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Let (n = pq, e = n β ) be an RSA public key with private exponent d = n δ , where p and q are large primes of the same bit size. At Eurocrypt 96, Coppersmith presented a polynomial-time algorithm for finding small roots of univariate modular equations based on lattice reduction and then succussed to factorize the RSA modulus. Since then, a series of attacks on the key equation ed -kφ(n) = 1 of RSA have been presented. In this paper, we show that many of such attacks can be unified in a single attack using a new notion called Coppersmith's interval. We determine a Coppersmith's interval for a given RSA public key (n, e). The interval is valid for any variant of RSA, such as Multi-Prime RSA, that uses the key equation. Then we show that RSA is insecure if δ < β + 1 3 α -1 3 12αβ + 4α 2 provided that we have approximation p0 ≥ √ n of p with |p -p0| ≤ 1 2 n α , α ≤ 1 2 . The attack is an extension of Coppersmith's result.

Introduction

The RSA cryptosystem invented by [START_REF] Rivest | A method for obtaining digital signatures and public-key cryptosystems[END_REF], is the most popular and widely used cryptosystem in the world. It can be used for encryption without the need to exchange a secret key separately.

In RSA, the modulus n = pq is a product of two large primes p, q of the same bit-size with p > q. The public exponent e and the private exponent d satisfy ed ≡ 1 (mod φ(n)) where φ(n) = (p -1)(q -1) is Euler's totient function. The security of RSA is based mainly on factoring the modulus n. To encrypt a message m ∈ Z n one computes c ≡ m e (mod n) using the public key (n, e). To recover the message m, one computes c d (mod n). The main drawback of RSA is its efficiency, in particular for some devices with limited computing power such as smart cards. The RSA encryption and decryption take time O((log e)(log n) 2 ) and O((log d)(log n) 2 ) respectively. Many ways have been considered when implementing RSA to speed up the time of decryption (similarly, signature-generation). For example, one might be tempted to use small private exponents to speed up the decryption/signing process. Unfortunately, [START_REF] Wiener | Cryptanalysis of short RSA secret exponents[END_REF] showed that RSA is insecure if d < 1 3 n 1 4 . Wiener's attack is based on searching d among the denominators of the convergents of the continued fraction expansion of e n . The bound was improved to d < n 0.292 by [START_REF] Boneh | Cryptanalysis of RSA with private key d less than N 0.292[END_REF]. Their attack is based on the method of [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF] for finding small solutions of modular polynomial equations, which in turn uses the LLL lattice reduction algorithm by [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF]. Therefore, people have been looking for vulnerabilities of RSA using Coppersmith's method. Although none of these attacks totally break RSA, they show in which cases it is insecure.

The starting point of the most known attacks on RSA is the study of the key modular equation ed ≡ 1 (mod φ(n)) and its linear form ed -kφ(n) = 1 in addition to some extra information on the size of the private exponent d or the prime factors p, q of the modulus n = pq. Wiener [START_REF] Wiener | Cryptanalysis of short RSA secret exponents[END_REF] tried to solve the key equation ed -kφ(n) = 1 by transforming it into an inequality of the form e n -k d < 1 2d 2 , which can be efficiently solved by the continued fraction algorithm when d < 1 3 n 1 4 . Note that the attack of Wiener takes advantage of the approximation φ(n) ≈ n. In a different approach, Boneh and Durfee [START_REF] Boneh | Cryptanalysis of RSA with private key d less than N 0.292[END_REF] transformed the equation ed-kφ(n) = 1 using φ(n) = n+1-p-q and considered the modular equation k n+1 2 -p+q 2 + 1 ≡ 0 (mod e). Then they applied the method of [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF] to find the small solutions of the polynomial equation f (x, y) = 0 (mod e) where f (x, y) = x( n+1 2 + y) + 1. In [START_REF] Weger | Cryptanalysis of RSA with small prime difference[END_REF], de Weger studied the situation when the prime difference |p -q| = n θ is small. Following the method of Boneh and Durfee, de Weger showed that RSA is unsafe if δ < 1 6 (4θ + 5) -1 3 (4θ + 5)(4θ -1). Observe that when the prime factors p, q of the RSA modulus n = pq are of the same bit size, then one can assume, without loss of generality, that q < p < 2q. This easily leads to the inequalities

√ 2 2 √ n < q < √ n < p < √ 2 √ n.
It follows that when |p -q| is small, then p and q are close to √ n and, consequently, φ(n

) ≈ n + 1 -2 √ n.
This was an advantage for the attack of de Weger. Similarly, if the prime difference |2q -p| is small, then one can show that q ≈

√ 2 2 √ n and p ≈ √ 2 √ n. This shows that φ(n) ≈ n + 1 -3 √ 3 2

√

n and this was an advantage for the attack of [START_REF] Maitra | Revisiting Wiener's Attack -New Weak Keys in RSA[END_REF]. Indeed, in case of e ≈ n, d < n δ and |2q -p| < n γ , they showed that RSA is insecure if δ < 1 6 (4γ + 5) -1 3 (4γ + 5)(4γ -1). Sometimes, one can get more important results if we assume that the private exponent d or the prime factors p, q are of special forms.

These attacks are called partial key exposure attacks. Sun et al. [START_REF] Sun | Cryptanalysis of Short Exponent RSA with Primes Sharing Least Significant Bits[END_REF] considered the situation when the prime factors share an amount of their least significant bits. Namely, if p -q = 2 u z for some known u, then p + q = 2 2u v + 2v 0 where

v 0 ≡ p 0 + n -p 2 0 p -1 0 2 (mod 2 2u ),
and p 0 is a solution of the congruence x 2 ≡ n (mod 2 u ). Then, using the key equa-

tion ed -kφ(n) = 1 with φ(n) = n + 1 -2v 0 -2 2u v and taking e = n β , 2 u = n γ and d < n δ , Sun et al. showed that RSA is insecure whenever δ < 7 6 -2 3 γ - 1 3
-24βγ + 16γ 2 + 6β -8γ + 1. Our Contributions. In this paper, we unify most of the attacks on RSA that are based on applying Coppersmith's technique for solving modular polynomial equations derived from the equation ed -kφ(n) = 1. We introduce the notion of Coppersmith's intervals. Let n be an RSA modulus and e, d be public and private exponents respectively, satisfying ed -kφ(n) = 1. We said that the interval I is a Coppersmith's interval for the public key (n, e) if for every positive integer m ∈ I, the solution (d, k) of the equation ed -kφ(n) = 1 can be found by applying Coppersmith's method to a modular polynomial equation involving a polynomial f m (x, y) derived from the key equation ed -kφ(n) = 1. Then we show that for e = n β , d = n δ , the interval

I = [φ(n) -n α , φ(n) + n α ] is a Coppersmith's interval for (n, e) if δ < β + 1 3 α - 1 3 12αβ + 4α 2 .
This interval is also Coppersmith's interval for any variant of RSA that uses the equation ed -kφ(n) = 1. Then we use the obtained Coppersmith's interval to show that some former attacks on RSA can be reformulated using Coppersmith's interval. This includes attacks of [START_REF] Boneh | Cryptanalysis of RSA with private key d less than N 0.292[END_REF], [START_REF] Weger | Cryptanalysis of RSA with small prime difference[END_REF] and [START_REF] Maitra | Revisiting Wiener's Attack -New Weak Keys in RSA[END_REF] as well as [START_REF] Sun | Cryptanalysis of Short Exponent RSA with Primes Sharing Least Significant Bits[END_REF]. We also use the obtained Coppersmith's interval to factor an RSA modulus n = pq when an approximation p 0 of p is given. Finally, we show that the obtained Coppersmith's interval can be applied to multi-prime RSA to extend the attack of [START_REF] Weger | Cryptanalysis of RSA with small prime difference[END_REF]. We note that the notion of Coppersmith's interval is equivalent to finding a lower bound φ(n) -n α and an upper bound φ(n) + n α for φ(n) so that Coppersmith's method will succeed in solving the modular polynomial equation xy + mx + 1 ≡ 0 (mod e) for any m lying between the two bounds. This paper is organized as follows. In Section 2, we present some well known facts and method that will be used through the paper. In Section 3, we define Coppersmith's interval for a given RSA public key (n, e). Then we determine Coppersmith's interval for (n, e). In Section 4, we present our application of Coppersmith's interval to attack RSA. This includes that (1) how one can obtain some former attacks on RSA (e.g. [START_REF] Boneh | Cryptanalysis of RSA with private key d less than N 0.292[END_REF], [START_REF] Weger | Cryptanalysis of RSA with small prime difference[END_REF] and [START_REF] Maitra | Revisiting Wiener's Attack -New Weak Keys in RSA[END_REF]) from Coppersmith's interval; (2) a revised version of Copper-smith attack on RSA; and (3) an extension of the attack of [START_REF] Weger | Cryptanalysis of RSA with small prime difference[END_REF] on RSA to multi-prime RSA. We conclude in Section 6.

Preliminaries

Throughout the paper, the values n α , n β , n δ , n γ , n θ represent positive integers. In this section, we present a few basic facts about lattice basis reduction. Also, we mention some useful facts and results related to the prime factors of an RSA modulus n = pq.

Lattice

Let u 1 , . . . , u ω ∈ Z n be ω linearly independent vectors with ω ≤ n. A lattice L spanned by (u 1 , . . . , u ω ) is the set of all integer linear combinations of u 1 , . . . , u ω , that is

L = ω i=1 a i u i | a i ∈ Z .
The set (u 1 , . . . , u ω ) is called the basis of the lattice L. Let (u * 1 , . . . , u * ω ) be the result of applying Gram-Schmidt orthogonalization to the basis vectors. Then the determinant of L is defined as

det(L) = ω i=1 u * i ,
where v denotes the Euclidean norm of the vector v. If ω = n, then L is a full rank lattice and the determinant of L is equal to the absolute value of the determinant of a lattice basis matrix. The well known LLL algorithm, due to [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF] has proved to be a very efficient lattice reduction algorithm and very useful in cryptanalysis. The LLL algorithm outputs an approximation of a shortest lattice vector in time polynomial in ω and max i u i . Next we show the result of the output of the LLL algorithm (see [START_REF] May | New RSA Vulnerabilities using Lattics Reduction Methods[END_REF]).

Theorem 1. [START_REF] May | New RSA Vulnerabilities using Lattics Reduction Methods[END_REF] Let L be a lattice spanned by a basis (u 1 , . . . , u ω ). The LLL algorithm produces a basis

(b 1 , . . . , b ω ) of L satisfying b 1 ≤ b 2 ≤ . . . ≤ b i ≤ 2 ω(ω-1) 4(ω+1-i) det(L) 1 ω+1-i .
Using the LLL algorithm, [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF] presented an algorithm that allows to efficiently and rigourously compute small integer roots of bivariate polynomials and small modular roots of univariate polynomials. The two techniques are based on the same idea: using the univariate or the bivariate polynomial to create a lattice, applying lattice reduction to find a second polynomial that has the same root as the first one, and then solving it over the integers. Later, [START_REF] Howgrave-Graham | Finding small roots of univariate modular equations revisited[END_REF] and [START_REF] Jochemsz | A strategy for finding roots of multivariate polynomials with new applications in attacking RSA variants[END_REF] revisited the idea of Coppersmith and proposed alternative simplifications. The strategy of [START_REF] Jochemsz | A strategy for finding roots of multivariate polynomials with new applications in attacking RSA variants[END_REF] is a technique that allows to find a lattice with good properties. Using an initial polynomial f (x 1 , . . . , x n ), the technique creates m new polynomials f i (x 1 , . . . , x n ), i = 1, . . . , m, such that the coefficients of these polynomials form a triangular matrix with easy properties for lattice reduction.

Coppersmith's method has been adapted to various multivariate modular polynomial equations under the following assumption.

Assumption 2. [8], [8] Let f 1 , . . . , f n ∈ Z[x 1 , . . . ,
x n ] be the polynomials that are found by applying Coppersmith's method. The resultant computations for the polynomials f 1 , . . . , f n yield non-zero polynomials. Equivalently, the ideal generated by the polynomial equations

f 1 (x 1 , . . . , x n ) = 0, . . . , f n (x 1 , . . . , x n ) = 0 has dimension zero.
The following theorem is due to [START_REF] Howgrave-Graham | Finding small roots of univariate modular equations revisited[END_REF] where it is used to derive conditions under which the polynomial f (x, y) ∈ Z[x, y] with the modular solution f (x 0 , y 0 ) ≡ 0 (mod e u ) has the same root over integer, that is f (x 0 , y 0 ) = 0. The theorem uses the Euclidean norm of a bivariate polynomial f (x, y) = a i1,i2 x i1 y i2 which is defined as

f (x, y) = a 2 i1,i2 . Theorem 3. [7] Let f (x, y) ∈ Z[x,
y] be a polynomial which is a sum of at most ω monomials. Let e, u, X and Y be positive integers. Suppose that f (x 0 , y 0 ) ≡ 0 (mod e u ), where

|x 0 | < X, |y 0 | < Y, f (xX, yY ) < e u √ ω .
Then f (x 0 , y 0 ) = 0 holds over the integers.

In the following theorem, it has been shown a general case in which the small inverse problem can be solved. The small inverse problem is to find small integers x and y satisfying x(A + y) ≡ 1 (mod B) for two large integers A and B. Theorem 4. [START_REF] Takayasu | General bounds for small inverse problems and its applications to multi-prime RSA[END_REF] Given two large integers A and B, let (x 0 , y 0 ) be a solution of x(A+ y) ≡ 1 (mod B) with |x 0 | < B u and |y 0 | < B v for some 0 < u, v < 1. Then (x 0 , y 0 ) can be obtained in polynomial time when

u < 1 - √ v for 1 4 ≤ v < 1, u < 1 - 2 3 ( (3 + 4v)v -v) for 0 < v < 1 4

Useful lemmas

We terminate this section by some useful results related to the prime factors of an RSA modulus n = pq.

Lemma 1. [START_REF] Nitaj | Another generalization of Wieners attack on RSA[END_REF], [START_REF] Weger | Cryptanalysis of RSA with small prime difference[END_REF] Let n = pq be an RSA modulus such that q < p < 2q. Then

√ 2 2 √ n < q < √ n < p < √ 2 √ n, (1) 
0 < p -q < √ 2 2 √ n, (2) 
2 √ n < p + q < 3 √ 2 2 √ n. (3) 
Lemma 2. [START_REF] Weger | Cryptanalysis of RSA with small prime difference[END_REF] Let n = pq be an RSA modulus such that q < p < 2q. Then

0 < p + q -2 √ n < (p -q) 2 4 √ n . Proposition 1. [10] Let l be a positive integer. If q > 2l+2 4l+1 p, then 3 √ 2 √ n -(p + q) < l(2q -p) 2 ( 3 √ 2 + 2) √ n .
The following lemma showed that if p, q share m bits of their least significant bits, then these sharing bits and 2m least significant bits of p + q can be computed in polynomial time.

Lemma 3. [START_REF] Steinfeld | On the Security of RSA with Primes Sharing Least-Significant Bits[END_REF] Let n = pq be an RSA modulus with q < p < 2q. Suppose that p -q = 2 u z for a known value u. Then p = 2 u p 1 + p 0 and q = 2 u q 1 + p 0 where p 0 is a solution of the equation x 2 ≡ n (mod 2 u ) and p + q = 2 2u v + 2v 0 with

v 0 ≡ p 0 + n -p 2 0 p -1 0 2 (mod 2 2u ).

The Lattice Result

In this section we introduce the notion of Coppersmith's interval for a given public-key RSA (n, e). It is based on Coppersmith's method. In literature [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF][START_REF] May | New RSA Vulnerabilities using Lattics Reduction Methods[END_REF][START_REF] Jochemsz | A strategy for finding roots of multivariate polynomials with new applications in attacking RSA variants[END_REF][START_REF] Hinek | Cryptanalysis of RSA and its variants[END_REF][START_REF] Zhang | Improved attacks on multi-prime RSA with small prime difference[END_REF], the term Coppersmith's method is used to refer to lattice basis reduction techniques for finding small roots of polynomials modulo an integer n with unknown factorization.

Definitions

We start this section by giving definition of Coppersmith's root and Coppersmith's interval. Then we determine a Coppersmith's interval for a given public-key RSA (n, e) related the to key equation equation ed -kφ(n) = 1. We start with the following definition in regards of a bivariate polynomial.

Definition 1. (Coppersmith's root) Let x 0 , y 0 be two integers. The tuple (x 0 , y 0 ) is a Coppersmith's root of the polynomial f (x, y) ∈ Z[x, y] modulo an integer e if f (x 0 , y 0 ) ≡ 0 (mod e), where (x 0 , y 0 ) can be computed in polynomial time using Coppersmith's method.

Let (n, e) be an RSA public key satisfying the equation ed -kφ(n) = 1. Then kφ(n) + 1 ≡ 0 (mod e). Let m be an integer. Then k(φ(n) -m) + mk + 1 ≡ 0 (mod e) This can be rewritten as xy+mx+1 ≡ 0 (mod e) with x = k, y = φ(n)-m. This leads to a bivariate polynomial f (x, y)

= xy + mx + 1 ∈ Z[x, y].
Definition 2. (Coppersmith's interval) Let (n, e) be an RSA public key with private exponent d satisfying ed = 1+kφ(n). An interval I is said to be a Coppersmith's interval for (n, e) if for every integer m ∈ I,

(x 0 , y 0 ) = (k, φ(n) -m) is a Coppersmith's root of the polynomial f (x, y) = xy + mx + 1 modulo e.

Explicit Coppersmith's interval

Now we determine a Coppersmith's interval for an RSA public-key (n, e). It is natural to determine a Coppersmith's interval in terms of φ(n) since most small private exponent attacks on RSA try to find a good approximation of φ(n) in order to solve the key equation ed -kφ(n) = 1. We note that the following result relies on the widely used and accepted Assumption 2 in order to extract the final solutions efficiently. We present in Subsection 3.3 various experimental results to verify the correctness of the attack in practice.

Theorem 5. Let (n, e = n β ) be an RSA public key with private exponent d = n δ . Then

I = [φ(n) -n α , φ(n) + n α ] (4) 
is a Coppersmith's interval for (n, e), where

δ < β + 1 3 α - 1 3 12αβ + 4α 2 . ( 5 
) Proof. Suppose that φ(n) = m ∈ I. Then |φ(n) -m| < n α . Since ed = kφ(n) + 1, then kφ(n) + 1 ≡ 0 (mod e).
This can be rewritten as k(φ(n) -m) + km + 1 ≡ 0 (mod e). Consider the polynomial f (x, y) = xy + mx + 1. Then f (x, y) has root (x 0 , y 0 ) = (k, φ(n) -m) modulo e. Observe that

x 0 = k < d = n δ , y 0 = |φ(n) -m| < n α .
Hence, if δ and α are suitably small, then using Coppersmith's method we can find (k, φ(n) -m) among the small roots of the polynomial f (x, y) modulo e. The main target of the proof is to show that (x 0 , y 0 ) is also a root of some polynomial g(x, y) over integers and that polynomial can be constructed form f (x, y) by using Jochemsz-May strategy for small modular roots (see [START_REF] Jochemsz | A strategy for finding roots of multivariate polynomials with new applications in attacking RSA variants[END_REF]). Define the bounds X and Y as

X = n δ , Y = n α .
Let u and r be positive integers to be specified later. For 0 ≤ t ≤ u, define

M t = 0≤j≤r {x i1 y i2+j : x i1 y i2 monomial of f u (x, y) x i 1 y i 2 (xy) t monomial of f u-t (x, y)}.
Observe that f u (x, y) satisfies

f u (x, y) = (x(y + m) + 1) u = u i1=0 u i1 x i1 (y + m) i1 = u i1=0 u i1 x i1 i1 i2=0 i1 i2 y i2 m i1-i2 = u i1=0 i1 i2=0 u i1 x i1 i1 i2 y i2 m i1-i2
Hence, x i1 y i2 is a monomial of f u (x, y) if i 1 = 0, . . . , u and i 2 = 0, . . . i 1 .

Consequently, x i1 y i2 is a monomial of f u-t (x, y) if

i 1 = 0, . . . , u -t and i 2 = 0, . . . i 1 .
Also, for 0 ≤ t ≤ u, when x i1 y i2 is a monomial of f u (x, y),

then x i 1 y i 2 (xy) t is a monomial of f u-t if i 1 = t, . . . , u and i 2 = t, . . . i 1 .
Hence, for 0 ≤ t ≤ u, we obtain

x i1 y i2 ∈ M t if i 1 = t, . . . , u and i 2 = t, . . . i 1 + r.
Similarly,

x i1 y i2 ∈ M t+1 if i 1 = t + 1, . . . , u and i 2 = t + 1, . . . i 1 + r.
Note that, for 0 ≤ t ≤ u, we find that x i1 y i2 ∈ M t \ M t+1 if and only if

{i 1 = t, . . . , u with i 2 = t} or {i 1 = t with i 2 = t + 1, . . . , i 1 + r}.
For 0 ≤ t ≤ u, define the polynomials

g t,i1,i2 (x, y) = x i1 y i2 (xy) t f t (x, y)e u-t with x i1 y i2 ∈ M t \ M t+1 .
For i 1 = t, . . . , u and i 2 = t, the polynomials g t,i1,i2 (x, y) reduce to

g t,i1,t (x, y) = G t,i1 (x, y) = x i1-t f t (x, y)e u-t for i 1 = t, . .

. , u

For i 1 = t and i 2 = t + 1, . . . , t + r the polynomials g t,i1,i2 (x, y) reduce to

g t,t,i2 (x, y) = H t,i2 (x, y) 
= y i2-t f t (x, y)e u-t for i 2 = t + 1, . . . , t + r.

Let L be the lattice spanned by the coefficient vectors of the polynomials G t,i1 (xX, yY ) and H t,i2 (xX, yY ). The ordering of the monomials is such that the matrix M is triangular. It is as follows: if i 1 < i 1 , then x i1 y i2 < x i 1 y i 2 and if i 1 = i 1 and i 2 < i 2 , then x i1 y i2 < x i 1 y i 2 . From the triangular form of the matrix, the determinant of L is

det(L) = e ae X a X Y a Y . (6) 
From the construction of the polynomials G t,i1 (xX, yY ) and H t,i2 (xX, yY ) we get

a e = u t=0 u i1=t (u -t) + u t=0 t+r i2=t+1 (u -t) = 1 6 u(u + 1)(2u + 3r + 4)
Similarly, we have

a X = u t=0 u i1=t i 1 + u t=0 t+r i2=t+1 t = 1 6 u(u + 1)(2u + 3r + 4)
and

a Y = u t=0 u i1=t t + u t=0 t+r i2=t+1 i 2 = 1 6 (u + 1)(u 2 + 3ur + 3r 2 + 2u + 3r).
The dimension of L is calculated as

ω = u t=0 u i1=t 1 + u t=0 t+r i2=t+1 1 = 1 2 (u + 1)(u + 2r + 2).
Let r = uτ.

Then

a e = 1 6 u(u + 1)(2u + 3uτ + 4) = 1 6 (2 + 3τ )u 3 + o(u 3 )
similarly, we have

a X = 1 6 u(u + 1)(2u + 3uτ + 4) = 1 6 (2 + 3τ )u 3 + o(u 3 )
and

a Y = 1 6 (u + 1)(u 2 + 3u 2 τ + 3u 2 τ 2 + 2u + 3uτ ) = 1 6 (1 + 3τ + 3τ 2 )u 3 + o(u 3 ). Also, ω = 1 2 (u + 1)(u + 2r + 2) = 1 2 (u + 1)(u + 2uτ + 2) = 1 2 (1 + 2τ )u 2 + o(u 2 ).
To solve the original multivariate equation xy + mx + 1 ≡ 0 (mod e), we need two algebraically independent integer polynomial equations f 1 (x, y) = 0 and f 2 (x, y) = 0. These two polynomial equations can be found by reducing the lattice basis of L using the LLL algorithm and by assuming Assumption 2. Indeed, by applying the LLL algorithm to the lattice L, the two shortest vectors in the reduced basis satisfy Theorem 1 with i = 2, that is

f 1 (x, y) ≤ f 2 (x, y) ≤ 2 ω 4 det(L) 1 ω-1 .
To apply Howgrave-Graham's Theorem 3 to the two shortest vectors in the LLL-reduced basis of L, we have to set

2 ω 4 det(L) 1 ω-1 < e u √ ω .
This transforms to det(L) < 1 2

ω 4
√ ω e u(ω-1) .

By Neglecting 2 Using Eq. ( 6), we get e ae X a X Y a Y < e uω .

Since e = n β , X = n δ , and Y = n α . Then

n βae n δa X n αa Y < n uβω .
Taking logarithms, we get βa e +δa X +αa Y < uβω. Plugging the values of a e , a X , a Y and ω, we get

1 6 (2 + 3τ )β + 1 6 (2 + 3τ )δ + α 6 (1 + 3τ + 3τ 2 ) - 1 2 (1 + 2τ )β < 0. (7) 
The optimal value for τ in the left side is τ = β-δ-α 2α , which leads to

1 6 αβ - α 2 6 - α 3 (β -δ -α) - 1 8 (β -δ -α) 2 < 0.
Solving for δ, we get

δ < β + 1 3 α - 1 3 12αβ + 4α 2 .
This terminates the proof.

Remark 1.

1. There is no condition on the prime factors of n. Thus, I is also Coppersmith's interval for any variant of RSA that uses the relation ed ≡ 1 (mod φ(n)). 2. The Coppersmith interval in Theorem 5 is neither a unique nor a maximal Coppersmith's interval. For example, we can use Herrman-May [START_REF] Herrmann | Maximizing small root bounds by linearization and applications to small secret exponent RSA[END_REF] linearization technique to show that the interval

I = [φ(n) -n γ , φ(n) + n γ ]
is another Coppersmith's interval when

δ < β -βγ. (8) 
Suppose that we have a monomial u = xy + 1. The polynomial f (x, y) = xy + mx+1 modulo e can be rewritten in terms of the monomial u as a linear polynomial f (u, x) = u + mx with xy = u -1.

Define,

ḡi,k (u, x) = x i f k e s-k for k = 0, 1, . . . , s and i = 0, 1, . . . , s -k, and for a positive integer t ≤ s (to be specified latter),

hj,k (u, x, y) = y j f k e s-k for j = 1, 2, . . . , t and k = s t j, . . . , s.

Let X = n δ , Y = n γ , U = N δ+γ and let L be the lattices spanned by the coefficient vectors of the polynomials ḡi,k (uU, xX) and hj,k (uU, xX, yY ). The ordering of the monomials is such that the matrix M is triangular. The monomial is either in the form x i1 u i 1 (of order x i1+i 1 y i 1 ) or in the form y i2 u i 2 (of order x i 2 y i2+i 2 ). The monomial of order x i y j precedes the monomials of order x i y j when either i < i or i = i and j < j . In Herrmann-May [START_REF] Herrmann | Maximizing small root bounds by linearization and applications to small secret exponent RSA[END_REF], it has been shown that, from the triangular form of the matrix, the determinant of L is

det(L) = X sx Y sy U su e se ,
where

s x = s k=0 s-k i=0 i = 1 6 s 3 + o(s 3 ), s y = τ s j=1 s k= 1 τ j j = τ 2 6 s 3 + o(s 3 ), s u = s k=0 s-k i=0 k + τ s j=1 s k= 1 τ j k = ( 1 6 + τ 3 )s 3 + o(s 3 )
,

s e = s k=0 s-k i=0 (s -k) + τ s j=1 s k= 1 τ j (s -k) = ( 1 3 + τ 6 )s 3 + o(s 3 ), dim(L) = s k=0 s-k i=0 1 + τ s j=1 s k= 1 τ j 1 = ( 1 2 + τ 2 )s 2 + o(s 2 ).
By applying Howgrave-Graham's theorem (Theorem 3) to the two shortest vectors in the reduced basis hat satisfy Theorem 1 with i = 2, we obrain det(L) = X sx Y sy U su e se < e s dim (L) .

Using e = n β , X = n δ , and Y = n α , this is verified if

δ 6 + τ 2 α 6 + 1 6 + τ 3 (α + δ) + 1 3 + τ 6 β - 1 2 + τ 2 β < 0.
The optimized value for τ is τ = β-δ-α α . Plugging this value, we get

αβ -β 2 + 2βδ -δ 2 < 0,
which is satisfied for δ < β -βα.

Also, the interval

I = [φ(n) -n α , φ(n) + n α ],
is another Coppersmith's interval when

δ < β -βα for β 4 ≤ α < β, δ < β - 2 3 ( (3β + 4α )α -α ) for 0 < α < β 4 .
This is because of the following: The equation ed = 1 + kφ(n) can be rewritten 

as ed = 1 + k(m + φ(n) -m)
δ β < 1 - α for 1 4 ≤ α β < 1, δ β < 1 - 2 3 3 + 4 α β α β - α β for 0 < α β < 1 4 .
Therefore, the interval [φ(n) -n α , φ(n) + n α ] is another Coppersmith's interval when

δ < β -βα for β 4 ≤ α < β δ < β - 2 3 ( (3β + 4α )α -α ) for 0 < α < β 4 .
This leads to an interesting question what is the maximal Coppersmith's interval.

Experimental results

We experimented the attack on 1000 RSA instances with moduli n = pq, e = n β ,

d = n δ and m ∈ [φ(n) -n α , φ(n) + n α ]
for various values of α and β. In all cases, Assumption 2 was verified and we were able to find the small solution (x 0 , y 0 ) = (k, φ(n) -m) of the equation f (x, y) = xy + mx + 1 ≡ 0 (mod e) for any m in the Coppersmith interval 1. Bounds for δ in terms of α, β and the lattice dimension.

I = [φ(n) -n α , φ(n) + n α ] where x 0 = k < d = n δ , y 0 = |φ(n) -m| < n α , with the condition δ < β + 1 3 α -1 3 12αβ + 4α 2 .
u = 5, r = 1, dim = 27 u = 5, r = 1, dim = 27 u = 4, r = 1, dim = 20 u = 5, r = 1, dim = 27 u = 4, r = 1, dim = 20 u = 4, r = 1, dim = 20 u = 3, r = 1, dim = 14 u = 3, r 1, dim = 14 Table

Cryptanalysis of RSA using Coppersmith's interval

In this section, we give an application of Coppersmith's interval to attack the RSA cryptosystem. We show that four well-known and important attacks on RSA can be derived from Theorem 5. We also present a new attack related to Theorem 5. Then we show that the result of [START_REF] Weger | Cryptanalysis of RSA with small prime difference[END_REF] on RSA can be extended to Multi-prime RSA using Coppersmith's interval.

Application to former attacks

We show that the attack of [START_REF] Boneh | Cryptanalysis of RSA with private key d less than N 0.292[END_REF] and its improvements by [START_REF] Weger | Cryptanalysis of RSA with small prime difference[END_REF] and [START_REF] Maitra | Revisiting Wiener's Attack -New Weak Keys in RSA[END_REF] as well as the attack presented by [START_REF] Sun | Cryptanalysis of Short Exponent RSA with Primes Sharing Least Significant Bits[END_REF] can be obtained from Theorem 5 Corollary 1. [Boneh-Durfee] Let (n, e) be an RSA public key with a full size public exponent e and a private exponent d = n δ , δ < 0.284 where n is a product of two large primes p and q such that q < p < 2q. Then n ∈ I (as in Eq. ( 4)).

Proof. Using Eq. (3), we have

0 < n -φ(n) = p + q -1 < 3 √ 2 2 √ n. It follows that n -φ(n) = 3 √ 2 2 n α , with α = 1 2 .
Suppose that e = n β . If

δ < β + 1 6 - 1 3 6β + 1,
then by Theorem 5, n ∈ I (as in Eq. ( 4)) and we can factor n = pq. For the particular case where e is full size, that is β ≈ 1, the bound of d is

δ < 7 6 - √ 7 3 ≈ 0.284.
This is precisely the first result of [START_REF] Boneh | Cryptanalysis of RSA with private key d less than N 0.292[END_REF].

However, if δ < 0.292, then n ∈ I (as in Eq. ( 8)) by taking γ = α = 1/2.

Corollary 2. [de Weger] Let (n, e) be an RSA public key with a full size public exponent e and a private exponent d = n δ , where n is a product of two primes p and q such that q < p < 2q and p -

q = n θ , 1 4 < θ < 1 2 . If δ < 1 6 (4θ + 5) - 1 3 (4θ + 5)(4θ -1),
then n + 1 -2 √ n ∈ I (as in Eq. ( 4)).

Proof. Using Eq. ( 2), we have p -q = n θ , with θ < 1 2 . Note that, if θ ≤ 1 4 , then using Fermat's method, it is possible to compute p and q which breaks the RSA system (see [START_REF] Weger | Cryptanalysis of RSA with small prime difference[END_REF] and [START_REF] Nitaj | Another generalization of Wieners attack on RSA[END_REF]). In the following, we restrict θ such that

1 4 < θ < 1 2 . Let m = n + 1 -2 √ n . Then 0 < m -φ(n) ≤ n + 1 -2 √ n -φ(n) = p + q -2 √ n. Using Lemma 2, we get 0 < m -φ(n) < (p -q) 2 4 √ n = 1 4 n 2θ-1 2 . If m = n + 1 -2 √ n , then m -φ(n) < 1 4 n α with α = 2θ - 1 2 . 
Since e is full size public key, then e = n β with β ≈ 1. Replacing α by 2θ -1 2 and by taking β = 1 in Eq. ( 5), we get

δ < 1 + 1 3 (2θ -1 2 ) -1 3 12(2θ -1 2 ) + 4(2θ -1 2 ) 2 = 1 6 (4θ + 5) -1 3 √ 16θ 2 + 16θ -5 = 1 6 (4θ + 5) -1 3 (4θ + 5)(4θ -1).
Then according to Theorem 5, n + 1 -2 √ n ∈ I (as in Eq. ( 4)). Moreover, this matches the bound found in [START_REF] Weger | Cryptanalysis of RSA with small prime difference[END_REF].

Corollary 3. [Maitra-Sarkar] Let (n, e) be an RSA public key with a full size public exponent e and a private exponent d = n δ , where n is a product of two primes p and q such that q < p < 2q and 2q -p = n γ with γ ≤ 1 2 . Suppose that l is a positive integer such that q > 2l+2 4l+1 p. If

δ < 1 6 (4γ + 5) - 1 3 (4γ + 5)(4γ -1), then n + 1 -3 √ 2 2

√

n ∈ I (as in Eq. ( 4)).

Proof.

Let m = n + 1 -3 √ 2 √ n . Then 0 < φ(n) -n + 1 - 3 √ 2 2 √ n ≤ φ(n) -n + 1 - 3 √ 2 2 √ n = 3 √ 2 2 √ n -(p + q).
If q > 2l+2 4l+1 p for a positive integer l, then, using Proposition 1, we get

0 < 3 √ 2 2 √ n -(p + q) < l(2q -p) 2 3 √ 2 2 + 2 √ n < l 3 √ 2 2 + 2 n 2γ-1 2 . It follows that if m = n + 1 -3 √ 2 √ n , then φ(n) -m < l 3 √ 2 2 + 2 n α with α = 2γ - 1 2 .
Since e is full size public key, then e = n β with β ≈ 1. Replacing α by 2γ -1 2 and by taking β = 1 in Eq. ( 5), we get

δ < 1 + 1 3 (2γ -1 2 ) -1 3 12(2γ -1 2 ) + 4 2γ -1 2 2 = 1 6 (4γ + 5) -1 3 16γ 2 + 16γ -5 = 1 6 (4γ + 5) -1 3 (4γ + 5)(4γ -1).
Then according to Theorem 5, n + 1 -3 √ 2

√ n ∈ I (as in Eq. ( 4)). We note that the bound on δ is the same as the bound found in [START_REF] Maitra | Revisiting Wiener's Attack -New Weak Keys in RSA[END_REF]. Corollary 4. [Sun et al.] Let (n, e) be an RSA public key with a public exponent e = n β and a private exponent d = n δ , where n is the product of two primes p and q such that q < p < 2q and p -q = 2 u z for some known u with

2 u = n γ . If δ < 7 6 - 2 3 γ - 1 3 -24βγ + 16γ 2 + 6β -8γ + 1.
then n + 1 -2v 0 ∈ I (as in Eq. ( 4)) where

v 0 ≡ p 0 + n -p 2 0 p -1 0 2 (mod 2 2u ),
and p 0 is a solution of the congruence x 2 ≡ n (mod 2 u ).

Proof. Suppose that p -q = 2 u z for a known value u with 2 u = n γ . Then p + q = 2 2u v + 2v 0 where v 0 is computed as mentioned in Lemma 3. Hence φ(n

) = n + 1 - (p + q) = n + 1 -2v 0 -2 2u v. Define m = n + 1 -2v 0 . Hence |φ(n) -m| = 2 2u v.
Using Eq. ( 3), we get

v < p + q 2 2u < 3 √ 2 2 n 1 2 -2γ .
On the other hand, since ed -kφ(n) = 1, then

k = ed -1 φ(n) < ed φ(n) < n β+δ n 2 = 2n β+δ-1 .
Hence, the equation ed -

kφ(n) = 1 with φ(n) = n + 1 -2v 0 -2 2u v transforms into k (φ(n) -(n + 1 -2v 0 )) + k(n + 1 -2v 0 ) + 1 ≡ 0 (mod e), or equivalently -2 2u kv + k(n + 1 -2v 0 ) + 1 ≡ 0 (mod e),
gives rise to the polynomial g(x, y) = 2 2u xy + x(n + 1 -2v 0 ) + 1 with the root (x 0 , y 0 ) = (k, -v) satisfying the bounds

|x 0 | < X = 2n β+δ-1 , |y 0 | < Y = 3 √ 2 2 n 1 2 -2γ .
Replacing δ by β + δ -1 and α by 1 2 -2γ in Eq. ( 7), we get

1 12 (-12γ + 3)τ 2 + 1 12 (6δ -12γ -3)τ + 1 6 β + 1 3 δ - 1 3 γ - 1 4 < 0
The left hand side is minimized at τ 0 = 1+4γ-2δ 2(1-4γ) , which leads to -12δ 2 + (28 -16γ)δ -32βγ + 16γ 2 + 8β + 8γ -15 < 0.

Solving for δ, we get

δ < 7 6 - 2 3 γ - 1 3 -24βγ + 16γ 2 + 6β -8γ + 1.
Notice that this can be written as

δ < 2 3 1 2 -γ + 5 6 - 4 3 1 2 -γ 2 + 3 2 β - 1 2 1 2 -γ - 6β -1 16 .
This is the same bound found by [START_REF] Sun | Cryptanalysis of Short Exponent RSA with Primes Sharing Least Significant Bits[END_REF].

Then, λ 1 and λ 2 satisfy λ 1 ≥ p + q and λ 2 ≤ p + q. Observe that p 0 -p ≤ 0 and n p0 -q = q(p-p0) p0 ≤ 1 2 n α . Also,

λ 1 -p -q = 1 2 n α + (p 0 -p) + n p 0 -q ≤ n α .
It follows that 0 ≤ λ 1 -p -q ≤ n α which satisfies Eq. ( 9). On the other hand, observe that p -p 0 1 2 n α and q ≤ n p0 . Then

p + q -λ 2 = p + q -p 0 - n p 0 + 1 2 n α ≤ 1 2 n α + n p 0 - n p 0 + 1 2 n α = 1 2 n α + n 1+α 2p 0 (p 0 + 1 2 n α ) ≤ n α ,
where we used

n 1+α 2p0(p0+ 1 2 n α ) ≤ 1 2 n α which is valid since p 0 ≥ √ n.
Consequently, λ 2 is such that 0 ≤ p + q -λ 2 ≤ n α which satisfies Eq. ( 9). This proves the first case. Case 2: Suppose that p ≤ p 0 and √ n ≤ p 0 -1 2 n α . Then, using |p -p 0 | ≤ 1 2 n α and q = n p , we get

p 0 - 1 2 n α ≤ p ≤ p 0 , n p 0 ≤ q ≤ n p 0 -1 2 n α .
Next, define,

λ 1 = p 0 + n p 0 -1 2 n α , λ 2 = n p 0 + p 0 - 1 2 n α .
Then, we easily get λ 1 ≥ p + q. Using p 0 -p ≤ 1 2 n α and n p0 ≤ q, we get

λ 1 -p -q = p 0 + n p 0 -1 2 n α -p -q ≤ 1 2 n α + n p 0 -1 2 n α - n p 0 = 1 2 n α + n 1+α 2p 0 (p 0 -1 2 n α ) ≤ n α ,
where we used

n 1+α 2p0(p0-1 2 n α ) ≤ 1 2 n α for p 0 -1 2 n α ≥ √ n.
This shows that λ 1 satisfies Eq. ( 9). Similarly, we have λ 2 ≤ p + q and using p ≤ p 0 and q ≤ n p0-1 2 n α , we get

p + q -λ 2 = p + q - n p 0 -p 0 + 1 2 n α ≤ n p 0 -1 2 n α - n p 0 + 1 2 n α = n 1+α 2p 0 (p 0 -1 2 n α ) + 1 2 n α ≤ n α .
It follows that λ 2 also satisfies Eq. ( 9). This proves the second case. Case 3: Suppose that p ≤ p 0 and p 0 -

1 2 n α < √ n. Then p - √ n ≤ 1 2 n α , which means that √
n is an approximation of p satisfying Case 1. Then, plugging p 0 = √ n in Case 1, we get that the interval

n + 1 -(2 √ n + 1 2 n α ), n + 1 -( √ n + n √ n + 1 2 n α ) , is a Coppersmith's interval for (n, e).
In [START_REF] Sarkar | RSA cryptanalysis with increased bounds on the secret exponent using less lattice dimension[END_REF], Sarkar, Maitra and Sarkar presented an attack on RSA when e ≈ n, d = n δ , |p -p 0 | < n α and showed that n = pq can be factored if δ < 1 + α 3 -2 3 α(α + 3). This can be retrieved by our attack when β = 1 in the inequality of Theorem 6. Hence, our attack is actually a generalization of the attack of Sarkar et al. Figure 1 illustrates the difference between our attack and the previous attacks assuming that e has the same size of n and we have an approximation p 0 for p where |p -p 0 | < 1 2 n α , α < 1 2 .

Extending de Weger's Attack to Multi-Prime RSA

In Multi-prime RSA (MPRSA), the modulus n is the product of r ≥ 3 primes, that is

n = p 1 • • • p r , where p 1 < p 2 < • • • < p r .
As with RSA, we only consider 1 2 n 1/r < p i < 2n 1/r for 1 ≤ i ≤ r. In this case, n is said to be a product of distinct r-balanced primes.

Let p r -p 1 = n θ , θ < 1/r. In the case of standard RSA, i.e., r = 2, [START_REF] Weger | Cryptanalysis of RSA with small prime difference[END_REF] has showed that d can be recovered if δ < 1 6 (4θ + 5) -1 3 (4θ + 5)(4θ -1). In this section, we extend de Weger's result in the case of MPRSA, i.e., r ≥ 3, we show that d can be recovered if By neglecting 3r and replacing α by 1 + θ -2 r in Eq. ( 5), we get m ∈ I if

δ < β+ θ 3 + r -2 3r - 2 3 3βθ + 3β(r -2) r + θ + r -2 r 2 .
δ < β + 1 3 1 + θ - 2 r - 1 3 12β 1 + θ - 2 r + 4 1 + θ - 2 r 2 = β + θ 3 + r -2 3r - 2 3 3βθ + 3β(r -2) r + θ + r -2 r 2 .
This terminates the proof.

For the particular case when θ = 1/r and e is full size, i.e., β ≈ 1, the bound of Theorem 7 gives δ < 1 3r (4r -1 -2 (r -1)(4r -1)).

This is precisely the result of [START_REF] Hinek | Cryptanalysis of RSA and its variants[END_REF]. 

Conclusion

Based on Coppersmith's method, we have unified several previous private exponent attacks on RSA and Multi-Prime RSA by proposing the notion Coppersmith's interval. We have determined a Coppersmith's interval for RSA modulus n with public exponent e = n β , and private exponent d = n δ . The obtained interval is valid for any variant of RSA that satisfies ed ≡ 1 (mod φ(n)). We also have extended Coppersmith's result on a factorization.

  det(L) < e uω .

  where m ∈ I . Since |k| < d = n δ = e δ/β and |φ(n) -m| < n α = e α /β , obtaining k and φ(n) -m is a small inverse problem in which the two known large integers are m and e, i.e., (-k, φ(n) -m) is a root of the modular equation x(m + y) ≡ 1 (mod e). According to Theorem 4, this modular equation is solvable when
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  In Table1, we present the bounds for δ for various values of β and α.

	α	0.50 0.50 0.45 0.45 0.40 0.40 0.35 0.35
	β	0.987 0.990 0.998 0.975 0.984 0.973 0.995 0.992
	δ	0.276 0.278 0.318 0.303 0.345 0.338 0.391 0.390
	lattice	
	param-	
	eters	

Revising Coppersmith's Result

In the following theorem, we study the factorization of n when we know an approximation p 0 of p with |p -p 0 | ≤ 1 2 n α , α ≤ 1 2 . We show that the RSA is insecure if δ < β + 1 3 α -1 3 12αβ + 4α 2 where e = n β , d = n δ . Theorem 6. Let (n, e) be an RSA public key with a public e = n β and a private exponent d = n δ , where n is the product of two large primes p and q such that q < p < 2q. Let p 0 ≥ √ n be an approximation for p with |p -

is a Coppersmith's interval for (n, e), where

Proof. Suppose that p 0 is an approximation for p such that |p -p 0 | ≤ 1 2 n α . Our strategy is to apply Theorem 5 by showing that there exists an interval [n + 1 -λ 1 , n + 1 -λ 2 ] that is a Coppersmith's interval for (n, e). More precisely, we show that λ 1 and λ 2 are such that

12αβ + 4α 2 as it is required for applying Theorem 5. Since

The proof is divided into three cases according to p 0 ≤ p or p ≤ p 0 . Case 1: Suppose that p 0 ≤ p. Then |p -p 0 | ≤ 1 2 n α and q = n p , we get

Define,

we get m ∈ I in the case of Eq. [START_REF] Maitra | Revisiting Wiener's Attack -New Weak Keys in RSA[END_REF]. For a particular case where e is full size, i.e., β ≈ 1, we get m ∈ I when

This is similar to the result in [START_REF] Zhang | Attacks on Multi-Prime RSA with Small prime Difference[END_REF].

In [START_REF] Zhang | Improved attacks on multi-prime RSA with small prime difference[END_REF], Zhang and Takagi presented an improved attack on Multi-prime RSA with modulus n = p 1 . . . p r where p r -p 1 < n θ and showed that d = n δ can be recovered

We show below that this bound can be retrieved using a Coppersmith's interval. Define Γ = rn r-1 r . The method of Zhang and Takagi makes use of the following result. This terminates the proof.