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Abstract

Boolean functions play an important role in many symmetric cryp-
tosystems and are crucial for their security. It is important to design
boolean functions with reliable cryptographic properties such as balanced-
ness and nonlinearity. Most of these properties are based on specific struc-
tures such as Möbius transform and Algebraic Normal Form. In this pa-
per, we introduce the notion of Dirichlet product and use it to study
the arithmetical properties of boolean functions. We show that, with the
Dirichlet product, the set of boolean functions is an Abelian monoid with
interesting algebraic structure. In addition, we apply the Dirichlet prod-
uct to the sub-family of coincident functions and exhibit many properties
satisfied by such functions.

1 Introduction

Boolean functions are used in logic and in many cryptographic applications
such as blocks of symmetric key cryptosystems, stream cipher systems, coding
theory and hash functions. Boolean functions are important for the security
of such systems. So, for security reason, one seeks boolean functions having
good properties such as nonlinearity, balancedness and algebraic immunity [7, 4]
(see [3] for more properties). A boolean function is a mapping {0, 1}n → {0, 1},
often characterized by its truth table. The number of boolean functions with
n variables is 22

n

and it is impracticable to exhaustively exhibit a boolean
function with optimal properties. One way to tackle this problem is to study
the arithmetical structure of boolean functions and test their cryptographic
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reliability by the mean of algebraic tools such as Möbius transform and Algebraic
Normal Form. For this reason, a lot of effort has been given to find ways to
construct boolean functions with strong cryptographic properties.

For n ≥ 1, we set GF (2) = {0, 1} and GF (2)n = {0, 1}n. Any vector
x ∈ GF (2)n is represented by its coordinates as x = (x1, . . . , xn) or simply
x = x1 . . . xn. The Hamming weight wH(x) of x ∈ GF (2)n is the number of non
zero coordinates of x. An n-boolean function f is a mapping from GF (2)n into
GF (2). A boolean function is completely determined by its truth table

f(0, 0, 0 . . . , 0), f(0, 1, 0, . . . , 0), f(0, 1, 0, . . . , 0), . . . , f(1, 1, 1, . . . , 1),

and can be represented uniquely by the algebraic normal form (ANF)

f(x1, . . . , xn) =
∑

(ε1,...,εn)∈GF (2)n

f̂(ε1, . . . , εn)xε11 . . . xεnn ,

where f̂ is also a boolean function, called the Möbius transform of f . The
transformation of f to its ANF can be performed using the truth table of f
(see [2] and [6]).

Boolean functions have been intensively studied and various arithmetical
properties are known such as Möbius transforms [6], Fourier transforms [2] and
some cryptographic applications [7]. In this paper, we improve much further
such arithmetic properties by introducing the concept of Dirichlet product. Usu-
ally, Dirichlet product is well defined for arithmetical functions. An arithmetical
function is a real-valued function defined on the positive integers [1]. The clas-
sical Dirichlet product F ∗ G for two arithmetical functions F,G : N → R is
defined by

(F ∗G)(n) =
∑
d|n

F (d)G(
n

d
) =

∑
xy=n

F (x)G(y).

Dirichlet product is commutative F ∗ G = G ∗ F , associative F ∗ (G ∗ H) =
(F ∗G) ∗H, and it has an identity

I(n) =

{
1 if n = 1
0 if n > 1

(1)

where F ∗ I = I ∗ F = F . So the set of all arithmetical functions N → R
together with the Dirichlet product form an Abelian monoid. What more is
that if F (1) 6= 0 then F has an inverse. So the subset of all arithmetical
functions such that F (1) 6= 0 is an Abelian group with respect to the Dirichlet
multiplication. The classical Dirichlet product provides great inside into some of
the classical theorems in number theory. Many identities involving the Möbius
function µ and the Euler totient function φ can be seen more intuitively in the
language of Dirichlet product. For example, we have this identity∑

d|n

µ(d) =

{
1 if n = 1
0 if n > 1

(2)
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where µ is the the Möbius function

µ(n) =


1 if n = 1

(−1)k if n = p1 · p2 · · · pk
0 otherwise.

In the language of Dirichlet product, the identity (2) is µ ∗ 1 = I, it means that
the Möbius function µ is the Dirichlet inverse of the constant function 1 where
1(n) = 1. Similarly, Euler’s totient function satisfies the following result.

φ(n) =
∑
d|n

µ(d)
n

d
, (3)

In the language of Dirichlet product, the identity (3) is µ ∗ N = φ where N
is the function N(n) = n. In the language of group theory, it implies that
N = φ ∗ µ−1 = φ ∗ 1, that is ∑

d|n

φ(d) = n. (4)

So under the notion of Dirichlet product, two isolated results, (3) and (4) are
ultimately related: (3) means φ = µ∗N , whereas (4) means N = φ∗1 = φ∗µ−1.

For two boolean functions f and g, we define the concept of Dirichlet product
by setting for all x ∈ GF (2)n

(f ∗ g)(x) =
∑
u�x

f(u)g(x− u)

where, for u = (u1, . . . , un) ∈ GF (2)n and x = (x1, . . . , xn) ∈ GF (2)n, u � x if
and only if for each i ∈ {1, . . . , n}, ui ≤ xi. We show that the Dirichlet product
for boolean functions is commutative, associative and that the set of all boolean
functions is an Abelian monoid and has the identity function I satisfying

I(x) =

{
1 if x = 0
0 if x 6= 0

Moreover, we link a boolean function f to its Möbius transform f̂ using the
Dirichlet products f = f̂ ∗1 and f̂ = f ∗1 where 1 is the constant function 1(x) =
1. We show that the set of all boolean functions f such that f(0, 0, . . . , 0) = 1
under the Dirichlet product form an Abelian group and the inverse of any such
function f is f itself.

Finally, we will study the set of coincident functions and its algebraic struc-
ture. A coincident function is a boolean function f such that f̂ = f . Under
the Dirichlet product, we show that the set of all coincident functions is a 2n−1

subspace with cardinality 22
n−1

.
The rest of this paper is organized as follows. In Section 2, we review the

basic properties of boolean functions. In Section 3, we introduce the new notion
of Dirichlet product for boolean functions and study its arithmetic properties.
In Section 4, we study the arithmetical and algebraic structure of the set of all
coincident boolean functions. We conclude the paper in Section 5.
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2 Boolean functions

Let n ≥ 1. A boolean function f on n variables is a mapping from {0, 1}n into
{0, 1}. It can be defined by its truth table, that is by f(x1, . . . , xn) for each
(x1, . . . , xn) ∈ {0, 1}n. For xi, εi ∈ GF (2), we define xεii

xεii =

{
xi if εi = 1,

1 if εi = 0

with the convention that 00 = 1.
The set of all boolean functions on n variables is denoted Bn and any boolean

function f ∈ Bn can be uniquely represented by an n-multivariate polynomial
over GF (2), called algebraic normal form (ANF),

f(x) =
∑

ε∈GF (2)n

fε x
ε,

where fε ∈ GF (2) is the coefficient of the term xε = xε11 x
ε2
2 . . . xεnn . In GF (2),

the addition operation is simply the XOR.
The summand xε = xε11 . . . xεnn is called a monomial (term) in the ANF of f .

The summand xε is said to appear in f if fε 6= 0. The degree of this summand
xε is the Hamming weight wH(ε) of ε, that is the number of non-zero elements
in it. The (algebraic) degree of f , denoted by deg(f), is the maximum degree
of all summands that appear in f , that is maximum of all Hamming weights.
For a constant zero function, we assume its degree is 0. The coefficient fε of the
summand xε is related the Möbius transformation.

Definition 2.1. Let f ∈ Bn with a polynomial

f(x) =
∑

ε∈GF (2)n

fε x
ε.

The Möbius transformation of f is the boolean function f̂ : GF (2)n → GF (2)
defined as

f̂(ε) = fε.

Using this definition, the polynomial f(x) becomes

f(x) =
∑

ε∈GF (2)n

f̂(ε) xε.

We now define a partial ordering � in GF (2)n in the following definition.

Definition 2.2. Let u = (u1, u2, . . . , un) ∈ GF (2)n and x = (x1, x2, . . . , xn) ∈
GF (2)n. We define the ordering

u � x⇔ ui ≤ xi for all i with 1 ≤ i ≤ n.
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The following simple result gives an expression of a boolean function f in
terms of its Möbius transform f̂ .

Theorem 2.3. For x = (x1, . . . , xn) ∈ GF (2)n and u = (u1, . . . , un) ∈ GF (2)n,

f(x) =
∑
u�x

f̂(u), (5)

Take an example, let n = 3,

f(x1, x2, x3) = f̂(0, 0, 0) + f̂(1, 0, 0)x1 + f̂(0, 1, 0)x2 + f̂(0, 0, 1)x3+

f̂(1, 1, 0)x1x2 + f̂(0, 1, 1)x2x3 + f̂(1, 0, 1)x1x3 + f̂(1, 1, 1)x1x2x3.

So

f(0, 0, 0) = f̂(0, 0, 0)

f(1, 0, 0) = f̂(0, 0, 0) + f̂(1, 0, 0)

f(0, 1, 0) = f̂(0, 0, 0) + f̂(0, 1, 0)

f(0, 0, 1) = f̂(0, 0, 0) + f̂(0, 0, 1)

f(1, 1, 0) = f̂(0, 0, 0) + f̂(1, 0, 0) + f̂(0, 1, 0) + f̂(1, 1, 0)

. . .

Solving these equations, we have the dual equations

f̂(0, 0, 0) = f(0, 0, 0)

f̂(1, 0, 0) = f(0, 0, 0) + f(1, 0, 0)

f̂(0, 1, 0) = f(0, 0, 0) + f(0, 1, 0)

f̂(0, 0, 1) = f(0, 0, 0) + f(0, 0, 1)

f̂(1, 1, 0) = f(0, 0, 0) + f(1, 0, 0) + f(0, 1, 0) + f(1, 1, 0)

. . .

In matrix form, these equations become

f(0, 0, 0)
f(1, 0, 0)
f(0, 1, 0)
f(0, 0, 1)
f(1, 1, 0)
f(1, 0, 1)
f(0, 1, 1)
f(1, 1, 1)


=



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0
1 0 1 1 0 0 1 0
1 1 1 1 1 1 1 1





f̂(0, 0, 0)

f̂(1, 0, 0)

f̂(0, 1, 0)

f̂(0, 0, 1)

f̂(1, 1, 0)

f̂(1, 0, 1)

f̂(0, 1, 1)

f̂(1, 1, 1)


, (6)
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and 

f̂(0, 0, 0)

f̂(1, 0, 0)

f̂(0, 1, 0)

f̂(0, 0, 1)

f̂(1, 1, 0)

f̂(1, 0, 1)

f̂(0, 1, 1)

f̂(1, 1, 1)


=



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0
1 0 1 1 0 0 1 0
1 1 1 1 1 1 1 1





f(0, 0, 0)
f(1, 0, 0)
f(0, 1, 0)
f(0, 0, 1)
f(1, 1, 0)
f(1, 0, 1)
f(0, 1, 1)
f(1, 1, 1)


. (7)

In the above example, we can see the duality between f and f̂

f̂(x) =
∑
u�x

f(u). (8)

This is not accidental. The duality between (5) and (8) is explained by the

fact that f̂ = f ∗ 1 and f = f̂ ∗ 1 as in Theorem 3.9.

3 Dirichlet product for boolean functions

In this section, we define the Dirichlet product f ∗ g for two boolean functions
f and g and study several properties of the monoid (Bn, ∗). In the rest of this
paper, the term (0, 0, . . . , 0) ∈ GF (2)n is often denoted as 0.

Lemma 3.1. Let x = (x1, x2, . . . , xn) ∈ GF (2)n. Then there are 2wH(x) terms
u = (u1, u2, . . . , un) ∈ GF (2)n such that u � x where wH(x) is the Hamming
weight of x.

Proof. Let x = (x1, x2, . . . , xn). For each i with 1 ≤ i ≤ n, we have

ui ≤ xi for

{
ui = 0 if xi = 0
ui ∈ {0, 1} if xi = 1

It follows that the number of terms u ∈ GF (2)n satisfying u � x is

n∏
i=1

2xi = 2wH(x),

wH(x) is the Hamming weight of x.

Example 3.2. Let n = 3 and x = (1, 0, 1) ∈ GF (2)3. Then the set of all
u ∈ GF (2)3 such that u � x is

{(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 0, 1)} .

Now, we define the notion of Dirichlet product of two boolean functions.
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Definition 3.3. The Dirichlet product of two boolean functions f, g ∈ Bn is
defined as

(f ∗ g)(x) =
∑
u�x

f(u)g(x− u)

Example 3.4. Let n = 3 and x = (0, 1, 1) ∈ GF (2)3. Let f, g ∈ B3. Then the
Dirichlet product of f and g is

(f ∗ g)(0, 1, 1) =f(0, 0, 0)g(0, 1, 1) + f(0, 1, 0)g(0, 0, 1)

+ f(0, 0, 1)g(0, 1, 0) + f(0, 1, 1)g(0, 0, 0).

The following result shows that the set Bn is an abelian monoid with respect
to the Dirichlet product.

Theorem 3.5. (Bn, ∗) is an Abelian monoid with the identity

I(x) =

{
1 if x = 0
0 if x 6= 0

(9)

Proof. We have

(f ∗ g)(x) =
∑
u�x

f(u)g(x− u)

=
∑

u,v�x,u+v=x

f(u)g(v)

=
∑
v�x

g(v)f(x− v) = (g ∗ f)(x),

so the Dirichlet product is commutative: f ∗ g = g ∗ f .
We also have

((f ∗ g) ∗ h)(x) =
∑

u,v,w�x,u+v+w=x

f(u)g(v)h(w) = (f ∗ (g ∗ h))(x)

so the Dirichlet product is associative.
Finally,

(f ∗ I)(x) =
∑

u,v�x,u+v=x

f(u)I(v) = f(x)I(0) = f(x),

and I is the identity.

The following result shows that the Dirichlet product is distributive over the
addition operation in Bn.

Lemma 3.6. For f, g ∈ Bn, define addition operation f + g ∈ Bn as

(f + g)(x) = f(x) + g(x).

Then the Dirichlet product is distributive over this addition operation.
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Proof. We have

(f ∗ (g + h))(x) =
∑
u�x

f(u)(g + h)(x− u) =
∑
u�x

f(u)(g(x− u) + h(x− u))

=
∑
u�x

f(u)g(x− u) +
∑
u�x

f(u)h(x− u) = (f ∗ g)(x) + (f ∗ h)(x)

so f ∗ (g + h) = f ∗ g + f ∗ h.

The next result gives one of the basic properties of the Dirichlet product.

Lemma 3.7. For any functions f, g ∈ Bn,

(f ∗ g)(0) = f(0)g(0)

Proof. Since u � 0 happens only for u = 0, we have

(f ∗ g)(0) =
∑
u�0

f(u)g(0− u) = f(0)g(0).

The next result defines the constant boolean function 1 and links it to the
identity function I.

Lemma 3.8. Let 1 ∈ Bn denote the constant function

1(x) = 1, ∀x ∈ GF (2)n (10)

then
1 ∗ 1 = I.

It means that 1 is its own inverse under Dirichlet multiplication.

Proof. By Theorem 3.7, we have (1 ∗ 1)(0) = 1(0)1(0) = 1. For x 6= 0, we have

(1 ∗ 1)(x) =
∑
u�x

1(u)1(x− u) =
∑
u�x

1.

Since, by Lemma 3.1, there are 2wH(x) terms u with u � x, we have (1∗1)(x) = 0
for x 6= 0. In conclusion, 1 ∗ 1 = I.

The following result shows that the ANF of a boolean function is related to
the Dirichlet product.

Theorem 3.9. For any function f ∈ Bn, we have

f = f̂ ∗ 1, f̂ = f ∗ 1,
ˆ̂
f = f.
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Proof. First, we have

(f̂ ∗ 1)(x) =
∑
u�x

f̂(u)1(x− u) =
∑
u�x

f̂(u).

Therefore, by Theorem 2.3, f = f̂ ∗ 1.
Combining this with Lemma 3.8, we get

f ∗ 1 = (f̂ ∗ 1) ∗ 1 = f̂ ∗ (1 ∗ 1) = f̂ ∗ I = f̂ .

Applying the former results, we get

ˆ̂
f = f̂ ∗ 1 = (f ∗ 1) ∗ 1 = f ∗ (1 ∗ 1) = f ∗ I = f.

This terminates the proof.

The mysterious duality between a boolean function and its Möbius transfor-
mation is actually a manifestation of a simple fact in Dirichlet product, that is
1 ∗ 1 = I. The relationship between the results of Theorem 3.9 is liken to that
of (3) and (4).

Theorem 3.10. For any function f ∈ Bn,

f̂(0) = f(0).

Proof. The proof follows from Lemma 3.7 and Theorem 3.9.

The following result shows that f ∗ f is either the identity I or the constant
function 0.

Theorem 3.11. For any function f ∈ Bn,

f ∗ f = f(0)I =

{
I if f(0) = 1
0 if f(0) = 0

(11)

Proof. Applying Lemma 3.7, we get (f ∗ f)(0) = f(0)f(0) = f(0). When x 6= 0,

(f ∗ f)(x) =
∑
u�x

f(u)f(x− u).

Since u � x and x − u � x, everything in the sum appear twice. Hence,
(f ∗ f)(x) = 0. So f ∗ f = f(0)I.

Theorem 3.12. For any function f ∈ Bn,

f ∗ f̂ = f̂ ∗ f = f(0), (12)

where f(0) is the constant function defined by f(0)(x) = f(0).
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Proof. By Theorem 3.9 and Theorem 3.11, we have

f ∗ f̂ = f ∗ (f ∗ 1) = (f ∗ f) ∗ 1 = f(0)I ∗ 1 = f(0)1 = f(0),

In the following result, we give a characterization of a reversible boolean
function with respect to the Dirichlet product.

Theorem 3.13. For any function f ∈ Bn, f has a Dirichlet inverse if and only
if f(0) = 1, and in this case, f is the Dirichlet inverse of itself.

Proof. Suppose that f is invertible with an inverse g. Then f ∗ g = I and
(f ∗ g)(0) = f(0)g(0) = 1. Then f(0) = 1. Conversely, suppose that f(0) = 1,
then f ∗ f = f(0)I = I. Hence f is invertible and f is the Dirichlet inverse of
itself.

Next, we show that the set of Dirichlet invertible boolean functions is an
Abelian group.

Theorem 3.14. Let B+n denote the set

B+n = {f ∈ Bn : f(0) = 1}.

Then (B+n , ∗) is an Abelian group.

Proof. Let f ∈ B+n and g ∈ B+n be two invertible boolean functions. By The-
orem 3.13, we know that f(0) = g(0) = 1. Then (f ∗ g)(0) = f(0)g(0) = 1,
which implies that f ∗ g ∈ B+n . Moreover, the inverse of f ∈ B+n is itself and
B+n contains the identity function I. These properties show that (B+n , ∗) is an
Abelian subgroup of (Bn, ∗).

The following result is related to the degree of boolean functions. Recall the
degree of a boolean function f is defined as the maximum number of variables
of the terms xε = xε11 x

ε2
2 . . . xεnn in the ANF of f .

Theorem 3.15. For any f, g ∈ Bn, we have

deg(f) + deg(g) ≥ deg(f ∗ g ∗ 1) and deg(f) + deg(f̂) ≥ n.

Proof. To prove the first assertion, first, if deg(f) + deg(g) ≥ n then this asser-
tion is obviously true. We only need to prove it for the case deg(f)+deg(g) < n.
If wH(x) > deg(f) + deg(g), then for any u � x, wH(u) +wH(x− u) = w(x) >
deg(f) + deg(g), so wH(u) > deg(f) or wH(x−u) > deg(g). If wH(u) > deg(f)

then f̂(u) = 0, and if wH(x− u) > deg(g) then ĝ(x− u) = 0, so in either case,

we have f̂(u)ĝ(x− u) = 0. It follows that

(f̂ ∗ ĝ)(x) =
∑
u�x

f̂(u)ĝ(x− u) = 0

10



holds for any x ∈ GF (2)n such that wH(x) > deg(f) + deg(g). Therefore,

deg((f̂ ∗ ĝ) ∗ 1) ≤ deg(f) + deg(g).

Finally, (f̂ ∗ ĝ) ∗ 1 = f ∗ 1 ∗ g ∗ 1 ∗ 1 = f ∗ g ∗ 1. This gives deg(f) + deg(g) ≥
deg(f ∗ g ∗ 1).
Next, we have

deg(f) + deg(f̂) ≥ deg(f ∗ f̂ ∗ 1).

But f ∗ f̂ ∗1 = f ∗f ∗1∗1 = f(0)I ∗I = f(0)I = I, so deg(f ∗ f̂ ∗1) = deg(I) = n

and we obtain the inequality deg(f) + deg(f̂) ≥ n.

3.1 Basis for (Bn,+)

For f, g ∈ Bn, the function f + g ∈ Bn is defined as (f + g)(x) = f(x) + g(x).
With this addition operation, Bn is a free Abelian group. There are two natural
ways to choose a basis for Bn. We will describe them in Theorem 3.16 and
Theorem 3.17.

Theorem 3.16. For each a ∈ GF (2)n, define the function δa ∈ Bn as follows

δa(x) = (x1 + a1 + 1)(x2 + a2 + 1) . . . (xn + an + 1) =

{
1 if x = a
0 if x 6= a

(13)

Then {δa}a∈GF (2)n forms a basis for the vector space (Bn,+). Each function
f ∈ Bn can be written as a linear combination of basis functions δa as

f =
∑

a∈GF (2)n

f(a) δa. (14)

Proof. If x = a, then for each i = 1, 2, . . . , n, xi + ai + 1 = 1 and δa(x) = 1. If
x 6= a, then xi 6= ai for some i. Hence xi + ai + 1 = 0 and δa(x) = 0.

We have ∑
a∈GF (2)n

f(a) δa(x) = f(x) δx(x) +
∑
a 6=x

f(a) δa(x) = f(x),

so f =
∑
a∈GF (2)n f(a) δa.

Note that, δ0 is the Dirichlet identity function I:

I(x) = δ0(x) = (x1 + 1)(x2 + 1) . . . (xn + 1) =

{
1 if x = 0
0 if x 6= 0

(15)

Theorem 3.17. For each a ∈ GF (2)n, define the function ρa ∈ Bn as follows

ρa(x) = xa = xa11 x
a2
2 . . . xann =

{
1 if a � x
0 if a 6� x (16)

Then {ρa}a∈GF (2)n forms a basis for the vector space (Bn,+). Each function
f ∈ Bn can be written as a linear combination of basis functions ρa as

f =
∑

a∈GF (2)n

f̂(a) ρa. (17)
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Proof. If a � x then ai ≤ xi for each i = 1, 2, . . . , n. If xi = 0, then ai = 0 and
xaii = 00 = 1. If xi = 1, then xaii = 1. In all cases, xaii = 1 and ρa(x) = 1.
Next, suppose that a 6� x. Then there exists i with 1 ≤ i ≤ n such that ai > xi.
This implies that xi = 0 and ai = 1. Hence xaii = xi = 0 and ρa(x) = 0.
Now, we have for x ∈ GF (2)n,∑

a∈GF (2)n

f̂(a) ρa(x) =
∑
a�x

f̂(a) ρa(x) +
∑
a 6�x

f̂(a) ρa(x) =
∑
a�x

f̂(a) = f(x),

by Theorem 2.3.

Theorem 3.18. For any a ∈ GF (2)n, the basis functions δa and ρa satisfy the
following relations:

• δa ∗ 1 = ρa and ρa ∗ 1 = δa,

• δa ∗ δb = ρa ∗ ρb = ρa ρb δa+b.

Proof. First, observe that since ρa(x) = xa, the function ρa in ANF has only
one monomial term xa, so its ANF coefficient function is δa. That is ρa ∗1 = δa,
and so δa ∗ 1 = ρa ∗ 1 ∗ 1 = δa ∗ I = δa.
Next, for any a and b, we have

(δa ∗ δb)(x) =
∑

u,v�x,u+v=x

δa(u)δb(v)

=

{
1 if a � x, b � x, a+ b = x.

0 otherwise

= ρa(x)ρb(x)δa+b(x)

Therefore,
δa ∗ δb = ρa ρb δa+b.

Finally,
ρa ∗ ρb = δa ∗ 1 ∗ δb ∗ 1 = δa ∗ δb.

4 Coincident functions

In this section, we study a special family of boolean functions, called coincident
functions which was first introduced in [5].

Definition 4.1. A coincident function is a function f : GF (2)n → GF (2) such

that f̂ = f .
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Example 4.2. For n = 3, let f be the function

f(x1, x2, x3) = f̂(0, 0, 0) + f̂(1, 0, 0)x1 + f̂(0, 1, 0)x2 + f̂(0, 0, 1)x3 +

f̂(1, 1, 0)x1x2 + f̂(0, 1, 1)x2x3 + f̂(1, 0, 1)x1x3 + f̂(1, 1, 1)x1x2x3

= 0 + x1 + x2 + x3 + x1x2 + x2x3 + x1x3 + x1x2x3.

Then

f(0, 0, 0) = f̂(0, 0, 0) = 0, f(1, 0, 0) = f̂(1, 0, 0) = 1, . . . , f(1, 1, 1) = f̂(1, 1, 1) = 1,

that is f = f̂ and f is coincident.

Theorem 4.3. For any coincident function f ,

f(0) = 0.

Proof. Suppose that f is a coincident function, that is f = f̂ . Then, using
Theorem 2.3, we get

f(0, 0, . . . , 0, 1) = f̂(0) + f̂(0, 0, . . . , 0, 1).

Since f(0, 0, . . . , 0, 1) = f̂(0, 0, . . . , 0, 1), then f̂(0) = f(0) = 0.

Let Cn denote the set of all such coincident functions.

Theorem 4.4. A function f ∈ Bn is a coincident function if and only if

(1 + I) ∗ f = 0.

Thus, Cn is the annihilator of 1 + I in Bn.

Proof. Suppose that f is a coincident function, that is f = f̂ . Then

0 = f̂ + f = f ∗ 1 + f ∗ I = f ∗ (1 + I).

Conversely, suppose that f ∗ (1 + I) = 0. Then, using Theorem 3.9, we get

f∗1+f∗I = f̂+f = 0. This implies that f̂ = f and then f is coincident.

Observe that for any x ∈ GF (2)n, we have

(1 + I)(x) = (x1 + 1)(x2 + 1) . . . (xn + 1) + 1,

δ1...1(x) = x1x2 . . . xn,

ρ1...1(x) = x1x2 . . . xn.

Theorem 4.5. The boolean functions 1 + I, δ1...1 and ρ1...1 are coincident
functions.

13



Proof. Combining Theorem 4.4 and Theorem 3.8, we get

(1 + I) ∗ (1 + I) = 1 ∗ 1 + I ∗ I = I + I = 0.

Hence 1 + I is coincident. Next, combining Theorem 4.4 and Lemma 3.18, we
get for any x ∈ GF (2)n,

(1 + I) ∗ δ1...1(x) = (1 ∗ δ1...1)(x) + (I ∗ δ1...1)(x) = ρ1...1(x) + δ1...1(x).

Then, using Theorem 3.16 and Theorem 3.17, we get

ρ1...1(x) + δ1...1(x) =

{
1 + 1 = 0 if x = 1 . . . 1,

0 + 0 = 0 if x 6= 1 . . . 1.

It follows that (1 + I) ∗ δ1...1 = 0 and δ1...1 is coincident.

Theorem 4.6. For any u ∈ GF (2)n, δu + ρu is a coincident function.

Proof. Combining Theorem 4.4 and Theorem 3.18, we get

(1 + I) ∗ (δu + ρu) = 1 ∗ δu + 1 ∗ ρu + δu + ρu = 2δu + 2ρu = 0

Hence δu + ρu is a coincident function.

Theorem 4.7. A function f ∈ Bn is a coincident function if and only if for
any (x2, . . . , xn) ∈ GF (2)n−1,

f(0, x2, . . . , xn) =
∑

(u2,...,un)≺(x2,...,xn)

f(1, u2, . . . , un), (18)

where u ≺ x means u � x and u 6= x.

Proof. Since

(1 + I)(x) =

{
0 if x = 0
1 if x 6= 0

(19)

we have
((1 + I) ∗ f)(x) =

∑
u�x

f(u)(1 + I)(x− u) =
∑
u≺x

f(u).

Therefore, (1 + I) ∗ f = 0 if and only if for any x ∈ GF (2)n,∑
u≺x

f(u) = 0.

Consider two cases, x1 = 0 and x1 = 1.
When x1 = 0, the condition becomes∑

(u2,...,un)≺(x2,...,xn)

f(0, u2, . . . , un) = 0.
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When x1 = 1, the condition becomes

f(0, x2, . . . , xn) +
∑

(u2,...,un)≺(x2,...,xn)

f(0, u2, . . . , un)

+
∑

(u2,...,un)≺(x2,...,xn)

f(1, u2, . . . , un) = 0.

Therefore, if f is a coincident function then for any (x2, . . . , xn) ∈ GF (2)n−1,
we must have

f(0, x2, . . . , xn) =
∑

(u2,...,un)≺(x2,...,xn)

f(1, u2, . . . , un).

Conversely, suppose that for any (x2, . . . , xn) ∈ GF (2)n−1,

f(0, x2, . . . , xn) =
∑

(u2,...,un)≺(x2,...,xn)

f(1, u2, . . . , un).

Then ∑
(u2,...,un)≺(x2,...,xn)

f(0, u2, . . . , un)

=
∑

(u2,...,un)≺(x2,...,xn)

∑
(v2,...,vn)≺(u2,...,un)

f(1, v2, . . . , vn).

The above sum is equal to 0 because for any term f(1, v2, . . . , vn), the number
of its occurrences in the sum is equal to the number of (u2, . . . , un) such that
(v2, . . . , vn) ≺ (u2, . . . , un) ≺ (x2, . . . , xn), and this is always an even number
for any (v2, . . . , vn) ≺ (x2, . . . , xn). Hence for any (x2, . . . , xn) ∈ GF (2)n−1, we
have ∑

(u2,...,un)≺(x2,...,xn)

f(0, u2, . . . , un) = 0. (20)

Therefore,

f(0, x2, . . . , xn) +
∑

(u2,...,un)≺(x2,...,xn)

f(0, u2, . . . , un)

+
∑

(u2,...,un)≺(x2,...,xn)

f(1, u2, . . . , un) = 0.
(21)

Combining (20) and (21), we see that∑
u≺x

f(u) = 0,

that is (1 + I) ∗ f = 0 and f is a coincident function.
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The following theorem reveals a relationship between the set of coincident
functions Cn and the set of all boolean functions Bn.

Theorem 4.8. It holds that

1. A coincident function f ∈ Cn is specified freely and uniquely by its values
on 2n−1 points (1, u2, . . . , un) ∈ GF (2)n.

2. There are exactly 22
n−1

coincident functions in total.

3. (Cn,+) is a 2n−1-dimensional linear subspace of (Bn,+).

Proof. To prove the first assertion, observe that by Theorem 4.7, a coincident
function f ∈ Cn is specified freely by its values on 2n−1 points (1, u2, . . . , un) ∈
GF (2)n, and its values on 2n−1 other points (0, u2, . . . , un) ∈ GF (2)n are
uniquely determined by (18). The second assertion follows since there are ex-
actly 2 choices for choosing f(1, u2, . . . , un) ∈ {0, 1}, then there are exactly

22
n−1

coincident functions in total.
To prove the third assertion, observe that if f ∈ Cn and g ∈ Cn, then f+g ∈ Cn.
On the other hand, the relation (18) defines any coincident function f ∈ Cn. It
follows that (Cn,+) is a 2n−1-dimensional linear subspace of (Bn,+).

4.1 Basis for (Cn,+)

By Theorem 4.8, we know that (Cn,+) is a 2n−1-dimensional linear subspace of
(Bn,+). The following result gives an explicit basis for (Cn,+).

Theorem 4.9. For each (u2, . . . , un) ∈ GF (2)n−1, define the function γ(u2,...,un) ∈
Bn as follows

γ(u2,...,un) = δ(0,u2,...,un) + δ(1,u2,...,un) + ρ(0,u2,...,un) + ρ(1,u2,...,un)

Then {γ(u2,...,un)}(u2,...,un)∈GF (2)n−1 forms a basis for the subspace (Cn,+), and
each coincident function f ∈ Cn can be written as a linear combination of basis
functions as

f =
∑

(u2,...,un)∈GF (2)n−1

f(1, u2, . . . , un) γ(u2,...,un).

Proof. A coincident function f ∈ Bn is specified freely and uniquely by its values
on 2n−1 points (1, u2, . . . , un) ∈ GF (2)n. For each (u2, . . . , un) ∈ GF (2)n−1,
define the coincident function c(u2,...,un) : GF (2)n → GF (2) as follows

c(u2,...,un)(x) =

{
1 if (x2, . . . , xn) = (u2, . . . , un)
0 otherwise

then the collection of these functions c(u2,...,un) will form a basis for the vector
space Cn and

f =
∑

(u2,...,un)∈GF (2)n−1

f(1, u2, . . . , un) c(u2,...,un).

16



We need to show that
c(u2,...,un) = γ(u2,...,un).

Indeed, by Theorem 4.6, γ(u2,...,un) is a coincident function, so it suffices to show
that γ(u2,...,un) and c(u2,...,un) agree on 2n−1 points (1, x2, . . . , xn). We have

δ(0,u2,...,un)(1, x2, . . . , xn) = 0

δ(1,u2,...,un)(1, x2, . . . , xn) =

{
1 if (x2, . . . , xn) = (u2, . . . , un)
0 otherwise

ρ(0,u2,...,un)(1, x2, . . . , xn) = ρ(1,u2,...,un)(1, x2, . . . , xn)

Therefore,

γ(u2,...,un)(1, x2, . . . , xn) =

{
1 if (x2, . . . , xn) = (u2, . . . , un)
0 otherwise

and thus, γ(u2,...,un) = c(u2,...,un).

Example 4.10. When n = 3, the following 4 coincident functions form a basis
for the subspace of all coincident functions:

γ(0,0) = δ(0,0,0) + δ(1,0,0) + ρ(0,0,0) + ρ(1,0,0)

= (x1 + 1)(x2 + 1)(x3 + 1) + x1(x2 + 1)(x3 + 1) + 1 + x1

= x1 + x2 + x3 + x2x3

γ(1,0) = δ(0,1,0) + δ(1,1,0) + ρ(0,1,0) + ρ(1,1,0)

= (x1 + 1)x2(x3 + 1) + x1x2(x3 + 1) + x2 + x1x2

= x1x2 + x2x3

γ(0,1) = δ(0,0,1) + δ(1,0,1) + ρ(0,0,1) + ρ(1,0,1)

= (x1 + 1)(x2 + 1)x3 + x1(x2 + 1)x3 + x3 + x1x3

= x1x3 + x2x3

γ(1,1) = δ(0,1,1) + δ(1,1,1) + ρ(0,1,1) + ρ(1,1,1)

= (x1 + 1)x2x3 + x1x2x3 + x2x3 + x1x2x3

= x1x2x3.

These 4 functions can be seen to be coincident in the following table

γ(0,0) γ(1,0) γ(0,1) γ(1,1)
(0, 0, 0) 0 0 0 0
(0, 1, 0) 1 0 0 0
(0, 0, 1) 1 0 0 0
(0, 1, 1) 1 1 1 0
(1, 0, 0) 1 0 0 0
(1, 1, 0) 0 1 0 0
(1, 0, 1) 0 0 1 0
(1, 1, 1) 0 0 0 1
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Theorem 4.11. For each f ∈ Cn define

fδ =
∑

(u2,...,un)∈GF (2)n−1

f(1, u2, . . . , un) (δ(0,u2,...,un) + δ(1,u2,...,un)).

and

fρ =
∑

(u2,...,un)∈GF (2)n−1

f(1, u2, . . . , un) (ρ(0,u2,...,un) + ρ(1,u2,...,un)).

then
f = fδ + fρ = (1 + I) ∗ fδ = (1 + I) ∗ fρ.

Proof. By Theorem 4.9,
f = fδ + fρ

and by Theorem 3.18,
fδ ∗ 1 = fρ, fρ ∗ 1 = fδ,

therefore,
f = (1 + I) ∗ fδ = (1 + I) ∗ fρ.

Theorem 4.12. A function f ∈ Bn is a coincident function if and only if
f = (1 + I) ∗ g for some function g ∈ Bn.

Proof. Suppose that f = (1 + I) ∗ g. Then, using Theorem 4.5, we get

(1 + I) ∗ f = (1 + I) ∗ (1 + I) ∗ g = 0 ∗ g = 0,

so f is a coincident function.
Conversely, suppose that f is a a coincident function. Then by Theorem 4.11,
we have f = (1 + I) ∗ g with g = fδ.

5 Conclusion and Future Work

In this paper, we have introduced a new notion, called Dirichlet product for
boolean functions. We have intensively studied the arithmetical and the alge-
braic structures of the set of all boolean functions under this Dirichlet product.
We have presented the affects of the Dirichlet product on a boolean function
and its Möbius transform. We have applied the Dirichlet product to coincident
boolean functions and exhibited new properties and characterizations of such
functions.
The results presented in this paper on the new notion of Dirichlet product for
boolean functions are not exhaustive. They are only the first steps toward fur-
ther applications of the Dirichlet product, especially in cryptography. We leave
it as future work to investigate possible applications of the Dirichlet product
to find useful results to compute the algebraic degree of a boolean function
and to characterize cryptographic properties such as nonlinearity, balancedness,
correlation immunity and algebraic immunity.
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Functions and Characterizing Coincident Boolean functions, Proceedings
of the International Conference on Boolean Functions: Cryptography and
Applications 2007.

[6] J. Pieprzyk, H. Wang and X.M. Zhang, Möbius transforms, coincident
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