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The Mathematics of the NTRU
Public Key Cryptosystem

Abderrahmane Nitaj
Laboratoire de Mathématiques Nicolas Oresme
Université de Caen Basse Normandie, France

ABSTRACT
The NTRU cryptosystem is a fast public key cryptosystem presented in 1996 by Hoffstein, Pipher and
Silverman. It is resistant to quantum attacks and is categorized as a post quantum cryptosystem. In this
chapter, we describe the mathematics of the NTRU cryptosystem and the hard problems that make the
security of NTRU strong and resistant to classical and quantum attacks.

1 INTRODUCTION

The NTRU public key cryptosystem is one of the fastest known public key cryptosystems. It was first
introduced in the rump session at Crypto’96 by Hoffstein, Pipher, and Silverman [Hoffstein et al.,1996],
and was later published in the proceedings of the ANTS-III conference. It offers both encryption (NTRU-
encrypt) and digital signature (NTRUSign) and is more efficient than the current and more widely used
public-key cryptosystems, such as RSA [Rivest et al.,1978], ECC [Koblitz, 1985] [Miller,1985] and El
Gamal [El Gamal,1985]. The security of RSA, ECC and El Gamal are based on the difficulty of factoring
large composite integers or computing discrete logarithms. In 1997, Shor [Shor,1997] showed that quan-
tum computers can be used to factor integers and to compute discrete logarithms in polynomial time.
As a consequence, RSA, ECC and El Gamal will be easily breakable using a quantum computer, and
many efforts have been deployed to ensure the future viability of cryptographic protocols in the presence
of large scale quantum computers. Hence, some public key cryptosystems have been developed that
are believed to be resistant to quantum computing based attacks such as the NTRU cryptosystem. An
interesting advantage of NTRU over traditional public-key cryptosystems based on factoring or discrete
logarithm is its potential resistance to quantum computers. This makes it a promising alternative to the
more established public key cryptosystems. For this reason, NTRU is considered as one of the prominent
post quantum cryptosystems. The security of NTRU is related to a very hard problem in lattice reduction,
called the shortest vector problem (SVP) and it is conjectured that there is no polynomial time algorithm
to solve this problem. On the other hand, the NTRU cryptosystem has been approved for standardization
by the Institute of Electrical and Electronics Engineers (IEEE) in 2009.
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The mathematics behind the NTRU cryptosystem are intriguing and combine several notions and con-
cepts from algebra, number theory and lattice reduction techniques. In this chapter, we provide an
overview of the main theory used to build the NTRU cryptosysem, discuss its classical security as well
as its resistance to quantum attacks.

2 DESCRIPTION OF NTRU

2.1 The NTRU encryption scheme

The arithmetic of NTRU depends on three integer parameters (N, p, q). Let Zq = Z/qZ denote the
ring of integers modulo q. The operations of NTRU took place in the ring of truncated polynomi-
als P = Zq[X]/

(
XN − 1

)
. In this ring, a polynomial f is defined by its coefficients in the base{

1, X,X2, . . . , XN−1} as

f = (f0, f1, . . . , fN−1) = f0 + f1X + . . .+ fN−1X
N−1.

The addition of two polynomials f and g is defined as pairwise addition of the coefficients of the same
degree

f + g = (f0 + g0, f1 + g1, . . . , fN−1 + gN−1),

and multiplication, noted “ ∗ ” is defined as a convolution multiplication

f ∗ g = h = (h0, h1, . . . , hN−1), with hk =
∑

i+j≡k (mod N)

figj .

The Euclidean norm or the length of a polynomial f = (f0, f1, · · · , fN−1) is defined as

‖f‖ =

√√√√N−1∑
i=0

f2i .

Let B(d)) be the binary set of polynomials defined for a positive integers d as the set of polynomials of
R with d coefficients equal to 1 and all the other coefficients equal to 0. The set B(d)) can be written as

B(d) =

{
f(X) =

N−1∑
i=0

fiX
i ∈ P | fi ∈ {0, 1},

N−1∑
i=0

fi = d

}
.

Different descriptions of NTRUEncrypt, and different proposed parameter sets, have been in circulation
since 1996. The 2005 instantiation of NTRU is set up by six public integers N , p, q, df , dg, dr and four
public spaces Lf , Lg, Lm, Lr.

• N is prime and sufficiently large to prevent lattice attacks.

• p and q are relatively prime numbers.

• q is much larger than p.

• Lf = B(df ) is a set of small polynomials from which the private keys are selected.
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• Lg = B(dg) is a similar set of small polynomials from which other private keys are selected.

• Lm = Zp[X]/
(
XN − 1

)
is the plaintext space. It is a set of polynomials m ∈ Zp[X]/(XN − 1)

that represent encryptable messages.

• Lr = B(dr) is a set of polynomials from which the blinding value used during encryption is
selected.

The key generation, encryption and decryption primitives are as follows:

1. Key generation

• Randomly choose a polynomial f ∈ Lf such that f is invertible in P modulo p and modulo
q.

• Compute fp ≡ f−1 (mod p) and fq ≡ f−1 (mod q).

• Randomly choose a polynomial g ∈ Lg.

• Compute h ≡ g ∗ fq (mod q).

• Publish the public key (N,h) and the set of parameters p, q, Lf , Lg, Lr and Lm.

• Keep the private key (f, fp).

2. Encryption

• Represent the message as a polynomial m ∈ Lm.

• Randomly choose a polynomial r ∈ Lr.

• Encrypt m with the public key (N,h) using the rule e ≡ p ∗ r ∗ h+m (mod q).

3. Decryption

• The receiver computes a ≡ f ∗ e (mod q).

• Using a centering procedure, transform a to a polynomial with coefficients in the interval[
− q

2 ,
q
2

[
.

• Compute m ≡ fp ∗ a (mod p).

The decryption process is correct if the polynomial p ∗ r ∗ g + f ∗ m (mod q) is actually equal to
p ∗ r ∗ g + f ∗m ∈ Z[X]/

(
XN − 1

)
, that is without using modulo q. We have

a ≡ f ∗ e (mod q)

≡ f ∗ (p ∗ r ∗ h+m) (mod q)

≡ f ∗ r ∗ (p ∗ g ∗ fq) + f ∗m (mod q)

≡ p ∗ r ∗ g ∗ f ∗ fq + f ∗m (mod q)

≡ p ∗ r ∗ g + f ∗m (mod q).

Hence, if a = p ∗ r ∗ g + f ∗m in Z[X]/
(
XN − 1

)
, then

a ∗ fp ≡ (p ∗ r ∗ g + f ∗m) ∗ fp ≡ m (mod p).
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We note that if the parameters are chosen properly, the decryption process never fails. A sufficient
condition for this is to choose q much larger than p.
We notice that NTRU should not be used without padding because, as explained in [Jaulmes et al.,2000],
NTRU is vulnerable to a simple chosen ciphertext attack. To avoid this attack, a padding scheme like
NAEP [Howgrave-Graham et al.,2003] should be used.
According to the latest research, the parameters of the following table are considered secure.

Parameters N p q

Moderate security 167 3 128
Standard security 251 3 128

High security 347 3 128
Highest security 503 3 256

Table 1: Security parameters of the NTRU cryptosystem.

2.2 An example of NTRU encryption

To illustrate the NTRU scheme, consider the following parameters

N = 11,

p = 3,

p = 61,

f = −X10 −X8 −X6 +X4 +X2 +X + 1,

g = −X9 −X8 −X6 +X4 +X2 + 1,

m = X7 −X4 +X3 +X + 1,

r = −X9 +X7 +X4 −X3 + 1.

(1)

Then, we get

fp = X9 +X7 +X5 + 2X4 + 2 ∗X3 + 2X2 +X,

fq = 45X10 + 49X9 + 26X8 + 40X7 + 53X6 + 47X5 + 21X4 + 24X3 + 60X2 + 32X + 31,

h = 11X10 + 49X9 + 25X8 + 46X7 + 28X6 + 53X5 + 31X4 + 36X3 + 32X2 + 5X + 50,

e = 11X10 + 46X9 + 52X8 + 35X7 + 30X6 + 26X5 + 35X4 + 32X3 + 18X2 + 56X + 28,

(2)

Then, computing a = f ∗ e (mod q) and centering modulo q, we get

a = 58X10 + 60X9 + 60X8 + 4X7 + 56X5 + 6X4 + 55X2 + 3X + 6,

a = −3X10 −X9 −X8 + 4X7 − 5X5 + 6X4 − 6X2 + 3X + 6,
(3)

Finally, computing fp ∗ a (mod p) and centering modulo p, we get

fp ∗ a = X7 + 2 ∗X4 +X3 +X + 1 (mod p),

fp ∗ a = X7 −X4 +X3 +X + 1,
(4)

which matches the original message m.
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3 LATTICE THEORY

In this section, we will review some concepts of the lattice theory that are useful for this chapter. For more
details on lattice theory, we refer to [Micciancio et al.,2002] and [de Weger,2012]. We also describe some
classical lattice problems, especially the Shortest Vector Problem (SVP) and the Closest Vector Problem
(CVP) and their connection to cryptography. Finally, we describe the LLL algorithm, which is the main
technique in lattice reduction.

3.1 Basic notions on lattices

The LLL algorithm was invented in 1982 and was called LLL after its inventors A.K. Lenstra, H.W.
Lenstra et L. Lovász [Lenstra et al.,1982]. Originally, it was aimed to factor polynomials with integer
coefficients. Since its invention, the LLL algorithm has served in many topics such as solving diophantine
equations and cryptanalysis of certain cryptosystems. It is mainly used to find a very good basis for
discrete sets of Rn, called lattices.

Definition 1. Let n and d be two positive integers. Let b1 · · · , bd ∈ Rn be d linearly independent vectors.
The lattice L generated by (b1 · · · , bd) is the set

L =

d∑
i=1

Zbi =

{
d∑

i=1

xibi | xi ∈ Z

}
.

The vectors b1 · · · , bd are called a vector basis of L. The lattice rank is n and the lattice dimension is d.
If n = d then L is called a full rank lattice.

If L ⊂ Rn is a lattice of dimension d, then it is an additive subgroup of Rn and a basis for L can be
written as the rows of a d× n matrix.

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

b1

b2

Figure 1: A lattice with the basis (b1, b2)

A lattice L with dimension d ≥ 2 has infinitely many bases. Any two such bases have the same number
of elements and are related with a unimodular matrix.
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Theorem 2. Let L ⊂ Rn be a lattice of dimension d. Let (b1 · · · , bd) and (b′1 · · · , b′d) be two bases of
L. Then there exists a d× d matrix U with entries in Z and det(U) = ±1 such that

[b′1, . . . , b
′
d]
t = U [b1, . . . , bd]

t,

where vt is the transpose vector of v.

A lattice has many invariants. An important invariant is the volume or the determinant.

Definition 3. Let L be a lattice with a basis (b1 · · · , bd). The volume or determinant of L is

det(L) =
√
det (BBt),

where B is the d× n matrix formed by the rows of the basis.

Theorem 4. Let L be a lattice of dimension d. Then the determinant det(L) is independent of the choice
of the basis.

When d = n, L is called a full-rank lattice, and the matrix of the basis is a n × n matrix. Then the
following property holds.

Theorem 5. Let L be a full-rank lattice of dimension n. If (b1 · · · , bn) is a basis of L with matrix B,
then

det(L) = |det(B)|.

Lattices whose bases have integer coordinates are very convenient for various problems. Such lattices
are called integral lattices. Also, many problems in lattice theory involve inner product of vectors and
distance minimization. The most intuitive way to measure distance in a lattice is by using the Euclidean
norm.

Definition 6. Let u = (u1, · · · , un) and v = (v1 · · · , vn) be two vectors of Rn.

1. The inner product of u and v is

〈u, v〉 = utv =
n∑

i=1

uivi.

2. The Euclidean norm of u is

‖u‖ = (〈u, u〉)
1
2 =

(
n∑

i=1

u2i

) 1
2

.

Lattices are used as a fundamental tool for cryptanalysis of various public key cryptosystems such as
knapsack cryptosystems, RSA [Rivest et al., 1978], NTRU [Hoffstein et al.,1996] and GGH [Goldreich
et al,1997]. On the other hand, lattices are used as a theoretical tool for security analysis of several cryp-
tosystems such as NTRU and LWE [Regev,2005]. These cryptosystems are related to hard computational
problems on lattices such the shortest vector problem.

Definition 7. Let L be a lattice. The minimal distance λ1 of L is the length of the shortest non-zero
vector of L:

λ1 = inf{‖v‖ ∈ L | v ∈ L\{0}}.
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Another way to define λ1 is

λ1 = inf{‖v − u‖ ∈ L | v, u ∈ L, v 6= u}.

Definition 8. Let L be a lattice of dimension n. For i = 1, . . . n, the i-th successive minimum of the
lattice is

λi = min{max{‖v1‖, . . . , ‖vi‖} | v1, . . . , vi ∈ L are linearly independent}.

In the following, we list some computational problems that seem to be hard in general and on which
some cryptographic systems have been based. An overview of many hard lattice problems and their
interconnections is presented in [LaLaarhoven et al.,2012].

Definition 9. Let L be a full rank lattice of dimension n in Zn.

1. The Shortest Vector Problem (SVP): Given a basis matrix B for L, compute a non-zero vector
v ∈ L such that ‖v‖ is minimal, that is ‖v‖ = λ1(L).

2. The Closest Vector Problem (CVP): Given a basis matrix B for L and a vector v 6∈ L, find
a vector u ∈ L such that ‖v − u‖ is minimal, that is ‖v − u‖ = d(v,L) where d(v,L) =
minu∈L ‖v − u‖.

3. The Shortest Independent Vectors Problem (SIVP): Given a basis matrix B for L, find n lin-
early independent lattice vectors v1, v2, . . . , vn such that maxi ‖vi‖ ≤ λn, where λn is the nth
successive minima of L.

4. The approximate SVP problem (γSVP): Fix γ > 1. Given a basis matrix B for L, compute a
non-zero vector v ∈ L such that ‖v‖ ≤ γλ1(L) where λ1(L) is the minimal Euclidean norm in L.

5. The approximate CVP problem (γCVP): Fix γ > 1. Given a basis matrix B for L and a vector
v 6∈ L, find a vector u ∈ L such that ‖v − u‖ ≤ γλ1d(v,L) where d(v,L) = minu∈L ‖v − u‖.

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • • •

b1

b2

v0

Figure 2: The shortest vectors are v0 and −v0
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• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

b1

b2

v

v0

Figure 3: The closest vector to v is v0

Some of such problems have been shown to be NP-hard, and in general, are known to be hard when the
dimension is sufficiently large. No efficient algorithm is known to find the shortest vector nor the closest
vector in a lattice. The next result, due to Minkowski gives a theoretical explicit upper bound in terms of
dim(L) and det(L).

Theorem 10 (Minkowski). Let L be a lattice with dimension n. Then there exists a non-zero vector
v ∈ L satisfying

‖v‖ ≤
√
n det(L)

1
n .

On the other hand, the Gaussian Heuristic implies that the expected shortest non-zero vector in a lattice
L is approximately σ(L) where

σ(L) =
√

dim(L)
2πe

(det(L))
1

dim(L) .

We notice that Minkowski’s theorem as well as the Gaussian Heuristic are not useful for practical imple-
mentations. For implementation purposes, the LLL algorithm is more useful and approximately solves
the SVP within a factor of 2n/2.

3.2 The LLL algorithm

The LLL algorithm is the most useful tool in the algorithmic study of lattices. It provides a partial answer
to SVP since it runs in polynomial time and approximates the shortest vector of a lattice of dimension n
up to a factor of 2n/2. On the other hand, Babai [Babai,1986] gave an algorithm that approximates the
CVP problem by a factor of

(
3/
√
2
)n

. In some cases, the LLL algorithm gives extremely striking results
both in theory and practice that are enough to solve lattice problems.
The LLL algorithm uses the well known Gram-Schmidt orthogonalization method. The Gram-Schmidt
process is an iterative method to orthonormalize the basis of a vector space.

Theorem 11 (Gram-Schmidt). Let V be a vector space of dimension n and (b1 · · · , bn) a basis of V .
Let (b∗1 · · · , b∗n) be n vectors such that

b∗1 = b1, b∗i = bi −
i−1∑
j=1

µi,jb
∗
j ,
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where, for j < i

µi,j =
〈bi, b∗j 〉
〈b∗j , b∗j 〉

.

Then (b∗1 · · · , b∗n) is an orthogonal basis of V .

Using matrices, the bases (b∗1 · · · , b∗n) and (b1 · · · , bn) satisfy

b1

b2

b3
...

bn−1

bn


=



1 0 0 0 · · · 0

µ2,1 1 0 0 · · · 0

µ3,1 µ3,2 1 0 · · · 0
...

...
...

. . .
...

...
µn1,1 µn−1,2 µn−1,3 · · · 1 0

µn,1 µn,2 µn,3 · · · µn,n−1 1





b∗1
b∗2
b∗3
...

b∗n−1
b∗n


.

Clearly the basis (b∗1 · · · , b∗n) is an orthogonal basis, but in general, if (b1 · · · , bn) is a basis of a lattice
L, (b∗1 · · · , b∗n) is not a basis for L.
The Gram-Schmidt process can be transformed into the algorithm shown in 1.

Algorithm 1 : Gram-Schmidt process
INPUT: A basis (b1 · · · , bn) of a space vector V ⊂ Rn.
OUTPUT: An orthogonal basis (b∗1 · · · , b∗n) of V .

1: Set b∗1 = b1.
2: for i = 1, 2, · · ·n, do
3: for j = 1, 2, · · · i− 1, do
4: Compute µi,j =

〈bi,b∗j 〉
〈b∗j ,b∗j 〉

.
5: end for
6: Compute b∗i = bi −

∑i−1
j=1 µi,jb

∗
j .

7: end for

The following result shows how to compute the determinant of a lattice with a basis B = {b1, . . . , bn}
using the Gram-Schmidt orthogonalization.

Corollary 12 (Hadamard). Let B = {b1, . . . , bn} be a basis of a lattice L and let B∗ = {b∗1, . . . , b∗n} be
the associated Gram-Schmidt orthogonalization. Then

det(L) =
n∏

i=1

‖b∗i ‖ ≤
n∏

i=1

‖bi‖.

The LLL algorithm is connected to the Gram-Schmidt orthogonalization process and produces a basis
that satisfies the LLL-reduction notion as in the following definition.

Definition 13. Let (b1 · · · , bn) be a basis of a lattice L. It is said to be LLL-reduced if the Gram-Schmidt
orthogonalization (b∗1 · · · , b∗n) satisfies

|µi,j | ≤
1

2
, for 1 ≤ j < i ≤ n, (5)

3

4
‖b∗i−1‖2 ≤ ‖b∗i + µi,i−1b

∗
i−1‖2, for 1 < i ≤ n. (6)
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The condition (6) is called Lovász’s condition. If µi,j = 0 for all i and j, then the basis is orthogonal,
and consequently is minimal according to Hadamard’s inequality as in Corollary 12.
Since a lattice has infinitely many basis, some basis are better than others. A good basis is generally a
basis with short and almost orthogonal vectors. Consequently, a LLL-reduced basis is a candidate for a
good basis.

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

b1

b2

Figure 4: A lattice with a bad basis (b1, b2)

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

b1

b2

u1

u2

Figure 5: The same lattice with a good basis (u1, u2)

The original version of the LLL algorithm is presented in Algorithm (2).
An LLL-reduced basis has various properties such as the following ones.

Theorem 14. Let (b1 · · · , bn) be an LLL-reduced basis with Gram-Schmidt orthogonolization (b∗1, · · · , b∗n).
Then

1. ‖b∗j‖2 ≤ 2i−j‖b∗i ‖2 for 1 ≤ j ≤ i ≤ n.

2.
∏n

i=1 ‖bi‖ ≤ 2
n(n−1)

4 det(L).

3. ‖bj‖ ≤ 2
i−1
2 ‖b∗i ‖ for 1 ≤ j ≤ i ≤ n.

10



Algorithm 2 : LLL Algorithm
INPUT: A basis (b1, · · · , bn) for L.
OUTPUT: An LLL reduced basis (b1, · · · , bn).

1: Compute (b∗1, · · · , b∗n) using the Gram-Schmidt orthogonolization method 1.
2: k = 2
3: while i ≤ n do
4: bi = bi −

∑i−1
l=1bµi,lebl

5: if ‖b∗i ‖2 >
(
3
4 − µ

2
i,i−1

)
‖b∗i−1‖2 then

6: i = i+ 1
7: else
8: swap(bi, bi−1)
9: i = max{2, i− 1}

10: end if
11: end while

4. ‖b1‖ ≤ 2
n−1
4 (det(L))

1
n .

5. For a non zero vector v ∈ L, ‖b1‖ ≤ 2
n−1
2 ‖v‖.

The following result fixes the size of the vectors of an LLL-reduced basis.

Theorem 15. Let (b1, · · · , bn) be an LLL-reduced basis. Then for 1 ≤ j ≤ n, we have

‖bj‖ ≤ 2
n(n−1)

4(n−j+1) (detL)
1

n−j+1 .

Note that the LLL algorithm provides a basis of reasonably short vectors and can be used to approximate
the shortest vector problem.
The next result shows that the LLL algorithm is a polynomial time algorithm.

Theorem 16. Let (b1, · · · , bn) be a basis of a lattice L. Define B = maxi ‖bi‖. The LLL algorithm
computes an LLL-reduced basis with running time

O
(
n4 log3B

)
.

4 THE LATTICE BASED ATTACK ON NTRU

The NTRU cryptosystem is a polynomial ring cryptosystem and the relation between the public and
private key can be used to define a lattice, which is called the NTRU lattice. A basis for this lattice can
be derived from the public key, and hence is publicly available. The secret key can be considered as a
short vector in this lattice. Consequently, a possible attack on NTRU is to try to solve the approximate
shortest vector problem in the NTRU lattice. Indeed, various attack schemes against NTRU have been
proposed using lattice reduction [Coppersmith et al.]. On the other hand, different attacks on NTRU have
been proposed, without major effects, such as the meet-in-the-middle attacks (see [Howgrave-Graham et
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al., 2003] and [Howgrave-Graham,2003]). In the rest of this section, we present the lattice based attack
on NTRU presented by Coppersmith and Shamir [Coppersmith et al.,1997] in 1997.
Recall that the NTRU system relies on several parameters, mainly two prime numbers N , q, and an
integer p. Also the public key satisfies h ≡ g ∗ fq (mod q) where g and f are two polynomials of the
ring P . Hence f ∗ h ≡ g (mod q). Consider the lattice L as follows

L = {(u, v) ∈ P × P|u ∗ h ≡ v (mod q)} .

Then it is clear that L ⊂ Z2N is a lattice and that (f, g) ∈ L. To find a basis of L, observe that f ∗h ≡ g
(mod q) can be rewritten as f ∗ h− u ∗ q = g for some u ∈ P . Alternatively, this can be rewritten as[

f

g

]
=

[
1 0

h q

][
f

−u

]
.

Using the coordinates of f , g, h and u, this can be transformed into the following form

f0

f1
...

fN−1

g0

g1
...

gN−1


=



1 0 · · · 0 0 0 · · · 0

0 1 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 0 0 · · · 0

h0 h1 · · · hN−1 q 0 · · · 0

hN−1 h0 · · · hN−2 0 q · · · 0
...

...
. . .

...
...

...
. . .

...
h1 h2 · · · h0 0 0 · · · q


∗



f0

f1
...

fN−1

−u1
−u2

...
−uN−1


.

Observe that the matrix is in the form

U =

[
IN 0N

Mh qIN

]
,

where IN is the N × N identity matrix and Mh is the circulant matrix whose columns are circularly
shifted versions of h.
Since (f, g) ∈ L, then (f, g) is an integer linear combination of the columns of U . Moreover, since the
coefficient of (f, g) are small, then (f, g) is a short vector of L, and, with an overwhelming probability,
is the shortest vector in L. Consequently, any method that can solve SVP can break the NTRU system.
Up to date, there is no efficient way to solve SVP. Alternatively, the LLL algorithm can be applied. Using
the matrix U , the LLL algorithm will find a vector b1 with norm satisfying

‖b1‖ ≤ 2
2N−1

4 (det(L))
1

2N ,

while the shortest vector v ∈ L satisfies (see Theorem 10)

‖v‖ ≤
√
2N det(L)

1
2N .

Even if the LLL bound seems very large, in practice, the LLL algorithm outputs a much better bound
than the theoretical one. For a small N , the LLL algorithm is sufficient to break the NTRU system as
shown by the experiments in [Hoffstein et al.,2003].
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5 RESISTANCE TO POST-QUANTUM ATTACKS

In classical physics we have classical bits being either 0 or 1 while, in quantum mechanics, we have
qubits. For example, a qubit can be thought of as an electron in a Hydrogen atom with two state system,
the ground and the excited state or spin-up and spin-down. Quantum mechanics assert that a two state
system can be in any superposition of the two basis states. The state of a qubit can be represented as a
vector |ψ〉 in a two-dimensional vector space with orthonormal basis {|0〉, |1〉} and complex coefficients
as shown in Figure 6, so that

|ψ〉 = a|0〉+ b|1〉, a, b ∈ C, |a|2 + |b|2 = 1.

|1〉

|0〉
|ψ

b

a

Figure 6: Superposition of the pure states |0〉 and |1〉

In column matrix formulation, the basis states are

|1〉 =

[
1

0

]
, |0〉 =

[
0

1

]
.

Mathematically, a qubit is a 2-dimensional Hilbert space H2 so that the state of the qubit is an associated
unit length vector in H2. A qubit can be in state |0〉 or in state |1〉 or in a superposition of the two states,
that is a|0〉 + b|1〉. If a qubit is in state |0〉 or |1〉, we say it is a pure state. Otherwise, we say it is a
superposition of the pure states |0〉 and |1〉.
While the state of a qubit can be represented by a vector in the two dimensional complex vector space
H2, spanned by |0〉 and |1〉, a n-qubit system can be represented by a vector in a 2n-dimensional complex
vector space. For n = 2, the 2-qubit system corresponds to the tensor product H2⊗H2 which is defined
to be the Hilbert space with basis |i1〉|i2〉 with i1 ∈ {0, 1} and i2 ∈ {0, 1}. The possible basis states are
|0〉|0〉 = |00〉, |0〉|1〉 = |01〉, |1〉|0〉 = |10〉 and |1〉|1〉 = |11〉. The basis state |i1i2〉 means that the first
qubit is in its state |i1〉 and the second qubit is in its state |i2〉. Consider a 2 quantum systems A1 and A2,
with A1 in state ψ1 = a1|0〉+ b1|1〉 and A2 in state ψ2 = a2|0〉+ b2|1〉. Then the 2 quantum systems is
in state

ψ1 ⊗ ψ2 = (a1|0〉+ b1|1〉)⊗ (a2|0〉+ b2|1〉) = a1a2|00〉+ a1b2|01〉+ b1a2|10〉+ b1b2|11〉,

with |a1a2|2 + |a1b2|2 + |b1a2|2 + |b1b2|2 = 1. Hence, an arbitrary state of a 2 qubit system can be
represented by ∑

i1i2∈{0,1}2
ai1i2 |i1i2〉, ai1i2 ∈ C,

∑
i1i2∈{0,1}2

|ai1i2 |
2 = 1.
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This scheme can be generalized for a n-qubit system. An arbitrary state can be represented by∑
i1i2...in∈{0,1}n

ai1i2...in |i1i2 . . . in〉, ai1i2...in ∈ C,
∑

i1i2...in∈{0,1}n
|ai1i2...in |

2 = 1.

Hence a n-qubit has 2n basis states.
In 1997, Shor [Shor,1997] published a quantum algorithm that solves the factorization problem as well as
the discrete algorithm problem. The classical part of Shor’s algorithm is as in the following Algorithm.

Algorithm 3 : Shor’s Algorithm
INPUT: An integer N .
OUTPUT: A non trivial factor of N .

1: If gcd(N, 2) = 2, then return 2.
2: Pick a random integer a with 2 ≤ a ≤ N − 1.
3: if gcd(N, a) = a then
4: return a.
5: else
6: Find the order r of a modulo N , that is the least positive integer r such that ar ≡ 1 (mod N).
7: if r is odd then
8: go back to step 2.
9: if If ar/2 ≡ −1 (mod N) then

10: go back to step 2
11: else
12: return gcd

(
ar/2 − 1 (mod N), N

)
and gcd

(
ar/2 + 1 (mod N), N

)
.

13: end if
14: end if
15: end if

The quantum part of Shor’s algorithm is step 5, which is the periodicity finding technique. As a conse-
quence of Shor’s algorithm, classical cryptosystems based on factorization or discrete algorithm problem
will be insecure under quantum attacks. The main question this raises is what cryptosystems to use in a
quantum world. There are various candidates for a post quantum cryptosystem such as Merkle’s hash-tree
public-key signature system, McEliece’s hidden-Goppa-code public-key system, and the lattice-based
cryptosystem NTRU.
In general, lattice problems are quite hard and the best known algorithms either run in exponential time
or outputs bad approximations. This is the main motivation for lattice based cryptography. Moreover,
lattice problems are believed to resist quantum attacks. Since the discovery of the factorization quantum
algorithm by Shor, in 1997, many unfruitful attempts to solve lattice problems by quantum algorithms
have been proposed. Hence, it is conjectured that there is no quantum algorithm that solves lattice
problems in polynomial time. As a consequence, the NTRU cryptosystem has been categorized as a
post-quantum cryptosystem. As noticed above, the quantum part in Shor’s algorithm uses periodicity
finding technique. For lattice problems, the main difficulty is that the periodicity finding technique does
not seem to be applicable. This makes NTRU as one of the promising cryptosystems.
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6 CONCLUSION

The NTRU public key cryptosystem, was first presented in 1996 by J. Hoffstein, J. Pipher, and J. H.
Silverman and is now included in the IEEE P1363 standard. Comparatively to some classical and well
known cryptosystems, such as RSA and ElGamal, the NTRU cryptosystem offers high speed key gen-
eration, encryption and decryption. Hence, it can easily be implemented on constrained devices. The
security of the NTRU cryptosystem is based on finding a short vector in a lattice of high dimension.
This is a very hard problem, even in a quantum word. For these reasons, the NTRU cryptosystem is
gaining interest in the electronics industry and makes it a promising alternative for the future of public
key cryptography.
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KEY TERMS AND DEFINITIONS

Encryption: the process of converting data into a ciphertext, that cannot be understood by unauthorized
people.

Decryption: the conversion of encrypted data back into the original form.

Public key cryptosystem: A cryptographic system that uses a public key, known to everyone, and a
private or secret key, known only to the recipient of the message.

Quantum computing: the development of computer technology based on the principles of quantum the-
ory.

Quantum computer: a machine based on particles at the sub-atomic level.
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