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The security of the Bitcoin cryptocurrency system depends on the Koblitz curve secp256k1 combined with the digital signature ECDSA and the hash function SHA-256. In this paper, we show that the security of Bitcoin with ECDSA and secp256k1 is not optimal and present a detailed study of the efficiency of Bitcoin with the digital signature algorithm Ed25519 combined with the twisted Edwards curve CurveEd25519 and the hash function SHA-512. We show that Bitcoin is more secure and more efficient with the digital signature algorithm Ed25519 and the twisted Edwards curve CurveEd25519.

Introduction

The progress of the new technology of information is changing the way of our individual transfer cash, from paper to digital cash or electronic money (e-money). Electronic money is a substitute for cash. It is stored in electronic devices on remote servers. The use of e-money is highly encouraged in several countries and aims to create new, safe and practical development services. The transactions are becoming easier and cheaper, online payments and operations on our accounts are possible at anytime and anywhere. Meanwhile, the security of electronic systems becomes a serious concern. The amount of frauds, the attacks launched by various hackers, the problems of confidentiality and authentication, are of great danger for electronic systems. To overcome these problems, cryptography offers many solutions. Cryptography is used to secure e-commerce, the cloud, internet communications, and to protect sensitive banking, military information and information systems.

Another important application of cryptography is to secure Bitcoin system. Bitcoin is a peer-to-peer network without any central authority such as banks or governments. It was presented in 2008 by Satoshi Nakomoto [START_REF] Nakamoto | Bitcoin: A peer-to-peer electronic cash system[END_REF] and launched in 2009. To authorize payments or transfers, Bitcoin uses the Elliptic Curve Digital Signature Algorithm (ECDSA) [17] with the hash function SHA-256 [START_REF]Secure Hash Standard[END_REF], and the Koblitz curve secp256k1 with the equation secp256k1 : y 2 = x 3 + 7 (mod p 1 ), p 1 = 2 256 -2 32 -2 9 -2 8 -2 7 -2 6 -2 4 -1.

The Koblitz curve secp256k1 was proposed in 2000 by the Standards for Efficient Cryptography Group of Certicom in the standards for efficient cryptography SEC2 [START_REF]Standards for efficient cryptography 2: Recommended elliptic curve domain parameters[END_REF] and used in the Bitcoin system since 2009. The Koblitz curve secp256k1 seems having many advantages when used in industrial applications, especially efficiency, security and shortness of the key.

In this paper, we study the possibility of using the digital signature Ed25519 [START_REF] Bernstein | Twisted Edwards curves[END_REF] based on the twisted Edwards curve CurveEd25519 with the equation

CurveEd25519 : -x 2 + y 2 = 1 - 121665 121666 x 2 y 2 (mod p 2 ), p 2 = 2 255 -19,
to secure Bitcoin instead of ECDSA with the Koblitz curve secp256k1. We compare the security and the efficiency of operations on the curves secp256k1 and CurveEd25519, and then the security and the efficiency of the digital signatures ECDSA with secp256k1 and SHA-256 and Ed25519 with CurveEd25519 and SHA-512.

Our comparison of the security of secp256k1 and CurveEd25519 is based on the study of the resistance of both curves to the attacks on the elliptic curve discrete logarithm ECDLP. Our study shows that secp256k1 presents some vulnerabilities to the complex-multiplication field discriminant as well as to Pollard's rho attack while CurveEd25519 is safe.

Similarly, we study the efficiency of the arithmetical operations on the curves secp256k1 and CurveEd25519 over their finite fields. We compare the cost of adding two points or doubling a point on both curves. We find that the arithmetic of the twisted Edwards curve CurveEd25519 is more efficient than the arithmetic of the Koblitz curve secp256k1.

Moreover, the digital signature Ed25519 uses the hash function SHA-512 which presents more security and is more sustainable than the hash function SHA-256 used in ECDSA for the Bitcoin system.

The former comparison suggests that the digital signature Ed25519 is more suitable for use in the Bitcoin system than ECDSA.

The rest of this paper is organized as follows. In Section 2, we recall some facts on Bitcoin, secp256k1, CurveEd25519, and Ed25519. In Section 3, we study and compare the resistance of secp256k1, CurveEd25519 to cryptanalytical attacks on the elliptic curve logarithm problem ECDLP. In Section 4, we study the efficiency of the arithmetic operations on the curve CurveEd25519. In section 5, we resume the comparison of the digital signatures ECDSA and Ed25519. We conclude the paper in Section 6.

Preliminaries

Description of Bitcoin

Bitcoin is a digital currency and a peer-to-peer payment system developed by an anonymous individual or group with the pseudonym Satoshi Nakamoto [START_REF] Nakamoto | Bitcoin: A peer-to-peer electronic cash system[END_REF] in 2008. Bitcoin users communicate with each other using a secure collection of open source technologies. As a peer-to-peer system, there is no central authority or central server. A public distributed ledger blockchain is available to everyone, where the verified transaction is registered, the verification is done on network nodes. Bitcoins are created by a process called mining, and any participant in the bitcoin network may operate as a miner depending on its computer's ability to process operations on bitcoins. The transfer of bitcoins between users requires to use cryptographic algorithms to prove ownership of the bitcoins being transferred. The Bitcoin network security is based on the digital signature scheme known as the Elliptic Curve Digital Signature Algorithm (ECDSA) with the Koblitz curve secp256k1 to verify ownership transactions on the network, combined with the hash function SHA-256.

Description of the Koblitz curve secp256k1

In Bitcoin system, the Elliptic Curve Digital Signature Algorithm (ECDSA) is used to verify bitcoin transactions. ECDSA is an adaptation of the Digital Signature Algorithm (DSA) using a Koblitz elliptic curve [17]. The elliptic curve used for ECDSA in Bitcoin system is the elliptic curve secp256k1, defined by the Standards for Efficient Cryptography Group (SECG) [START_REF]Standards for efficient cryptography 2: Recommended elliptic curve domain parameters[END_REF], with the following parameters:

• the prime number: p = 2 256 -2 32 -2 9 -2 8 -2 7 -2 6 -2 4 -1,

• the equation: y 2 ≡ x 3 + 7 (mod p), • the base point: P = (55066263022277343669578718895168534326250603453 777594175500187360389116729240, 3267051002075881697808308513050704318447127338065924 3275938904335757337482424), • the order n of P : n = 2 256 -432420386565659656852420866394968145599.

Adjoining the point at infinity O, the curve secp256k1 has n solutions. This curve is also used as standard by other blockchain systems such as Ethereum and Zcash.

Description of ECDSA

For Bitcoin system, ECDSA is based on the Koblitz curve secp256k1 and on the cryptographic hash function SHA-256. The implementation of ECDSA in Bitcoin system is composed by three algorithms, key generation, signing and verification.

1. ECDSA Key generation algorithm.

• Choose a random integer

d ∈ [1, n -1]. • Compute Q = (x Q , y Q ) = dP on the curve secp256k1.
• The public key is Q and the private key is d. 2. ECDSA Signing. Given a message m to be signed, the private key d and a hash function H,

• Choose a random integer k ∈ [1, n -1]. • Compute G = (x G , y G ) = kP on the curve secp256k1. • Compute r ≡ x G (mod n). If r = 0, choose another k and recompute G and r. • Compute s ≡ k -1 (H(m) + dr) (mod n).
• The signature is the pair (r, s). 3. ECDSA Verification. Given a signature (r, s) and a hash function H,

• Compute w ≡ s -1 (mod n).

• Compute u 1 ≡ wH(m) (mod n) and u 2 ≡ wr (mod n).

• Compute (x 0 , y 0 ) = u 1 P + u 2 Q on the curve secp256k1.

• Accept the signature if x 0 ≡ r (mod n).

Description of the twisted Edwards Curve CurveEd25519

In 2007, Edwards [START_REF] Edwards | A normal form for elliptic curves[END_REF], introduced a new normal form for elliptic curves. In a series of papers, Bernstein et al. [START_REF] Bernstein | Faster addition and doubling on elliptic curves[END_REF][START_REF] Bernstein | Twisted Edwards curves[END_REF] generalized the Edwards form to twisted Edwards curves with the equation

ax 2 + y 2 = 1 + dx 2 y 2 , a = d, ad = 0,
with a unique formula for both addition and doubling laws. Indeed, the sum of two points (x 1 , y 1 ) and (x 2 , y 2 ) on a twisted Edwards curve is :

(x 1 , y 1 ) + (x 2 , y 2 ) = ( x 1 y 2 + y 1 x 2 1 + dx 1 x 2 y 1 y 2 , y 1 y 2 -ax 1 x 2 1 -dx 1 x 2 y 1 y 2 ).
The point (0,1) is the neutral element of the addition law, and the inverse of a point (x 1 , y 1 ) on E is simply (-x 1 , y 1 ). In 2009, Bernstein [START_REF] Bernstein | Curve25519: new Diffie-Hellman speed records[END_REF] proposed Curve25519 to speed the computation of the Diffie-Hellman key exchange. Curve25519 is a Montgomery elliptic curve at the 128-bit security level with the equation

Curve25519 : v 2 = u 3 + 486662u 2 + u (mod p), p = 2 255 -19.
The security of the curve Curve25519 was studied by Bernstein in [START_REF] Bernstein | Curve25519: new Diffie-Hellman speed records[END_REF] who concluded that the arithmetic of this curve is fast and the security is optimal. Using a birational equivalence, Curve25519 can be represented in a twisted Edwards form. Let Bv 2 = u 3 + Au 2 + u be the equation of a Montgomery elliptic curve. For v(u + 1) = 0, define

X = u v , Y = u -1 u + 1 , a = A + 2 B , d := A -2 B .
Then aX 2 + Y 2 = 1 + dX 2 Y 2 represents the equation of a twisted Edwards curve. For A = 486662 and B = 1 as in Curve25519, we get the following equation

486664X 2 + Y 2 = 1 + 486660X 2 Y 2 , or equivalently -(-486664)X 2 + Y 2 = 1 - 486660 486664 (-486664)X 2 Y 2 .
Since -486664 is a square in F p , then -486664 ≡ s 2 (mod p) with s =51042569399160536130206135233146329284152202253034631822681 833788666877215207.

Hence, the former equation can be rewritten as

-(sX) 2 + Y 2 = 1 - 486660 486664 (sX) 2 X 2 .
Using the birational transformation (x, y) = (sX, Y ), the equation can be rewritten as the equation of the curve CurveEd25519:

CurveEd25519 : -x 2 + y 2 = 1 - 486660 486664 x 2 y 2 . ( 1 
)
This is the equation of the twisted Edwards curve used in [START_REF] Bernstein | High-speed highsecurity signatures[END_REF] to construct the digital signature Ed25519. The corresponding parameters are as follows.

• the prime number: p = 2 255 -19,

• the equation:

CurveEd25519 : -x 2 + y 2 = 1 -121665 121666 x 2 y 2 (mod p), • the base point: B = (151122213495354007725011514095885315114540126930 41857206046113283949847762202, 46316835694926478169428394003475163141307993866256225 615783033603165251855960),
• the order n of B: n = 2 252 + 27742317777372353535851937790883648493.

Description of the Digital Signature Ed25519

In 2011, Bernstein et al. [START_REF] Bernstein | High-speed highsecurity signatures[END_REF] proposed the digital signature scheme Ed25519, an instance of the Elliptic Curve signature scheme EdDSA. The arithmetical operations of Ed25519 are based on the fast twisted Edwards curve CurveEd25519 with the equation ( 1 • Base point B given in( 2.4) with order n.

• Hash function H that produces a 2b-bits output such as SHA-512.

Ed25519 consists in applying three algorithms to generate the public and the private keys, to sign a message m and to verify the signature.

Ed25519 Key generation algorithm.

• Choose a random integer k ∈

[1, n -1]. • Compute H(k) = (h 0 , h 1 , . . . , h 2b-1 ) in binary representation. • Compute the integer a = 2 b-2 + b-3 i=3 2 i h i .
• Compute the public key A = aB on the curve CurveEd25519. 2. Ed25519 Signing. Given a message m to be signed and a hash function H,

• Compute r = H(h b , . . . , h 2b-1 , m) as an integer modulo n.

• Compute R = rB on the curve CurveEd25519.

• Compute h = H(R, A, M ) as an integer.

• Compute s = (r + ha) (mod n).

• The signature is the pair (R, s). 3. Ed25519 Verification. Given a signature (R, s) and a hash function H,

• Compute h = H(R, A, M ) as an integer.

• Compute U = 8sB on the curve CurveEd25519.

• Compute V = 8R + 8hA on the curve CurveEd25519.

• Accept the signature if U = V .

Resistance of secp256k1 and CurveEd25519 to cryptanalytical attacks

The Koblitz curve secp256k1 is defined by the equation secp256k1 :

y 2 = x 3 + 7 (mod p 1 ), p 1 = 2 256 -2 32 -2 9 -2 8 -2 7 -2 6 -2 4 -1.
The order of its base point and the order of the curve secp256k1 are

n 1 = 2 256 -432420386565659656852420866394968145599, #secp256k1(F p1 ) = n 1 .
The twisted Edwards curve CurveEd25519 is defined by the equation

CurveEd25519 : -x 2 + y 2 = 1 - 121665 121666 x 2 y 2 (mod p 2 ), p 2 = 2 255 -19.
The order of its base point and the order of the curve CurveEd25519 are

n 2 = 2 252 + 27742317777372353535851937790883648493, #CurveEd25519(F p2 ) = 8n 2 .
The security of elliptic curve cryptosystems is based on the computational intractability of the Elliptic Curve Discrete Logarithm Problem(ECDLP): Given an elliptic curve E and two points P and Q on E such that Q = kP , find k. The hardness of the ECDLP depends on certain properties of the elliptic curve E and the base point P ∈ E(F p ). In the rest of this section, we give a detailed study of resistance of the Koblitz curve secp256k1 and the twisted Edwards Curve CurveEd25519 to various cryptanalytic attacks.

Complex-multiplication field discriminants

If E is an elliptic curve over a finite field F p , then the number of rational point is #E(F p ) = p + 1 -t where t is the trace of the Frobenius endomorphism, which by Hasse's Theorem satisfies -2 √ p < t < 2 √ p. Then t 2 -4p < 0 and we can write

t 2 -4p = -s 2 d,
where d is square-free. Then s is the largest integer such that s 2 divides t 2 -4p. The complex-multiplication field discriminant of the elliptic curve E is the integer D with

D = t 2 -4p s 2 if t 2 -4p s 2
≡ 1 (mod 4)

4(t 2 -4p) s 2 if t 2 -4p s 2
≡ 1 (mod 4).

The complex-multiplication field discriminant D is considered as a security parameter by the standard Brainpool [START_REF] Ecc Brainpool | ECC Brainpool standard curves and curve generation[END_REF] and by the SafeCurves web page [START_REF] Bernstein | SafeCurves: choosing safe curves for ellipticcurve cryptography[END_REF]. It is required that |D| should be large, typically |D| > 2 100 . For the curve secp256k1, we have

t 1 = p 1 + 1 -#secp256k1(F p1 ) = 432420386565659656852420866390673177327,
and

t 2 1 -4p 1 = -(79 • 349 • 2698097 • 1359580455984873519493666411) 2 • 3.
It follows that the complex-multiplication field discriminant is D 1 = -3 which is much smaller than the required lower bound 2 100 . The twisted Edwards curve CurveEd25519 is birrationally equivalente to the Montgomery curve with the equation

Curve25519 : v 2 = u 3 + 486662u 2 + u (mod p 2 ), p 2 = 2 255 -19.
For Curve25519, we have

t 2 = p 2 +1-#Curve25519(F p2 ) = -221938542218978828286815502327069187962, and 
t 2 2 -4p 2 = -2 4 • 16451 • 8312956054562778877481 • 83326725728999296701078628838522133333655224556987.
Then, the complex-multiplication field discriminant is

D 2 = 4(t 2 2 -4p2) 2 4
and satisfies |D 2 | > 2 254 which is much larger than the required bound 2 100 .

As a consequence of the former study, the curve CurveEd25519 is much stronger than the curve secp256k1 to the complex-multiplication field discriminant criterion.

Pohlig-Hellman attack

The Pohlig-Hellman algorithm [START_REF] Pohlig | An improved algorithm for computing logarithms over GF (p) and its cryptographic significance[END_REF] is an algorithm devoted to solve the discrete logarithm problem on finite fields or elliptic curves. For an elliptic curve with base point P of order n, the attack reduces the problem of finding the discrete logarithm k satisfying Q = kP first in recovering k modulo each of the prime factors of the order n of P , and second in applying the Chinese Remainder Theorem to recover k entirely modulo n. The expected running time of Pohlig-Hellman algorithm is O √ n where n is the largest prime factor of n. In order to maximize resistance to the Pohlig-Hellman attack, the elliptic curve parameters should be selected so that the order n of the base point P is divisible by a large prime. For the curves secp256k1 and CurveEd25519, the orders n 1 and n 2 of the base points are prime numbers. This increase the resistance of both curves to the Pohlig-Hellman attack.

Pollard's rho attack

This algorithm was presented by Pollard [START_REF] Pollard | Monte Carlo methods for index computation mod p[END_REF] in 1978 to attack the discrete logarithm problem in finite fields. Since then, it was adapted to attack the elliptic curve discrete logarithm problem. The main idea behind Pollard's rho algorithm is to find distinct pairs (u, v) and (u , v ) of integers such that uP

+ vQ = u P + v Q from which we deduce k = (v -v)(u -u ) -1 (mod n) when gcd(n, u -u ) = 1
. Such an occurrence is called a collision and can be applied to the curves secp256k1 and CurveEd25519 since the order of their base points is a prime number in both cases. The expected number of iterations before a collision is obtained is approximately O πn 2 [START_REF] Hankerson | Guide to elliptic curve cryptography[END_REF] and requires approximately O πn 2 amount of storage. For the curve secp256k1, we have ≈ 2 126 . Hence, both curves have high level bit-security and seem resistant to Pollard's rho method. However, the curve secp256k1 has j-invariant 0 and has specific properties such as efficient computation of endomorphisms of certain multiples of points. This can be turned out to a vulnerability by speeding Pollard's rho algorithm (see [START_REF] Bos | Elliptic Curve Cryptography in Practice[END_REF] for more details and discussions). For the curve CurveEd25519, via the Montgomery curve Curve25519, the j-invariant is not 0 so that the speed up of Pollard's rho algorithm is not possible.

Summarising the former comparison, the curve secp256k1 is more sensitive to Pollard's rho algorithm than the curve CurveEd25519.

Anomalous attack

An elliptic curve E over a prime field F p is anomalous if #E(F p ) = p. For anomalous curves, the group E(F p ) is cyclic since it has prime order, and hence E(F p ) is isomorphic to the additive group F + p of integers modulo p. Semaev [START_REF] Semaev | Evaluation of discrete logarithms in a group of p-torsion points of an elliptic curve in characteristic p[END_REF], Smart [START_REF] Smart | The discrete logarithm problem on elliptic curves of trace one[END_REF], and Satoh and Araki [START_REF] Satoh | Fermat quotients and the polynomial time discrete log algorithm for anomalous elliptic curves[END_REF] independently proposed an efficient attack for the ECDLP in the anomalous case which reduces the ECDLP in an elliptic curve to addition in the additive group F + p by a lifting modulo p 2 . The curves secp256k1 and CurveEd25519 are resistant to the anomalous attack since the prime moduli p 1 , p 2 are different from the number of points of both curves, more specifically, #secp256k1(F p1 ) = n 1 = p 1 , and #CurveEd25519(F p2 ) = 8n 2 = p 2 .

The Frey-Rück attack

Frey and Rück [START_REF] Frey | A remark concerning m-divisibility and the discrete logarithm in the divisor class group of curves[END_REF] described a method based on the Tate-Lichtenbaum pairing to reduce ECDLP on the elliptic curve E over F p to the discrete logarithm problem into the multiplicative group F * p k for some extension of the base field F p . For k ≤ 30, the index calculus method can solve the DLP in subexponential time in the multiplicative group F * p k . In general, the embedding degree is usually enormous, and the criterion to avoid the attack is that the order n of the base point of the elliptic curve satisfies n| p k -1 only for large values of k. The curves secp256k1 and CurveEd25519 are such that n 1 | p k 1 -1 and n 2 | p k 2 -1 for k ≤ 10 6 . As a consequence, both curves are resistant to the Frey-Rück attack.

MOV supersingular attack

An elliptic curve E over a finite field F p is called supersingular if #E(F p ) = p + 1. Menezes, Okamoto and Vanstone [START_REF] Menezes | Reducing elliptic curve logarithms to logarithms in a finite field[END_REF] described how the Weil pairing can be used to reduce ECDLP on the elliptic curve E over F p to the discrete logarithm problem into the multiplicative group F * p k for k ≤ 6, where the index calculus method can solve the DLP in subexponential time. This implies that supersingular elliptic curves are too weak to be used in cryptography. The curves secp256k1 and CurveEd25519 are not supersingular since #secp256k1(F p1 ) = n 1 = p 1 + 1, and #CurveEd25519(F p2 ) = 8n 2 = p 2 + 1. As a consequence, both curves are resistant to the MOV supersingular attack.

Comparison of the security

The following table 1 resumes the former cryptanalytical study.

Attack Attack Resistance Resistance condition of secp256k1 of CurveEd25519 CM field discriminants |D| > 2 100 |D 1 | < 2 2 |D 2 | > 2 254 Pohlig-Hellman n with small factors n 1 is prime n 2 is prime Pollard's rho small πn 2 n 1 ≥ 2 255 is large n 2 ≥ 2 254 is large j-invariant j = 0 j = 0 j = 0 Anomalous n = p n 1 = p 1 n 2 = p 2 Frey-Rück n|(p k -1) for k ≤ 30 n 1 |(p k 1 -1) n 2 |(p k 2 -1) MOV n = p + 1 n 1 = p 1 + 1 n 2 = p 2 + 1
Table 1: Resistance of secp256k1 and CurveEd25519 to cryptanalytical attacks Table 1 shows that the CurveEd25519 is more resistant than the curve secp256k1 to at least two attacks. As a consequence, the CurveEd25519 can be used for industrial applications, such as in a Bitcoin system.

Comparison of the Efficiency of secp256k1 and CurveEd25519

In this section, we give a comparison of the efficiency of the arithmetical operations of the curves secp256k1 and CurveEd25519.

Efficiency of CurveEd25519

CurveEd25519 is a particular case of the a twisted Edwards curve E a,d defined over the finite field F p by the equation

E a,d : ax 2 + y 2 = 1 + dx 2 y 2 , a = d, ad = 0.
In [START_REF] Hisil | Twisted Edwards curves revisited[END_REF] 

E e a,d : aX 2 + Y 2 Z 2 = Z 4 + dT 2 , a = d, ad = 0.
The negative of a point (X : Y : Z : T ) ∈ E e a,d is the point (-X : Y : -T : Z) and the point at infinity O is represented by (0 : 1 : 0 : 1).

When a = -1 as in CurveEd25519, the addition of two distinct points (X 1 : Y 1 : T 1 : Z 1 ) and (X 2 : Y 2 : T 2 : Z 2 ) can be performed with the following operations

A = (Y 1 -X 1 ) • (Y 2 + X2), B = (Y 1 + X 1 ) • (Y 2 -X2), C = 2Z 1 • T 2 , D = 2T 1 • Z 2 , E = D + C, F = B -A, G = B + A, H = D -C, X 3 = E • F , Y 3 = G • H, T 3 = E • H, Z 3 = F • G. Table 2: Addition in CurveEd25519
The computational cost of the addition on E e -1,d is then eight multiplications (8M ), two doublings (2D), and eight additions (8Add) in the field F p . This be reduced to 7M + 2D + 7Add when Z 2 = 1.

Similarly, for a = -1 as in CurveEd25519, the doubling of a point (X 1 : Y 1 : T 1 : Z 1 ) can be performed with the following operations

A = X 2 1 , B = Y 2 1 , C = 2Z 2 1 , D = -A, E = (X 1 + Y 1 ) 2 -A -B, G = D + B, F = G -C, H = D -B, X 3 = E • F , Y 3 = G • H, T 3 = E • H, Z 3 = F • G.
Table 3: Doubling in CurveEd25519

The computational cost of the doubling on E e -1,d is then four multiplications (4M ), four squarings (4S), one doubling (1D) and six addition (6Add) in the field F p . This can be reduced to 3M + 4S + 1D + 6Add by performing a parallel doubling process (see [START_REF] Hisil | Twisted Edwards curves revisited[END_REF], Section 4.4). There are other ways to perform addition and doubling on twisted Edwards curves as shown in [START_REF] Bernstein | High-speed highsecurity signatures[END_REF]. The advantage of the methods presented above do not use the curve parameter d as input.

Efficiency of secp256k1

The Koblitz curve secp256k1 with the equation y 2 = x 3 + 7 (mod p 1 ) belongs to the family of curves with a short Weierstrass equation of the form y 2 = x 3 + ax + b. Any point (x, y) on this curve can be represented by the projective point (X : Y : Z) with x = X Z and y = Y Z for Z = 0 and (0 : 1 : 0) for the point at infinity. Then, the Weierstrass equation transforms to the projective one Y 2 Z = X 3 + aXZ 2 + bZ 3 . The addition law in the projective case has many forms. To compute the sum

(X 1 : Y 1 : Z 1 ) + (X 2 : Y 2 : Z 2 ) = (X 3 : Y 3 : Z 3 ),
the following formula for addition has an optimal efficiency (see [START_REF] Bernstein | Explicit-Formulas Database[END_REF], The "add-1998-cmo-2" addition formulas).

Z1Z1 = Z 2 1 , Z2Z2 = Z 2 2 , U 1 = X 1 • Z2Z2, U 2 = X 2 • Z1Z1, S1 = Y 1 • Z 2 • Z2Z2, S2 = Y 2 • Z 1 • Z1Z1, H = U 2 -U 1, HH = H 2 , HHH = H • HH, r = S2 -S1, V = U 1 • HH, X 3 = r 2 -HHH -2V , Y 3 = r • (V -X3) -S1 • HHH, Z 3 = Z1 • Z2 • H.

Table 4: Point addition in secp256k1

The computational cost of the point addition on secp256k1 is then twelve multiplications (12M ), four squarings (4S), one doubling (1D) and six additions (6Add) in the field F p1 .

To compute the double point 2(X 1 : Y 1 : Z 1 ) = (X 3 : Y 3 : Z 3 ), the following formula has an optimal efficiency (see [START_REF] Bernstein | Explicit-Formulas Database[END_REF], The "dbl-1998-cmo-2" doubling formulas).

XX = X 2 1 , Y Y = Y 2 1 , ZZ = Z 2 1 , S = 4X 1 • Y Y , M = 3XX + a • ZZ 2 , T = M 2 -2 • S, X 3 = T , Y 3 = M • (S -T ) -8Y Y 2 , Z 3 = 2Y 1 • Z1.
Table 5: Point doubling in secp256k1

The computational cost of the point doubling on secp256k1 is then three multiplications (3M ), six squarings (6S), eight doubling (8D) and five additions (5Add) in the field F p1 .

The following table 6 gives the cost of the point addition and point doubling on the curves secp256k1 and CurveEd25519 in terms of the field arithmetic multiplication (M ), squaring (S), doubling (D) and addition (Add).

Curve

Addition Doubling secp256k1 12M + 4S + 1D + 6Add 3M + 6S + 8D + 5Add CurveEd25519 7M + 2D + 7Add 3M + 4S + 1D + 6Add

Table 6: Arithmetic comparison of secp256k1 and CurveEd25519

In [START_REF] Bernstein | High-speed highsecurity signatures[END_REF] There are various ways to speed up the computation on F p2 , so the arithmetic operations are efficient and speed in this field. For more detail see section 5.2.

Table 6 shows that the operations on CurveEd25519 are faster than the operations on secp256k1. Other forms of elliptic exist with explicit formula for the cost of the addition or doubling of points [START_REF] Bernstein | Faster Addition and Doubling on Elliptic Curves[END_REF][START_REF] Renes | Complete Addition Formulas for Prime Order Elliptic Curves[END_REF]. In all cases, the operation on Edwards curves are the fastest comparing to the other forms. As a consequence, for efficiency reasons, it is more convenient to use the curve CurveEd25519 for industrial applications such as in a Bitcoin system.

Comparison of the digital signatures ECDSA and Ed25519

In this section, we show that the digital signature Ed25519 based on the curve CurveEd25519 is more suitable for the Bitcoin system than the digital signature ECDSA which is used in practice.

The elliptic curves

The elliptic digital signature algorithm ECDSA is based on the Koblitz elliptic curve secp256k1 while the digital signature Ed25519 is based on the twisted Edwards curve CurveEd25519. In the past sections, we have showed that the curve secp256k1 is more vulnerable to Pollard's rho attack while the curve CurveEd25519 is safe. Moreover, as discussed in [START_REF] Bos | Elliptic Curve Cryptography in Practice[END_REF], secp256k1 is more vulnerable to specific attacks based on some of its twists. More vulnerabilities of secp256k1 are listed in [START_REF] Mayer | ECDSA security in Bitcoin and Ethereum: a research survey[END_REF]. As a consequence, CurveEd25519 is more secure than secp256k1 for industrial applications, especially for Bitcoin.

The finite fields

ECDSA uses the Koblitz elliptic curve secp256k1 over the finite field F p1 where p 1 = 2 256 -2 32 -2 9 -2 8 -2 7 -2 6 -2 4 -1. The digital signature Ed25519 uses the twisted Edwards curve CurveEd25519 over the field F p2 where p 2 = 2 255 -19.

There are various ways to speed up the computation on F p2 . In [START_REF] Bernstein | High-speed highsecurity signatures[END_REF], any integer a modulo p 2 is represented in base 2 51 as a = a 0 + 2 51 a 1 + 2 102 a 2 + 2 153 a 3 + 2 204 a 4 , a i ∈ 0, . . . , 2 51 -1 .

This representation is then performed to process the multiplication and squaring in an efficient way to fit an 128-bit serial multiplier. Moreover, in [START_REF] Bernstein | High-speed highsecurity signatures[END_REF], any integer b modulo p 2 is represented in base 2 25.5 using the sequence 2 25.5i for i = 0, . . . This representation is efficient in processing the multiplication and squaring on a 64-bit serial multiplier. As a consequence, the arithmetic operations are efficient in the field F p2 . This makes Ed25519 a good candidate for industrial applications, especially for Bitcoin.

The hash functions

In Bitcoin, the Koblitz curve secp256k1 is combined with the hash function SHA-256 in the ECDSA signature process. In a similar way, the digital signature Ed25519 combines the curve CurveEd25519 with the hash function SHA-512. SHA-256 and SHA-512 are parts of the SHA2 family, standardized in 2001 by the National Institute of Standards and Technology (NIST) [START_REF]Secure Hash Standard[END_REF]. The SHA-2 family will remain deployed in the future even in the presence of SHA3. SHA-256 and SHA-512 are closely related since they use very similar algorithms, based on the same byte operations. They differ only in the input bit lengths and produce outputs of lengths of 256 bits and 512 bits respectively. Nevertheless, SHA-256 and SHA-512 differs at the security level. SHA-512 is more secure than SHA-256 and is recommended by various cryptographic standards such as NIST [START_REF]NIST: Policy on Hash Functions[END_REF], ENISA [START_REF]ENISA: Algorithms, key size and parameters report[END_REF] and BlueKrypt [1] for use for more sensible data and for longest terms. This is an advantage for the digital signature Ed25519 over the digital signature ECDSA for long terms.

Conclusion

We have studied and compared the digital signature ECDSA with the Koblitz elliptic curve secp256k1 and the digital signature Ed25519 based on the twisted Edwards curve CurveEd25519 for use in Bitcoin. Our analysis of the security shows that the curve CurveEd25519 is more secure than secp256k1, especially against Pollard's rho attack on the elliptic discrete logarithm problem. Moreover, our study of the efficiency and implementation shows that Ed25519 is more efficient. We conclude that Ed25519 is more suitable for use in the Bitcoin system, especially for long term applications.
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