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Introduction

The RSA cryptosystem [START_REF] Rivest | A Method for Obtaining digital signatures and public-key cryptosystems[END_REF], invented in 1978 by Rivest, Shamir and Adleman, is the most widely used cryptosystem. The main parameters in RSA are two integers, the RSA modulus N = pq where p and q are large prime numbers, and the public exponent e, which is an integer satisfying gcd(e, (p -1)(q -1)) = 1. The private exponent is the integer d satisfying ed ≡ 1 (mod (p -1)(q -1)). In many implementations, the private exponent d is required to be small to ease decryption and signature. Unfortunately, this scenario is dangerous and can be used to break the system [START_REF] Bunder | A new improved attack on RSA[END_REF][START_REF] Bunder | A new attack on the RSA cryptosystem based on continued fractions[END_REF]. In 1990, Wiener [START_REF] Wiener | Cryptanalysis of short RSA secret exponents[END_REF][START_REF] Susilo | The Wiener Attack on RSA Revisited: A Quest for the Exact Bound[END_REF] presented an attack to break the RSA system if the private exponent d satisfies d < 1 4 √ 18 N 1 4 . Since then, Wiener's bound has been extended in many situations, mainly by Boneh and Durfee [START_REF] Boneh | Cryptanalysis of RSA with private key d less than N 0.292[END_REF] to d < N 0.292 .

In 1985, Miller [START_REF] Miller | Use of elliptic curves in cryptography[END_REF] and Koblitz [START_REF] Koblitz | Elliptic curve cryptosystems[END_REF] independently proposed to use elliptic curves in cryptography. Since then, many cryptosystems have been proposed based on elliptic curves. In the direction of RSA, Koyama, Maurer, Okamoto and Vanstone [START_REF] Koyama | New public-key schemes based on elliptic curves over the ring Zn[END_REF] proposed a cryptosystem, called KMOV, based on the elliptic curve E N (0, b) where N = pq is an RSA modulus and E N (0, b) is the set of solutions of the modular equation y 2 ≡ x 3 + b (mod N ), together with the point at infinity, denoted O. When the prime factors p and q are such that p ≡ q ≡ 2 (mod 3), then any point P ∈ E N (0, b) satisfies (p + 1)(q + 1)P = O. In KMOV, the public key is a pair (N, e) where N = pq with two prime integers satisfying p ≡ q ≡ 2 (mod 3) and e is an integer satisfying gcd(e, (p + 1)(q + 1)) = 1. The decryption exponent is the integer d such that ed ≡ 1 (mod (p + 1)(q + 1)).

Notice that the modular equation ed ≡ 1 (mod (p+1)(q +1)) is equivalent to the integer key equation ed-k(p+1)(q +1) = 1. In 1995, Pinch [START_REF] Pinch | Extending the Wiener attack to RSA-type cryptosystems[END_REF] used the key equation and extended Wiener's attack to KMOV. He showed that one can factor the modulus N = pq if d < 1 3 N 1 4 . In [START_REF] Ibrahimpasic | Cryptanalysis of KMOV cryptosystem with short secret exponent[END_REF], Ibrahimpasic extended the attack of Pinch by a few bits using an exhaustive search. Both attacks use the convergents of the continued fraction expansion of e N . In [START_REF] Nitaj | A new attack on the KMOV cryptosystem[END_REF], Nitaj considered the generalized equation eu -(p + 1)(q + 1)v = w and showed that one can factor the modulus N = pq if the parameters u, v, w satisfy some specific conditions, especially if uv <

√ 2 √ N
12 . The method combines the continued fraction algorithm [START_REF] Bunder | A new attack on three variants of the RSA cryptosystem[END_REF][START_REF] Bunder | Cryptanalysis of RSA-type cryptosystems based on Lucas sequences, Gaussian integers and elliptic curves[END_REF] and Coppersmith's method [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF] for solving univariate modular equations.

In this paper, we extend the former attacks on KMOV. In the first attack we consider the KMOV key equation ed -k(p + 1)(q + 1) = 1 and instead of using the convergents of e N , we use the convergents of

e N +1+ 1+ 3 √ 2 4 N 1 2
. As a consequence, we show that one can factor the modulus N = pq if the private

exponent d is such that d < 2 √ 2 N 3 4
√ e . This bound improves the former bound d < 1 3 N 1 4 , especially when the public exponent e is significantly smaller then N . In the second attack we consider the generalized key equation eu-(p+1)(q + 1)v = w and transform it to the modular polynomial equation v(p+q +1)+N v + w ≡ 0 (mod e). We consider the polynomial f (x, y, z) = xy + N x + z and apply Coppersmith's method to find the small solutions of the modular polynomial equation f (x, y, z) ≡ 0 (mod e). When e = N β , u < N δ and |w| < N γ , if

δ < 7 6 -γ - 1 3 6β -6γ + 1 -ε,
where ε is a small constant, then Coppersmith's method enables us to find p + q + 1, which combined with N = pq gives p and q. We note that in the standard situation of a KMOV instance with e ≈ N and eu -(p + 1)(q + 1)v = 1, our new bound is δ < 0.284 which is much larger than the existing bounds. The rest of this paper is organized as follows. In Section 2, we give some preliminaries on Coppersmith's method, continued fractions, elliptic curves and recall the KMOV cryptosystem. In Section 3, we present our first attack on KMOV based on continued fractions. In Section 4, we present our second attack on KMOV which is based on Coppersmith's method. We conclude the paper in Section 5.

Preliminaries

In this section, we give some preliminaries on Coppersmith's methods for solving modular polynomial equations, continued fractions and elliptic elliptic curves. For completeness, we recall the KMOV cryptosystem.

Coppersmith's method

One of the difficult problems in algebra is to solve modular polynomial equations of the form f (x 1 , . . . , x n ) ≡ 0 (mod e),

where f (x 1 , . . . , x n ) ∈ Z[x 1 , . . . , x n ] is multivariate polynomial. In 1996, Coppersmith [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF] introduced a rigorous method for finding the small solutions of the univariate polynomial equation f (x) ≡ 0 (mod e) and the small roots of the bivariate polynomial equation f (x, y) = 0. Coppersmith's method is based on lattice reduction and is useful in cryptography, especially for attacking the RSA cryptosystem (see [START_REF] May | New RSA Vulnerabilities using Lattics Reduction Methods[END_REF][START_REF] Bunder | A generalized attack on RSA type cryptosystems[END_REF][START_REF] Boneh | Twenty years of attacks on the RSA cryptosystem[END_REF][START_REF] Nitaj | A Generalized Attack on Some Variants of the RSA Cryptosystem[END_REF]). Since then, numerous variants of Coppersmith's method have been presented for multivariate polynomial equations assuming certain hypothesis. The following result of Howgrave-Graham [START_REF] Howgrave-Graham | Finding small roots of univariate modular equations revisited[END_REF] is useful for solving the polynomial equations.

Theorem 1 (Howgrave-Graham). Let e be a positive integer and h(x, y, z) ∈ Z[x, y, z] be a polynomial with at most ω monomials. Let m be a positive integer. Suppose that h (x 0 , y 0 , z 0 ) ≡ 0 (mod e m ) and

h(xX, yY, zZ) = i,j,k a i,j,k x i y j z k < e m √ ω ,
where |x 0 | < X, |y 0 | < Y , |z 0 | < Z. Then h (x 0 , y 0 , z 0 ) = 0 holds over the integers.

For a multivariate polynomial modular equation f (x, y, z) ≡ 0 (mod e), the idea in Coppersmith's method is to build certain modular polynomials equations h(x, y, z) ≡ 0 (mod e m ) sharing the modular solution (x 0 , y 0 , z 0 ). These polynomials are generally built by applying Jochemz-May [START_REF] Jochemsz | A strategy for finding roots of multivariate polynomials with new applications in attacking RSA variants[END_REF] method and applying lattice reduction techniques such as the LLL algorithm [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF]. The LLL algorithm acts on lattices and the following result is useful (see [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF][START_REF] May | New RSA Vulnerabilities using Lattics Reduction Methods[END_REF][START_REF] Jochemsz | A strategy for finding roots of multivariate polynomials with new applications in attacking RSA variants[END_REF]).

Theorem 2 (LLL). Let L be a lattice spanned by a basis (u 1 , . . . , u ω ), then the LLL algorithm produces a new basis

(b 1 , . . . , b ω ) satisfying b 1 ≤ . . . ≤ b i ≤ 2 ω(ω-1) 4(ω+1-i) det(L) 1 ω+1-i , i = 1, . . . , ω.
To find the root (x 0 , y 0 , z 0 ), we use a system with three polynomial equations h i (x, y, z) = 0, i = 1, 2, 3. By using Gröbner basis computation or resultant techniques, the system can be solved under the following widely believed assumption.

Assumption 1

The polynomials h 1 , h 2 , h 3 ∈ Z[x, y, z] that are derived from the reduced basis of the lattice in Coppersmith's method are algebraically independent.

Continued fractions

Let ξ = 0 be real number. The continued fraction expansion of ξ is an expression of the form

ξ = a 0 + 1 a 1 + 1 a 2 + 1 . . .
, where a 0 is an integer and for i ≥ 1, a i is a positive integer. The integers a i , i ≥ 0 are the partial quotients of the continued fraction expansion. The process to compute the integers a i for i ≥ 0 is the continued fraction algorithm. The starting term is x 0 = ξ and for i ≥ 0,

a i = x i , x i+1 = 1 x i -a i .
When the continued fraction expansion is used with the first k + 1 partial quotients, the fraction is a convergent. The following method is very useful for computing the convergents of ξ.

Theorem 3. The k th convergent can be determined as [a 0 , . . . , a k ] = p k q k , where the sequences {p n } and {q n } are specified as follows3 :

p -2 = 0, p -1 = 1, p n = a n p n-1 + p n-2 , ∀n ≥ 0, q -2 = 1, q -1 = 0, q n = a n q n-1 + q n-2 , ∀n ≥ 0.
There are many properties related to the theory of continued fractions. One of the most important results is Legendre's Theorem (see Theorem 184 of [START_REF] Hardy | An Introduction to the Theory of Numbers[END_REF]). 

0 < ξ - a b < 1 2b 2
then a b is a convergent of the continued fraction of ξ. Note that computing a convergent a b of ξ with the continued fraction algorithm is done in polynomial time in log(b).

Elliptic curves

Let p ≥ 5 be a prime number and a and b two integers satisfying 4a

3 + 27b 2 ≡ 0 (mod p). An elliptic curve E p (a, b) over F p = Z/pZ is the set of solutions (x, y) ∈ F 2 p satisfying the equation E p (a, b) : y 2 ≡ x 3 + ax + b (mod p), (1) 
together with a point O, called the point at infinity. If P 1 = (x 1 , y 1 ) and P 2 = (x 2 , y 2 ) are two points, then one have the following properties.

-

P 1 + O = O + P 1 = P 1 .
-The opposite of P 1 is -P 1 = (x 1 , -y 1 ).

-

If P 2 = -P 1 , then P 1 + P 2 = O.
-If P 2 = -P 1 , then P 1 + P 2 = P 3 = (x 3 , y 3 ) where

x 3 ≡ λ 2 -x 1 -x 2 (mod p), y 3 ≡ λ(x 1 -x 3 ) -y 1 (mod p), with λ =            y 2 -y 1 x 2 -x 1 if x 1 = x 2 , 3x 2 1 + a 2y 1 if x 1 = x 2 .
With the former addition law, the set

E p (a, b) is a group of finite order #E p (a, b)
where #E p (a, b) is the number of solutions (x, y) ∈ F 2 p of the equation ( 1) together with the point at infinity. According to a famous Theorem of Hasse (see [START_REF] Silverman | The Arithmetic of Elliptic Curves[END_REF], Chapter 5), we have

#E p (a, b) = p + 1 -t p , with |t p | < 2 √ p, which is close to p + 1, up to a small value t p .
For specific values of p, #E p (a, b) can be explicitly computed as for p ≡ 2 (mod 3) (see [START_REF] Schmitt | Elliptic curves. A computational approach[END_REF]). 

E N (a, b) : y 2 ≡ x 3 + ax + b (mod N ), (2) 
together with a point O at infinity. An addition law can be defined over E N (a, b) by using the same rules as the addition law on E p (a, b) by replacing modulo p by modulo N . When the division by x 2 -x 1 is not possible, this means that gcd(x 2 -

x 1 , n) = 1. Since 0 < |x 2 -x 1 | < n, then gcd(x 2 -x 1 , n) = p or gcd(x 2 -x 1 , n) = q.
If N = pq is an RSA modulus, this is equivalent to factoring N . Since the integer factorization problem is very hard, especially for RSA moduli, then the scenario that the addition does not exist is unlikely to happen. By the Chinese remainder theorem, every point P = (x, y) ∈ E N (a, b) is uniquely represented by a pair of points (P p , P q ) ∈ E p (a, b) × E q (a, b) with the convention that O is represented by the pair of points at infinity (O p , O q ) ∈ E p (a, b) × E q (a, b). It follows that for p ≡ q ≡ 2 (mod 3) and for any point P ∈ E N (0, b), we have (p + 1)(q + 1)P = (p + 1)(q + 1)(P p , P q ) = (O p , O q ) = O.

The KMOV Cryptosystem

In 1991, Koyama, Maurer, Okamoto and Vanstone proposed a cryptosystem, called KMOV, based on the elliptic curve E N (0, b) where N = pq is an RSA modulus. The scheme works as follows.

-KMOV Key Generation algorithm.

1. Choose two distinct prime numbers p and q of similar bit-length with p ≡ q ≡ 2 (mod 3). 2. Compute N = pq. [START_REF] Bunder | A new improved attack on RSA[END_REF]. Choose e such that gcd(e, (p + 1)(q + 1)) = 1. 4. Compute d = e -1 (mod (p + 1)(q + 1)). 5. Keep p, q, d secret, publish N, e.

-KMOV Encryption algorithm.

1. For a message m

= (m x , m y ) ∈ Z 2 N , compute b = m 2 y -m 3 x (mod N ). 2.
Compute the point (c x , c y ) = e(m x , m y ) on the elliptic curve with equation

y 2 ≡ x 3 + b (mod N ). The ciphertext is c = (c x , c y ). -KMOV Decryption algorithm. 1. For a ciphertext c = (c x , c y ) ∈ Z 2 N , compute b = c 2 y -c 3 x (mod N ). 2. Compute the point (m x , m y ) = d(c x , c y ) on the elliptic curve y 2 ≡ x 3 + b (mod N ). The plaintext is m = (m x , m y ).
The complexity of the encryption and decryption algorithms are based on the size of the encryption key e and the size of decryption key d, respectively. In a cryptosystem with a limited resource such as a credit card, it is desirable to have a smaller value of d or e. Unfortunately, when d is too small, Pinch [START_REF] Pinch | Extending the Wiener attack to RSA-type cryptosystems[END_REF] showed that one can factor the RSA modulus N = pq if d < 1 3 N 1 4 . Using a generalized attack, Nitaj [START_REF] Nitaj | A new attack on the KMOV cryptosystem[END_REF] showed that one can factor N when d ≡ y

x (mod (p+1)(q +1)) is much larger under some extra conditions on x and y.

A New Improved Attack Based on Continued Fractions

In this section, we give an improved attack on KMOV based totally on the continued fraction algorithm.

The new attack based on continued fractions

The attacks presented in [START_REF] Pinch | Extending the Wiener attack to RSA-type cryptosystems[END_REF] and [START_REF] Ibrahimpasic | Cryptanalysis of KMOV cryptosystem with short secret exponent[END_REF] take advantage on using the convergents of the continued fraction expansion of e N . Instead of using the convergents of e N , we will use the convergents of e φ0 where φ 0 is given by φ

0 = N + 1 + 1 + 3 √ 2 4 N 1 2 .
To this end, we will need the following result.

Lemma 1. For any N > 10 6 , we have

3 √ 2 -2 N 1 2 + 2 (N + 2N 1 2 ) 2 < 1 8N 3 2 
.

Proof. Suppose that

3 √ 2 -2 N 1 2 + 2 N + 2N 1 2 2 < 1 8N 3 2 
.

Then, clearing the denominators, we get 8N

1 2 3 √ 2 -2 N 1 2 + 2 < N 1 2 + 2 2 , which is equivalent to 12 √ 2 -16 N + 16N 1 2 < N + 4N 1 2 + 4. This is true if 12 √ 2 -16 N + 16N 1 2 < N + 4N 1 2 , or equivalently 12 < 17 -12 √ 2 N 1 2
. This is valid if

N > 10 6 > 12 17 -12 √ 2 2 .
This terminates the proof.

The following lemma is useful for approximating the sizes of the prime factors of an RSA modulus N = pq when p and q are of the same bit-size.

Lemma 2. Let N = pq be an RSA modulus with q < p < 2q. Then

2N 1 2 < p + q < 3 √ 2 2 N 1 2 .
Proof. Assume that q < p < 2q. Then 1 < p q < √ 2, so, since the function

f (x) = x + 1 x is increasing on [1, +∞), we get 2 < p q + q p < √ 2 + 1 √ 2 = 3 √ 2 2
.

If we multiply by N 1 2 , we get

2N 1 2 < p + q < 3 √ 2 2 N 1 2 .
This terminates the proof. Now, we present our first improved attack on KMOV based on the continued fraction algorithm. The following result shows that the secret information p, q, d in a KMOV cryptosystem can be recovered from public information (e, N ).

Theorem 6. Let (N, e) be a public key in a KMOV cryptosystem with N = pq > 10 6 , q < p < 2q and gcd(e, (p + 1)(q + 1)). If ed ≡ 1 (mod (p + 1)(q + 1))

and d < 2 √ 2 N 3 4
√ e , then one can factor N in polynomial time in log(N ).

Proof. Suppose that N = pq with q < p < 2q. Then, by Lemma 2, we get

N + 1 + 2N 1 2 < (p + 1)(q + 1) < N + 1 + 3 √ 2 2 N 1 2 .
We set

φ 1 = N +1+2N 1 2 and φ 2 = N +1+ 3 √ 2 2 N 1 2 . Then (p+1)(q +1) ∈]φ 1 , φ 2 [. Let φ 0 = N + 1 + 1 + 3 √ 2 4 N 1 2 ,
be the midpoint of the interval [φ 1 , φ 2 ]. Since (p + 1)(q + 1) ∈ (φ 1 , φ 2 ), then

|(p + 1)(q + 1) -φ 0 | ≤ 1 2 (φ 2 -φ 1 ). ( 3 
)
If ed ≡ 1 (mod (p + 1)(q + 1)), then ed -k(p + 1)(q + 1) = 1, and

e φ 0 - k d = e φ 0 - e (p + 1)(q + 1) + e (p + 1)(q + 1) - k d = e((p + 1)(q + 1) -φ 0 ) φ 0 (p + 1)(q + 1) + 1 d(p + 1)(q + 1)
= e((p + 1)(q + 1) -φ 0 ) φ 0 (p + 1)(q + 1) + e (p + 1)(q + 1)(k(p + 1)(q + 1) + 1) .

Since φ 0 (p + 1)(q + 1) > φ 2 1 and (p + 1)(q + 1)(k(p + 1)(q + 1) + 1) > φ 2 1 , then

e φ 0 - k d < e 1 2 (φ 2 -φ 1 ) φ 2 1 + e 1 φ 2 1 = e φ 2 -φ 1 + 2 2φ 2 1 .
Then, combining (3) and

φ 1 = N + 1 + 2 √ N ≥ N + 2 √ N , we get e φ 0 - k d < e 3 √ 2 2 -2 √ N + 2 2 N + 2 √ N 2 .
Using Lemma 1, for N > 10 6 , we get

e φ 0 - k d < e 16N 3 2
. Now, suppose that e 16N 3 2

< 1 2d 2 , that is d < 2 √ 2N 3 4 √ e , then e φ 0 - k d < 1 2d 2 .
It follows by Theorem 4 that k d is a convergent of e φ0 from which we deduce k and d. Using the equation ed -k(p + 1)(q + 1) = 1, we get p + q = ed-1 k -N -1 and combining with N = pq, we easily find p and q. This gives to the factorization of N = pq. Notice that, since the continued fraction algorithm works in polynomial time, then finding p and q is done in polynomial time.

Comparison with former attacks

In [START_REF] Pinch | Extending the Wiener attack to RSA-type cryptosystems[END_REF], Pinch extended Wiener's attack [START_REF] Wiener | Cryptanalysis of short RSA secret exponents[END_REF] on RSA to KMOV and showed that one can factor the modulus N = pq if the private exponent d satisfies d < 1 3 N 1 4 . In [START_REF] Ibrahimpasic | Cryptanalysis of KMOV cryptosystem with short secret exponent[END_REF], Ibrahimpasic slightly extended the attack of Pinch by an extra exhaustive research. In both attacks, the bounds do not depend on the size of e. In our new attack, the bound is

d < 2 √ 2 N 3 4
√ e and depends on e. In the typical situation where e ≈ N , our bound becomes 4 while the bound in [START_REF] Pinch | Extending the Wiener attack to RSA-type cryptosystems[END_REF] 4 . Observe that our new bound d < 2 Using this convergent, we get p + q = ed-1 k . Then combining with pq = N , we get p =122295652435077729919345520517086986879675097236430221980450907 006278884550539602496027848592931847870084590996181730049111792 44406300082071971851405178417, q =104723471964426405086080002568566304601367956338101575543737215 792893331651240463496547152238295322902114471979717345643807495 25832667841702102917782974613.

d < 2 √ 2N 1 4 ≈ 2.828N 1 
is d < 1 3 N 1 4 ≈ 0.333N 1 
√ 2 N
We notice that k d is not among the convergents of e N which implies that the methods of Pinch and Ibrahimpasic will not succeed.

A New Improved Attack Based on Coppersmith's Method

In this section, we present a new attack on KMOV based on Coppersmith's method.

The new attack

Theorem 7. Let (N, e) be a public key for the KMOV cryptosystem where N = pq is an RSA modulus and e = N β . Suppose that e satisfies the equation eu -(p + 1)(q + 1)v = w with u < N δ and |w| < N γ . If

δ < 7 6 -γ - 1 3 6β -6γ + 1 -ε,
for a small positive constant ε, then one can factor N in polynomial time.

Proof. Suppose that N = pq is an RSA modulus and e is a public exponent satisfying eu -(p + 1)(q + 1)v = w. Since (p + 1)(q + 1) = N + p + q + 1, then v(N +p+q+1)+w ≡ 0 (mod e), which can be rewritten as v(p+q+1)+N v+w ≡ 0 (mod e). Consider the polynomial f (x, y, z) = xy + N x + z, Then (x, y, z) = (v, p + q + 1, w) is a solution of the modular polynomial equation f (x, y, z) ≡ 0 (mod e). To find the solution (v, p+q+1, w), we apply Coppersmith's method [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF].

Let m and t be two positive integers to be optimized later. We use f (x, y, z) to build the sets of polynomials

G k,i1,i2,i3 (x, y, z) = x i1-k z i3 f (x, y, z) k e m-k , for k = 0, . . . m, i 1 = k, . . . , m, i 2 = k, i 3 = m -i 1 , H k,i1,i2,i3 (x, y, z) = y i2-k z i3 f (x, y, z) k e m-k , for k = 0, . . . m, i 1 = k, i 2 = k + 1, . . . , i 1 + t, i 3 = m -i 1 .
Let L denote the lattice spanned by the coefficient vectors of the polynomials G k,i1,i2,i3 (Xx, Y y, Zz) and H k,i1,i2,i3 (Xx, Y y, Zz). By choosing the increasing ordering following the i 1 's, then the i 2 's, and the i 3 's, one find a left triangular matrix. For m = 2 and t = 1, the coefficient matrix for L is presented in Table 1 where the monomials are {z 3 , xz 2 , x 2 z, x 3 , xyz 2 , x 2 yz, x 3 y, x 2 y 2 z, x 3 y 2 , x 3 y 3 , xy 2 z 2 , x 2 y 3 z, x 2 yz, x 3 y 4 }.

The non-zero elements are marked with an ' ' and do not influence the value of the determinant.

z 3 xz 2 x 2 z x 3 xyz 2 x 2 yz x 3 y x 2 y 2 z x 3 y 2 x 3 y 3 G k,i 1 ,i 2 ,i 3 G 0,0,0,3 Z 3 e 3 0 0 0 0 0 0 0 0 0 G 0,1,0,2 0 XZ 2 e 3 0 0 0 0 0 0 0 0 G 0,2,0,1 0 0 X 2 Ze 3 0 0 0 0 0 0 0 G 0,3,0,0 0 0 0 X 3 0 0 0 0 0 0 G 1,1,1,2 0 0 0 XY Z 2 e 2 0 0 0 0 0 G 1,2,1,1 0 0 0 X 2 Y Ze 2 0 0 0 0 G 1,3,1,0 0 0 0 0 X 3 Y e 2 0 0 0 G 2,2,2,1 0 0 X 2 Y 2 Ze 0 0 G 2,3,2,0 0 0 0 X 3 Y 2 e 0 G 3,3,3,0 0 X 3 Y 3 H k,i 1 ,i 2 ,i 3 H 0,0,1,3 0 0 0 0 0 0 0 0 H 1,1,2,2 0 0 0 0 0 0 0 H 2,2,3,1 0 0 0 0 0 0 0 H 3,3,4,0 0 0 0 0 0 0 0 xy 2 z 2 x 2 y 3 z x 2 yz x 3 y 4 G k,i 1 ,i 2 ,i 3 G 0,0,0,3 0 0 0 0 G 0,1,0,2 0 0 0 0 G 0,2,0,1 0 0 0 0 G 0,3,0,0 0 0 0 0 G 1,1,1,2 0 0 0 0 G 1,2,1,1 0 0 0 0 G 1,3,1,0 0 0 0 0 G 2,2,2,1 0 0 0 0 G 2,3,2,0 0 0 0 0 G 3,3,3,0 0 0 0 0 H k,i 1 ,i 2 ,i 3 H 0,0,1,3 XY 2 Z 2 e 2 0 0 0 H 1,1,2,2 X 2 Y 3 Ze 0 0 H 2,2,3,1 0 0 X 2 Y Ze 0 H 3,3,4,0 0 0 0 X 3 Y 4
Table 1. The coefficient matrix for the case m = 2, t = 1.

The determinant of the triangular matrix is then the determinant of the lattice L and can be easily computed as

det(L) = e ne X n X Y n Y Z n Z . (4) 
To find the values of the exponents n e , n X , n Y , n Z , define the sum S(a) by

S(a) = m k=0 m i1=k k i2=k m-i1 i3=m-i1 a + m k=0 k i1=k i1+t i2=k+1 m-i1 i3=m-i1 a.
By the construction of the polynomials G and H, we get

n e = S(m -k) = 1 6 m(m + 1)(2m + 3t + 4), n X = S(i 1 ) = 1 6 m(m + 1)(2m + 3t + 4), n Y = S(i 2 ) = 1 6 (m + 1) m 2 + 3mt + 3t 2 + 2m + 3t , n Z = S(i 3 ) = 1 6 m(m + 1)(m + 3t + 2). (5) 
The dimension of the lattice is the number of rows in the matrix. It can be estimated as

ω = S(1) = 1 2 (m + 1)(m + 2t + 2). (6) 
If we set t = τ m for some positive τ , then the dominant terms of the exponents in ( 5) and 6 are

n e ≈ 1 6 (3τ + 2)m 3 + o(m 3 ), n X ≈ 1 6 (3τ + 2)m 3 + o(m 3 ), n Y ≈ 1 6 3τ 2 + 3τ + 1 m 3 + o(m 3 ), n Z ≈ 1 6 (3τ + 1)m 3 + o(m 3 ), w ≈ 1 6 (6τ + 3)m 2 + o(m 2 ). (7) 
Next, we apply the LLL algorithm 2 to the lattice L. We then get a reduced basis where the three first vectors h i , i = 1, 2, 3 satisfy

h 1 ≤ h 2 ≤ h 3 ≤ 2 ω(ω-1) 4(ω-2) det(L) 1 ω-2 .
To apply Howgrave-Graham's Theorem 1 to h 1 , h 2 and h 3 , we set 2 ω(ω-1)

4(ω-2) det(L) 1 ω-2 < e m √ ω ,
from which we deduce det(L) < 2 -ω(ω-1) -2) .

4 1 ( √ ω) ω-2 e m(ω
Using (4), we get

e ne X n X Y n Y Z n Z < 2 -ω(ω-1) 4 1 ( √ ω) ω-2 e m(ω-2) . (8) 
Suppose that e = N β , u < N δ and |w| < N γ . Then, using Lemma 2, we have p + q + 1 ≤ 2p < 2 √ 2 √ N . Since p + q + 1 is represented by y, we set Y = 2 √ 2 √ N . On the other hand, since (p + 1)(q + 1) > N and |w| < eu, we get |v| = |eu -w| (p + 1)(q + 1) < eu + |w| (p + 1)(q + 1)

< 2eu N < 2N β+δ-1 . ( 9 
)
Since v is represented by x, we set X = 2N β+δ-1 . Also, since w is represented by Z, we set Z = N γ . It follows that the solution (x, y, z) = (v, p + q + 1, w) satisfies |x| < X, |y| < Y and |z| < Z and ( 8) is satisfied if

2 n X 2 √ 2 n Y N neβ+n X (β+δ-1)+ n Y 2 +n Z γ < 2 -ω(ω-1) 4 1 ( √ ω) ω-2 N m(ω-2)β . ( 10 
)
Using the approximations of n e , n X , n Y , n Z given in [START_REF] Bunder | Cryptanalysis of RSA-type cryptosystems based on Lucas sequences, Gaussian integers and elliptic curves[END_REF] and ω given 6, the inequality 8 leads to N (3τ +2)β+(3τ +2)(β+δ-1)+ 3τ 2 +3τ +1 2

+(3τ +1)γ m 3 < 2 -n X 2 √ 2 -n Y 2 -ω(ω-1) 4 1 ( √ ω) ω-2 N -2βm N (6τ +3)βm 3 . (11) 
To homogenize the exponentiation of N , we set

2 -n X 2 √ 2 -n Y 2 -ω(ω-1) 4 1 ( √ ω) ω-2 N -2βm = N -µm 3 ,
where µ is a small positive constant. Then, taking logarithms and dividing by m 3 log N , we get (3τ + 2)β + (3τ + 2)(β + δ -1) + 3τ 2 + 3τ + 1 2 + (3τ + 1)γ -(6τ + 3)β < -µ.

The optimal value for the left hand side is τ 0 = 1-2δ-2γ 2 , which, plugged in the former inequality leads to -12δ 2 -24δγ -12γ 2 + 8β + 28δ + 20γ -15 < -8µ, and consequently

δ < 7 6 -γ - 1 3 6β -6γ + 1 -ε,
where ε is a small positive constant that depends on m and N . Within this condition, the reduced lattice has three polynomials h 1 (x, y, z), h 2 (x, y, z) and h 2 (x, y, z) sharing the root (x 0 , y 0 , z 0 ) = (v, p+q+1, w). Then, applying Gröbner basis or resultant computations, we get the expected solution (x 0 , y 0 , z 0 ) from which we deduce p + q = y -1. Together with the equation pq = N , this leads to finding p and q. This terminates the proof.

Theorem 4 .

 4 Let ξ = 0 be a real number and a, b be two positive integers such that a b ∈ N and (a, b) = 1. If

Theorem 5 .

 5 Let E p (0, b) be an elliptic curve over F p with equation y 2 ≡ x 3 + b (mod p). If p ≡ 2 (mod 3), then number of points on E p (0, b) is #E p (0, b) = p + 1. Since #E p (a, b) is the order of the group E p (0, b) for the addition law, then #E p (a, b) • P = O for any point P ∈ E p (a, b). When p ≡ 2 (mod 3), then for any point P ∈, we have (p + 1)P = O. When N is a composite square free integer and a and b are integers satisfying 4a 3 + 27b 2 ≡ 0 (mod p), one can define an elliptic curve E N (a, b) over the ring Z/N Z by the equation

  significative for moderately small e. Let us consider a numerical example. Consider the 1024 bit modulus N the continued fraction algorithm to e φ0 and computing the convergents, the 130th convergent is k

The convergents start with p 0 q 0 , but it is a convention to extend the sequence index to -1 and -2 to allow the recursive formula to hold for n = 0 and n = 1

Comparison with former attacks

In [START_REF] Nitaj | A new attack on the KMOV cryptosystem[END_REF], Nitaj presented an algorithm for factoring the modulus N = pq when the public exponent e satisfies an equation of the form eu -(p + 1)(q + 1)v = w, where the unknown parameters u, v and w are such that

The idea in [START_REF] Nitaj | A new attack on the KMOV cryptosystem[END_REF] is to compute the convergents of the continued fraction of e N , and for each convergent v u with uv <

12 , to compute U and V with

Then p = 1 2 (U + V ) is a possible approximation of the prime factor p with error term of at most 2N 1 4 . If so, then by applying Coppersmith's method, one can find p, and then factor N .

To compare our new results and the result of [START_REF] Nitaj | A new attack on the KMOV cryptosystem[END_REF], suppose that e = N β , u < N δ and |w| < N γ . Then, by [START_REF] Hardy | An Introduction to the Theory of Numbers[END_REF], we get |v| < 2N β+δ-1 . Hence, the inequalities [START_REF] Jochemsz | A strategy for finding roots of multivariate polynomials with new applications in attacking RSA variants[END_REF] are fulfilled if

Then, neglecting the constants and assuming that p -q ≈ p + q, the former two inequalities are true if

This leads to δ < 3 4 -1 2 β, which is to be compared with the new bound

A typical situation is when e ≈ N , that is β = 1, and |w| is small, that is γ = 0. Then the bounds δ 0 and δ 1 are δ 0 = 0.25, δ 1 ≈ 0.284. We see that the new method overcome the method of [START_REF] Nitaj | A new attack on the KMOV cryptosystem[END_REF] in the most realistic situations of instances of KMOV.

Conclusion

We have presented two new attacks on the KMOV cryptosystem which is an RSA type cryptosystem based on elliptic curves. The first attack is based on the continued fraction algorithm and the second is based on Coppersmith's method. Both attacks work when the private key is suitably small and the new results improve the former attacks on the KMOV elliptic curve cryptosystem.