3r and replacing α′ by 1+θ−2/r,
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we get m ∈ I ′ in the case of Eq. (10). For a particular case where e is full size, i.e.,
β ≈ 1, we get m ∈ I ′ when

δ < 1−
√

1 + θ − 2/r for 2/r − 3

4
≤ θ < 2/r

This is similar to the result in [21].

In [22], Zhang and Takagi presented an improved attack on Multi-prime RSA with
modulus n = p1 . . . pr where pr − p1 < nθ and showed that d = nδ can be recovered

if δ < 1−
√

1 + 2θ − 3
r under the condition 3

2

(
1
r −

1
4

)
≤ θ < 1

r . We show below that

this bound can be retrieved using a Coppersmith’s interval. Define Γ ′ = rn
r−1
r . The

method of Zhang and Takagi makes use of the following result.

Proposition 3. [22] Let n = p1p2 · · · pr be a product of distinct r-balanced primes
and pr − p1 = nθ, θ ≤ 1/r. Then

|Λ− Γ ′| < 2(r − 1)n1+2θ−3/r.

Theorem 8. Let n = p1p2 · · · pr be an MPRSA modulus and a product of distinct
(r ≥ 3)-balanced primes with pr−p1 = nθ, θ ≤ 1/r. Let e = nβ be a public exponent
with a private exponent d = nδ . If

δ <β +
2θ

3
+
r − 3

3r

− 2

3

√
6βθ +

3β(r − 3)

r
+

(
2θ +

r − 3

r

)2

,

then d can be recovered.

Proof. By choosing m = n − Γ ′, we show that m ∈ I, where I is the Coppersmith’s
interval given in Theorem 5. Using Proposition 3, we have

|m− φ(n)| = |Λ− Γ ′| < 2(r − 1)n1+2θ−3/r.

By neglecting 2(r − 1) and replacing α by 1 + 2θ − 3
r in Eq. (5), we get m ∈ I if

δ < β +
1

3

(
1 + 2θ − 3

r

)

− 1

3

√
12β

(
1 + 2θ − 3

r

)
+ 4

(
1 + 2θ − 3

r

)2

= β +
2θ

3
+
r − 3

3r

− 2

3

√
6βθ +

3β(r − 3)

r
+

(
2θ +

r − 3

r

)2

.

This terminates the proof.
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Remark 3. Suppose for simplicity that β/4 ≤ α′ < β. As stated in Remark 1, the
interval

I ′ = [φ(n)− nα
′
, φ(n) + nα

′
]

with δ < β −
√
βα′ is also a Coppersmith’s interval. If we set m = n− Γ ′ in Proposi-

tion 3, we get |m−φ(n)| = |Λ−Γ ′| < 2(r−1)n1+2θ−3/r. Plugging α′ = 1+2θ−3/r,

in δ < β −
√
βα′, we get δ < β −

√
β
(
1 + 2θ − 3

r

)
. Moreover, if e is full size, i.e.,

β ≈ 1, we get m ∈ I ′ if 3
2

(
1
r −

1
4

)
≤ θ < 3

2r and δ < 1 −
√

1 + 2θ − 3
r , which

retrieves the result of [22].

5 Conclusion

Based on Coppersmith’s method, we have unified several previous private exponent
attacks on RSA and Multi-Prime RSA by proposing the notion Coppersmith’s interval.
We have determined a Coppersmith’s interval for RSA modulus n with public exponent
e = nβ , and private exponent d = nδ. The obtained interval is valid for any variant of
RSA that satisfies ed ≡ 1 (mod φ(n)). We also have extended Coppersmith’s result
on a factorization.
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