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ABSTRACT 

The detection of Copy Number Variations (CNVs) from NGS data is under-exploited as chip-based 

or targeted techniques are still commonly used. We assessed the performances of a workflow 

centered on CANOES, a bioinformatics tool based on read depth information. 

We applied our workflow to gene panel (GP) and Whole Exome Sequencing (WES) data, and 

compared CNV calls to gold standard techniques: Quantitative Multiplex PCR of Short Fluorescent 

fragments (QMSPF) or array Comparative Genomic Hybridization (aCGH). 

From GP data of 3776 samples, we reached an overall Positive Predictive Value (PPV) of 87.8%.  

This dataset included a complete comprehensive QMPSF comparison of 4 genes (60 exons) on 

which we obtained 100% sensitivity and specificity. 

From WES data, we first compared 137 samples to aCGH and filtered comparable events (exonic 

CNVs encompassing enough aCGH probes) and obtained an 87.25% sensitivity. The overall PPV 

was 86.4% following the targeted confirmation of candidate CNVs from 1,056 additional WES. 

In addition, our CANOES-centered workflow on WES data allowed the detection of CNVs of any 

size that were missed by aCGH. Overall, switching to a NGS-only approach should be cost-

effective as it allows a reduction in overall costs together with likely stable diagnostic yields.  
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INTRODUCTION  

Copy-number variations (CNVs) are a major cause of Mendelian disorders (Itsara et al., 2010) as 

well as risk factors for common diseases (Huguet et al., 2018). With the advent of next-generation 

sequencing (NGS), a number of software tools have been developed to detect CNVs. Whole 

genome sequencing (WGS) is often presented as an almost universal technique allowing the 

assessment of almost any type of variation, including CNVs and other structural variations. WGS 

may eventually be used as a first-tier diagnostics tool in the context of genetically highly 

heterogeneous disorders. However, the detection of structural variations from data generated using 

the technology of short read sequencing is still associated with a number of false positives. Such 

events can be detected using a plethora of bioinformatics tools based on different principles, 

including Depth Of Coverage (DOC) information, relative position of paired reads, split reads and 

DeNovo Assembly (Hehir-Kwa, Pfundt, & Veltman, 2015). Besides the development of WGS, 

targeted sequencing of gene panels and whole exome sequencing (WES) remain of primary use in 

many diagnostics and research laboratories. They are indeed still considered as more affordable and 

of easier access as they can be processed using usual informatics facilities accessible to most 

laboratories. Moreover, the input of WGS is questioning in disorders with low genetic heterogeneity 

and high phenotypic specificity. Hence, gene panels and WES remain largely used .  

The detection of CNVs from exonic capture-based targeted sequencing solutions primarily relies on 

DOC information (Boeva et al., 2012; Krumm et al., 2012). Tools based on DOC information 

compare one sample to a reference, and predict deletions or duplications depending on the increase 

or decrease of the DOC as compared to the reference (figure 1).  As each tool was set up and trained 

on a specific dataset, one of the main challenges is to evaluate the specificity and sensitivity of a 

given software tool on large datasets. Studies evaluating the diagnostic performances of CNV 

detection pipelines are scarce although they appear to be critical for their use in routine procedures. 

In order to optimize CNV detection from NGS data, a classical approach consists in running 

multiple tools in parallel and then aggregate the results to keep a CNV as candidate only if multiple 



tools called it (Collins et al., 2019). As it is more effective to do so with tools using different types 

of bioinformatics methods (DOC, split reads, etc.), this combinatory approach is most adapted when 

working on WGS, or at least if most of the intergenic or intronic regions – where breakends are 

more frequently found – are captured. Here, we decided to focus on one tool using the DOC 

approach as it still remains the most adapted one for exonic capture. In a precision workflow 

approach, we developed a workflow based on the already existing software tool CANOES 

(Backenroth et al., 2014). Briefly, CANOES adopts a pooling strategy to build its reference model, 

and uses a Hidden Markov Model to represent the DOC of this model. Lastly, it confronts the 

samples to the reference in order to call candidate deletions or duplications. 

We performed a diagnostic performance evaluation of this workflow regarding gene panel and WES 

data, in two steps. First, we compared CNV calls with a gold standard, namely a comprehensive 

assessment by Quantitative Multiplex PCR of Short Fluorescent fragments (QMPSF) (Charbonnier 

et al., 2000) or array comparative genomic hybridization (aCGH), regarding targeted gene panel and 

WES data, respectively. Second, we implemented our workflow in our routine procedures and 

performed an additional evaluation of the positive predictive value of our CANOES-centered 

workflow using targeted confirmation of CNVs using an independent targeted technique. 

 

 



MATERIAL AND METHODS 

Gene panel sequencing 

In order to evaluate our workflow, we analyzed data from three gene panels (for detailed 

information, see supplementary table 1). Patients provided informed written consent for genetic 

analyses in a diagnostics setting. 

Panel 1 was set up to focus on genes involved in predisposition to colorectal cancer and digestive 

polyposis or Li-Fraumeni syndrome (Baert-Desurmont et al., 2018). This panel was implemented in 

two successive versions. V1 was used to sequence 11 genes in 2771 samples. V2 was used to 

sequence 15 genes (same 11 genes plus 4) in 549 samples. In both versions and for all genes, exons 

and introns outside repeated sequences were captured. 

Panel 2 also has two successive versions and was designed to focus on two clinical indications: (i) 

hydrocephaly (3 genes) and (ii) Cornelia de Lange syndrome and differential diagnoses (24 genes in 

v1, 30 in v2). In total, 320 samples were sequenced using this panel (240 with v1, 80 with v2). For 

this panel, introns outside repeated sequences were captured only for two genes, namely L1CAM 

and NIPBL. 

Finally, Panel 3 was designed to focus on genes involved in non-specific Intellectual Disability. It 

has been used to analyses 220 samples and is composed of 48 genes (coding regions only). The list 

of genes is available upon request. 

 

Assessment of CNV calls from gene panel data: step 1 

For the gold standard comparison, we used data obtained from samples for which both NGS (panel 

1, v1) and comprehensive QMPSF screening data were available (n=465). This QMSPF assessment 

included all 60 exons of 4 genes from this panel (APC, MSH2, MSH6, MLH1) and was applied to 

all 465 samples.  

 

Assessment of CNV calls from gene panel data: step 2 



Following step 1, we implemented our CANOES-centered workflow in our routine diagnostics 

procedures on NGS data from all three panels (n=3311 additional samples in total). We performed 

confirmations of candidate CNVs using QMPSF or Multiplex Ligation-dependent Probe 

Amplification (MLPA) only in samples with a CANOES call. Primers used for QMPSF screening 

and validation are available upon request. 

  

Whole-exome sequencing  

Patients provided informed written consent for genetic analyses either in a diagnostics or in a 

research setting, following the approval by our ethics committee.   

Whole exomes were sequenced in the context of diverse research and diagnostics purposes 

(supplementary table 1). Exomes were captured using Agilent SureSelect Human All Exon kits (V1, 

V2 V4+UTR, V5, V5+UTR and V6). Final libraries were sequenced on an Illumina Genome 

Analyser GAIIX (corresponding to exomes captured with the V1, V2 or V4UTR kit, n=10), or on 

an Illumina HiSeq2000, 2500 or 4000 with paired ends, 76 or 100bp reads. Exome sequencing was 

performed in 3 sequencing centers: Integragen (Evry, France) (n=6), the French National Center of 

Human Genomics Research (CNRGH, Evry, France) (n=1065) and the Genome Quebec Innovation 

Center (Montreal, Canada) (n=128) (Kilan Le Guennec et al., 2016). Exomes were all processed 

through the same bioinformatics pipeline following the Broad Institute Best Practices 

recommendations (DePristo et al., 2011). Reads were mapped to the 1000 Genomes GRCh37 build 

using BWA 0.7.5a.(Li & Durbin, 2009). Picard Tools 1.101 (http://broadinstitute.github.io/picard/) 

was used to flag duplicate reads. We applied GATK (McKenna et al., 2010) for short insertion and 

deletions (indel) realignment and base quality score recalibration. All quality checks were processed 

as previously described (Kilan Le Guennec et al., 2016). 

 

 

Assessment of CNV calls from whole exome sequencing data: step 1 

http://broadinstitute.github.io/picard/


For the gold standard comparison, we analyzed data from 147 unrelated individuals with both WES 

and aCGH data available.  

Array CGH Analysis. Oligonucleotide aCGH was performed as previously described (Rovelet-

Lecrux et al., 2008). Briefly, high-resolution aCGH analysis was performed using the 1x1M Human 

High-Resolution Discovery Microarray Kit or the 4x180K SurePrint G3 Human CGH Microarray 

kit (Agilent Technologies, Santa Clara, California, USA), using standard recommended protocols. 

An in-house and sex-matched genomic DNA pool of at least 10 control individuals was used as 

reference sample. Hybridization results were analyzed with the Agilent’s DNA-Analytics software 

(version 4.0.81, Agilent Technologies) or the Agilent Genomic Workbench (version 7.0, Agilent 

Technologies). Data were processed using the ADM-2 algorithm, with threshold set at 6.0 SD or 5.0 

SD. CNVs of at least five or three consecutive probes were retained for analysis, respectively for 

the 1M and the 180K arrays. 

WES/aCGH comparison. Array CGH enables the detection of genome-wide rearrangements thanks 

to the measurement of the deviation of the fluorescent signal of the patient as compared to a control 

DNA. The number of probes depends of the type of chip that is used (here, Agilent 1M or 180K). 

The threshold to consider a deletion or a duplication was set to the deviation of 5 or 3 consecutive 

probes respectively. This restricts the detection to CNVs of  8kb or  for 20kb Agilent 1M and 

Agilent180K chips, respectively, on average. On the contrary, as CANOES analysis is based on 

WES data, it is strictly restricted to CNVs covering exonic sequences, but it can detect CNVs as 

small as one single exon.  

In order to combine these approaches to evaluate the sensitivity of our workflow, we filtered out 

CNVs located in intronic and intergenic regions exclusively from the aCGH data (and on X and Y 

chromosomes for the samples processed without gonosome CNV calling). Moreover, as CANOES 

analysis is based on the calculation of a mean and variance of coverage on a given genomic region, 

the detection of polymorphic rearrangements is very uncertain. For that reason, we also filtered out 

all polymorphic CNVs from aCGH data. We defined as polymorphic a CNV that overlaps at least at 



70% with CNVs reported in the Gold Standard section of the Database of Genomic Variants with a 

frequency superior to 1% (MacDonald, Ziman, Yuen, Feuk, & Scherer, 2014).  

Regarding the evaluation of the positive predictive value of our workflow, we restricted our analysis 

to candidate non-polymorphic CNVs detected from WES data (i) that are theoretically detectable by 

aCGH as they encompass at least 3 or 5 probes, depending on the chip used and (ii) that do not 

overlap with segmental duplication regions among >50% of the CANOES target regions. 

As most aCGH data were processed using the hg18 genome as reference, we used the liftover tool 

from UCSC (https://genome.ucsc.edu/cgi-bin/hgLiftOver) to establish the correspondence to hg19. 

If there were no lift over possibility, we manually checked genes encompassing CNVs. 

 

Assessment of CNV calls from whole exome sequencing data: step 2 

Following step 1, we implemented our workflow in our routine procedures. Form additional 1056 

WES (supplementary table 1), we performed targeted confirmations following the detection of 

candidate CNVs by CANOES using QMPSF or ddPCR (Cassinari et al., 2019). We focused our 

confirmations on a list of 350 genes that belong to the so-called Aβ network (Campion, Pottier, 

Nicolas, Le Guennec, & Rovelet-Lecrux, 2016), as all the samples used at this step were sequenced 

in the context of Alzheimer disease research. This list of genes was built thanks to literature 

curation on Alzheimer pathophysiology, independently of any genomic information. Candidate 

CNVs were selected for targeted confirmation if (i) they encompassed genes belonging to this 

network, and (ii) they were not polymorphic i.e. with a frequency below 1% in our dataset. 

Primers used for QMPSF or ddPCR validation are available upon request. 

 

CNV calling from NGS data using CANOES 

The CANOES software tool implements an algorithm dedicated to the detection of quantitative 

genomic variations based on DOC information. Basically, CANOES requires DOC data for each 

target of the capture kit used for each of the sample that are analyzed together. It also integrates the 



GC content information of each target to reduce the background variability observed in high-

throughput sequencing data (Benjamini & Speed, 2012). The read depth was calculated using 

Bedtools (Quinlan & Hall, 2010), and the GC content was determined using the GATK suite.  

CANOES builds its statistical reference model from a subset of the samples included in the same 

analysis (at least 30 samples are recommended). To obtain the best possible fit, CANOES selects 

the samples that are the most correlated to the currently analyzed sample. This allows the detection 

of small CNVs, but also reduces the detection susceptibility of recurrent events. CANOES uses a 

Hidden Markov Model to represent the variability of the DOC distribution built from the selected 

samples. Then, it uses the Viterbi algorithm to assign deletions, duplications or normal regions. 

After the calling step, a 'Not Applicable' (NA) score is attributed to all CNVs from samples carrying 

more than 50 rearrangements. Such samples are usually characterized by higher or lower average 

read depth and cannot be compared to the reference model. All CNVs assigned with an NA score 

were thus removed from further analyses. As CANOES used the capture kit definition to detect 

CNVs, boundaries of events were defined by the start position of the first target and the end position 

of the last target detected as deviated in comparison with the model. 

 

A CANOES-centered workflow 

To optimize CANOES performances, we focused on two different approaches, a methodological 

approach in sample selection and a bioinformatics approach (Figure 2). 

As previously described, CANOES defines a statistical model for a particular sample from a 

judicious selection of other samples included in the analysis. The first step of our workflow 

consisted in the implementation of rules to select the samples that should better be analyzed 

together. In order to get enough material to build an efficient statistical model and following the 

CANOES recommendations, we always worked with at least 30 samples. Importantly, we analyzed 

samples with the less technical variability from each other. Practically, this consists in analyzing 

samples from the same run, and not to merge multiple runs if not necessary. When merging multiple 



runs was inevitable (e.g., sequencing of less than 30 samples per run), we combined sequencing 

runs from the same platform and processed using the same technical conditions, including the same 

number of samples per lane in order to reduce read depth variability from each sample. Of note, 

CANOES is not originally set up for the analysis of CNVs on gonosomes, but we implemented 

modifications in the original script in order to include gonosomes in our analyses. Hence, we ran 

our workflow after gathering either n≥30 males or N≥30 females for the analysis of gene panels 2 

and 3 that contain X-linked genes and of WES data. 

 

Bioinformatics optimization 

The first step consisted in the modification of the target definition from the capture kit information. 

We decided to merge close targets (less than 30 pb) if they covered the same exon. Concerning gene 

panels that include introns, we decided to split large targets that include both intronic and exonic 

regions. 

In order to gain flexibility in our analysis and to be able to add or remove samples easily, we 

implemented a two-step strategy consisting in (i) performing the read count step for each sample 

separately, and then (ii) aggregating selected samples before running CANOES. Doing so allowed, 

for example, intra-familial analyses including patient-parent trio approaches, where cases can be 

analyzed without taking related samples into account, preventing biasing the statistical model. 

Finally, we removed non-informative regions from our analyses. We considered a region as non-

informative if more than 90% of the samples each had less than 10 reads on the target. Then, we 

called the CNVs using CANOES, and annotated the results using AnnotSV (Geoffroy et al., 2018) 

in order to get additional information about the possible effect and populations frequencies. 

 

Nextflow integration 

In order to complete our optimization of processing and analysis time, we integrated our 

bioinformatics pipeline into Nextflow, a data-driven workflow manager (Di Tommaso et al., 2017). 



This software tool allows a quick deployment of new pipelines on different kind of computational 

environments, from local computers to a cloud environment. Another interest of Nextflow is to 

increase the performance by distributing the different steps of the workflow in regards to the 

computational resources available. The complete workflow, including the specific adaption of 

CANOES to analyze gonosomes, is available on https://gitlab.bioinfo-diag.fr/nc4gpm/canoes-

centered-workflow. 

 

https://gitlab.bioinfo-diag.fr/nc4gpm/canoes-centered-workflow
https://gitlab.bioinfo-diag.fr/nc4gpm/canoes-centered-workflow


RESULTS 

After building a workflow centered on the CANOES tool, we assessed its performances in the 

context of (i) gene panel NGS data and (ii) WES data, both generated following capture and 

Illumina short read sequencing. 

 

Gene panel sequencing data 

We first evaluated the performances of the CANOES tool using targeted sequencing data of a panel 

of 11 genes (panel 1, n=465 samples). In parallel, all samples were assessed using custom 

comprehensive QMPSF assessing the presence or absence of a CNV encompassing any of the 60 

coding exons of 4 of these genes. We identified 14 CNVs by QMPSF (12 deletions, 2 duplications, 

size range: [1.556pb – 97Kpb]). All of them were accurately detected by our CANOES-based 

workflow from NGS data (Table 1). In addition, no additional CNV was called by CANOES, 

allowing us to obtain a sensitivity and a specificity of 100% (95%CI:[73.24-100]) for those 4 genes. 

(see supplementary table 2). 

To further assess the Positive Predictive Value (PPV) of our workflow in the identification of CNVs 

from gene panels, we applied it to additional NGS data obtained from 3 gene panels (2222 samples 

from panel 1, 320 samples from panel 2, and 220 samples from panel 3). We detected 101 candidate 

CNVs in 98 samples and assessed their presence using either QMPSF or MLPA (Table 2). We 

validated 87/101 CNVs (86.13%, 95%CI:[77.50-91.94], false positive rate: 13.9%). Overall, the 

PPV of our workflow applied to gene panel sequencing data was 87.83% (95%CI:[80.01-92.94]). 

True positive calls of our workflow were 73 deletions (size range: [391pb – 1.06Mpb]) and 16 

duplications (size range: [360pb – 39.4Kpb]) (see supplementary table 3). False positives were 

mainly deletions (10/14) and 5 of them were monoexonic. 

 

 

 



Whole exome sequencing data 

We then evaluated the performances of our workflow for the detection of CNVs from WES data. 

We first applied our workflow to the data obtained from 147 samples with both WES (average 

depth of coverage = 110x) and aCGH data available (50 samples assessed with the Agilent 1M chip 

and 97 samples with the Agilent 180k chip). Overall, 10 samples were removed due to a high or low 

number of rearrangements detected by aCGH or exome, mostly due to low DNA quality or low 

coverage in WES. 

From aCGH data, we detected 1873 CNVs over the 137 samples remaining, of which 102 were 

non-polymorphic exonic CNVs. Our workflow accurately detected 89 (87.2%) of them (Table 1, 

supplementary table 4). Among the CNVs that were missed by our workflow, 7 were large (from 14 

to 80kb) CNVs that encompassed only one (n=5) or two (n=2) targets defined by the capture kit 

(see figure 3). 

In order to determine the PPV of our workflow from WES data, we selected 223 CNVs called by 

our workflow and (i) theoretically detectable by aCGH as encompassing at least 3 (180 k chips) or 5 

(1M chips) probes and (ii) which did not overlap with segmental duplication regions for more than 

50% of the CANOES targets. Of them, 190 (85.2%) CNVs were confirmed as true positives 

following aCGH data assessment (Table 1, supplementary table 5).  

Of note, an additional set of 519 candidate CNVs were detected by our CANOES-based workflow 

that overlapped less than 50% of segmental duplication regions but encompassed less than 3 (180 k 

chips) or 5 aCGH probes (1M chips). Hence, they were not reported by the CGH analysis tool and 

would then have been overlooked following classical aCGH data analysis. We did not perform 

targeted confirmation of all these candidate CNVs. Instead, with the aim to further assess the PPV 

of our workflow regarding exonic non-polymorphic CNVs of any size, we applied it to 1,056 

additional WES performed in the context of Alzheimer disease research (with no corresponding 

aCGH data). We selected non-polymorphic CNVs targeting 355 genes belonging to the Aβ network 

involved in the pathophysiology of Alzheimer disease (Campion et al., 2016), whatever their size. 



We validated 108/122 candidate CNVs (88.5%, false positive rate: 11.5%) by QMPSF (K Le 

Guennec et al., 2017) or ddPCR (Table 2, supplementary table 6). True positive calls of our 

workflow were 39 deletions (size range: [165pb – 24,2Mpb]) and 69 duplications (size range 

[166pb – 5,9Mpb]). Interestingly, among the 122 candidate CNVs obtained from our workflow, 75 

were considered to be theoretically detectable by aCGH 1M, and 47 were considered as not 

detectable by aCGH 1M. Among the ones theoretically detectable by aCGH, 71 were true positives 

(94.6%). Among the theoretically not detectable ones, 37 were true positives (78.7%).  

Overall, the PPV of our CANOES-based workflow was 86.3% from WES data after taking into 

account results from step 1 and step 2 altogether. 

 

 

 



DISCUSSION 

Multiple tools have been developed to detect CNVs from NGS data. As long as such tools are being 

implemented in diagnostic laboratories, there is a critical need to evaluate their performances. 

Previous studies showed a large diversity of performances, while a number was performed using 

simulated datasets (Roca, González-Castro, Fernández, Couce, & Fernández-Marmiesse, 2019). 

After having defined a CANOES-centered workflow, we applied it to three different gene panels 

and WES data. Overall, we reached very high detection performances following the comparison 

with independent techniques. 

From gene panel data, we obtained a 100% sensitivity among a set of 4 genes, the copy number of 

all coding exons of which having been assessed prior to NGS in 465 samples. In addition, we 

obtained a 90.3% PPV among all genes with a CANOES call. Such high performances have 

previously been reported for other tools applied to small NGS panels (Fowler et al., 2016). Among 

14 false positives, we observed recurrent events, which can be easily reported as so and be ignored 

in further analyses. We also observed false positive CNVs in regions homologous to pseudogenes. 

In that case, it is possible to reduce false positive calls by improving the design of the capture to 

reduce the chance that probes target the homologous regions, or by optimizing the alignment. 

Of note, for all genes of Panel 1 and two genes of Panel 2, introns were captured in addition to 

exons. This might have increased the chances to detect CNVs that can be considered as small from 

an exon-only point of view but that can actually be much larger at the genomic level. An advantage 

of capturing introns might indeed be a gain in statistical power for the normalization process: 

increasing the number of targets may increase the robustness of the model. Among 101 CNVs 

detected from NGS data from all 3 panels, 75 CNVs encompassed one of these genes with intronic-

plus-exonic capture. Interestingly, only 18 of these 75 CNVs encompassed a single coding exon. 

Such a frequency of monoexonic CNVs is not unexpected regarding mutation screens in MMR 

genes (monoexonic deletions accounting for 26.92 to 46.27% of all pathogenic deletions (Di Fiore 

et al., 2004; Taylor, Charlton, Burn, Sheridan, & Taylor, 2003; van der Klift et al., 2005), or other 



rare diseases (Baker et al., 2014; David et al., 2016; Guo et al., 2019; Nicolas et al., 2014), for 

example. We hypothesize that all other CNVs, encompassing multiple targets, would probably have 

been easily detected, had the introns been excluded from the capture design. Further analyses may 

be required to better assess the performances of our workflow from single exon CNVs and the 

effect of including introns or not in the capture design. The observed higher rate of false positives in 

CNV calls encompassing genes without introns captured (22.22%) may also require further 

assessments, 

We used here a precision workflow approach, focusing on the optimization of one tool based on 

DOC. Interestingly, as some of our genes included non-coding sequences in gene panels, these 

specific exonic-plus-intronic captures could provide us the possibility to apply complementary tools 

using different approaches, like the ones developed for WGS. This can indeed increase both 

detection performances of CNVs and the spectrum of structural variants that can be detectable in 

these data.  

Of note, all our panels included multiple genes. We do not expect that a design including a single 

gene, even with its intronic sequences, would reach the sufficient number of targets for CANOES to 

build a robust model.  

We also applied our workflow to multiple WES datasets and reached an overall PPV of 86.38 % 

(95%CI:[82.19 – 89.72]). As for gene panel CNV detection, a confirmation by an independent 

technique is hence still required following the detection of a candidate CNV from WES data, 

although this high value allows a limited number of molecular confirmations. One of the major 

features usually required to apply a new technique in a diagnostic workflow is a high sensitivity as 

compared to a gold standard. Here, we reached a sensitivity of 87.25% (95%CI:[78.84 – 82.77]). 

Although the sensitivity was not 100%, it is important to notice that aCGH is considered as gold 

standard here although the spectrum of events that can be detected is still limited. When comparing 

our results to aCGH data, it appeared that we missed fewer events than the potential number of true 

positive CNVs that were missed by aCGH itself. Indeed, from aCGH data, we missed 13 CNVs, but 



our analyses called 519 candidate CNVs from corresponding WES data and which were 

theoretically undetectable by aCGH (i.e. either small CNVs or in regions with no aCGH probes 

coverage). Our PPVs suggest that the vast majority are eventually true. There is no reason to think 

that some of the CNVs detected by CANOES only might not be as or more deleterious than CNVs 

detected by both techniques or exclusively by aCGH. Knowing that aCGH misses many CNVs, 

even using the high-sensitivity chips such as the Agilent 1M one, and even if other chip designs 

might increase aCGH performances on coding regions, switching to a WES-only approach for CNV 

detection in a diagnostic setting should not reduce the overall diagnostic yield while allowing a 

significant drop of costs. 

As compared to aCGH, CANOES allowed the identification of CNVs of any size in regions not 

covered by probes but also for small CNVs including few exons. In addition, it is important to 

notice that the majority of CANOES false negatives were also CNVs with only few exons, which 

implies few targets for CANOES although non-coding probes may help detect some of them by 

aCGH. This decreased rate of detection of CNVs encompassing few targets has already been shown 

in other datasets (Miyatake et al., 2015; Samarakoon et al., 2014) and appears as a limitation 

inherent to DOC comparison methods. 

Of note, it is possible to increase the detection of small events or events in complex regions by 

using the “GenotypeCNV” function of CANOES. The aim of this function is to look precisely at 

specific regions and call the genotype of the sample for these specific regions, however it is 

associated with an increase in false positive calls (David et al., 2016), as well as an increase in time 

and computational resources needed.  In particular cases, when known core genes have already been 

identified in a given disorder, it is possible to combine our approach to call CNVs at the exome 

level and focus on specific genes using the GenotypeCNV function applied to every exon of these 

genes to increase the detection performances in core genes at the same time. 

Of note, beyond the above-mentioned limitations of CNV detection tools from NGS data, somatic 

CNVs remain a challenge, both for array-based technologies and for NGS-based tools (Zare, Dow, 



Monteleone, Hosny, & Nabavi, 2017). Among the CNVs detected by our workflow, at least one was 

considered as likely somatic, as suggested by QMPSF data. However, the sensitivity of DOC tools 

might remain low in this context (Zare et al., 2017). 

In conclusion, we performed an evaluation of the performances of a CNV detection workflow based 

on read depth comparison from capture-prepared NGS data, one of the most popular methods for 

NGS in research and diagnostic settings. We highlight very high sensitivity and positive predictive 

value, for both NGS gene panel and whole exome sequencing. Although the sensitivity was not 

perfect for WES data as compared to aCGH, a number of additional true calls were not detected by 

the so-called gold standard. This highlights the absence of a genuine gold standard up to now.  

Overall, we consider that switching to a NGS-only approach is cost-effective as it allows a 

reduction in overall costs together with likely stable diagnostic yields.  
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FIGURE LEGENDS 

Figure 1. Principles of Depth Of Coverage (DOC) comparison. Schematic distribution of reads 

among three different samples over 5 sequenced exons. (A) absence of any CNV. (B) Duplication of 

two exons (2 and 3). (C) Deletion of exon 4. In order to call those CNVs, software tools have to 

establish a reference. Some tools compare paired data from the same patient, e.g. tumor tissue 

against germline, while others build their reference from a pool of samples and then compare a 

given sample to this reference, as the CANOES tool used in our workflow. 

 

Figure 2. CANOES-centered workflow.  File (square) with their format in parenthesis, and 

process (rounded) constituting the workflow. From the original capture kit definition, we merge 

closed target from the same exon, then do in parallel the DOC and the GC content estimation. We 

regroup DOC individual files depending on the project, sequencing batch, unrelated samples, and 

remove non-informative regions. The last steps consist in CNV calling using CANOES and 

annotation with annotSV. 

 

Figure 3. Example of a CNV detected by aCGH but missed by the CANOES-centered 

workflow.  

A CNV (highlight region) detected by a-CGH encompassing multiple CGH probes (1M probes 

array, in green) but only one target from the SureSelect V5 capture kit. Of note, this deletion would 

have been missed by using a 180k probes array CGH (in orange). 

 

Figure 4. Example of CNVs detected by the CANOES-centered workflow from WES data but 

missed by aCGH.  

A. The highlighted region represents the CNV called by the CANOES-centered workflow, 

encompassing one exon of RHCE. 



B. View of the same region from DNA-Analytics (aCGH data 1M) in the same patient.,This 

deletion was not called following aCGH data analysis as the number of deviated probes did not 

reach the threshold for calling. However, as 3 probes were deviated, this allows the confirmation of 

the deletion of the region.  
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