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Abstract

With the coming era of Industry 4.0, more assets and machines in plants are equipped with sensors which collect big amount of data
for effective on-line equipment condition monitoring. Monitoring equipment conditions can not only reduce unplanned downtime
by early detection of relevant situations like anomalies but also avoid unnecessary routine maintenance. For the detection of these
situations it is necessary to integrate distributed, heterogeneous data sources and data streams. In this context, semantic web
technologies are increasingly considered as key technologies to improve data integration. However, they are mainly used for data
that is assumed not to change very often in time. In order to tackle this issue, stream reasoning combines reasoning and stream
processing methods. Such a combination enables the processing of dynamic and heterogeneous data continuously produced from
a large number of sources and implementing real-time services.

This paper presents an approach that uses stream reasoning to identify in real time certain situations that lead to potential failures.
Early detection enables to choose the most appropriate decision to avoid the interruption of manufacturing processes. In order
to achieve this, data collected from sensors are enriched with contextual information. The use of stream reasoning allows the
integration of data from different data sources, with different underlying meanings, different temporal resolutions as well as the
processing of these data in real time.
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1. Introduction

In recent years, a new trend called Industry 4.0 has emerged. Also known as the fourth industrial revolution, its
main objective is to improve the production and associated services through the digitalization and automation of
manufacturing processes. Several fields and technologies, such as Cyber Physical Systems (CPS), Internet of Things
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(IoT), etc., are fundamental to this vision in order to build intelligent machines, storage systems and production
facilities capable of exchanging information autonomously and intelligently.

According to lean manufacturing metrics [12], as measured by Overall Equipment Effectiveness (OEE), world-
class manufacturing factories are working at 85% of their theoretical capacity, while medium-sized ones are at around
60%. Some of the reasons for these deficiencies are detailed in [10]. The main ones are unnecessary maintenance tasks
and the breakdown of several critical types of equipment (such as compressors, fans, pumps, motors, and generators,
etc.). This leads to increased maintenance costs and production stoppages. Furthermore, in some cases it may lead to
severe safety and environmental incidents. In order to tackle these issues, factories rely on condition monitoring. It is
the task of monitoring all the equipment involved in a manufacturing process for early detection of anomalies.

In this context, a large number of machines and plant resources are equipped with sensors that collect data con-
tinuously and make them available for analysis. In this article, our focus is on the real time use of this data to detect
situations that may lead to failures disrupting production processes. A situation is a combination of one or several
sensor measurements linked through spatial, temporal and/or spatio-temporal relationships. The detection of these sit-
uations requires the interpretation of observations considering their context (other spatially or temporally related ob-
servations). In other words, it involves distributed and heterogeneous data sources. Therefore, data integration is a key
point to consider. Semantic web technologies are increasingly used to improve the interoperability in heterogeneous
scenarios. The Semantic Web is an extension of the current World Wide Web, where the semantics of information is
encoded as a set of statements such as RDF statements [20]. The choice of RDF as a data model, in combination with
ontological languages (e.g., OWL [15]), enables reasoning on data to infer new knowledge. However, current solu-
tions for reasoning on RDF or OWL data are not appropriate for the dynamic nature of the streams in the industrial
scenario where the manufacturing processes are executed over time and under different contexts. To bridge this gap, a
number of recent works propose to unify reasoning and stream processing, giving rise to the research field of stream
reasoning. Stream reasoning supports decision systems based on the continuous processing of data streams together
with rich background knowledge [26].

This paper presents an approach that uses stream reasoning to identify certain situations that lead to potential
failures in order to choose the most appropriate decision to avoid the interruption of manufacturing processes. The
proposed approach enriches the data collected from sensors with contextual information to allow real-time situations
detection.

The remainder of the paper is structured as follows: section 2 presents the related work. In section 3, the general
approach is presented, from data acquisition to situation representation and detection. An illustrative case study is
detailed in section 4. Finally in section 5 some conclusions and perspective of future work are presented.

2. Related Work

In this section, we review related work on the most commonly used approaches for condition monitoring and the
application of stream reasoning over other domains that have similar requirements to the Industry 4.0 scenario.

There are different methods to diagnose single machine defects occurring during the machine operation: vibration
monitoring, ultrasonic analysis, and many others [8, 21]. They monitor the behaviour of different properties of a
machine. Most of them use data mining that allows the extraction of knowledge from large amounts of data. They are
suitable and acceptably efficient when consuming data streams to detect abnormal patterns in the values of a machine’s
property (e.g. temperature, vibration, etc.). However, they have two drawbacks: (i) the need, in advance, for labeled
data for model training; and (ii) the lack of explicit model to explain decisions. This make it difficult to interpret the
data and it also complicates the interoperability and re-usability of the models.

To deal with this issue, the Semantic Sensor Web (SSW) approach provides tools that allow the integration of
data from multiple data sources [24]. It introduces semantic annotations for describing: (i) the data produced by the
sensors, introducing spatial, temporal, or situation/context semantics; and (ii) the sensors and the sensor networks that
provide such data. Furthermore, there are also works on defining suitable ontologies for data and sensors to enable
both the integration of data from multiple sensor networks and external sources, and reasoning on such data. As an
example, the W3C Semantic Sensor Network Incubator Group [9] developed an ontology to describe sensors and
sensor networks, the Semantic Sensor Network Ontology (SSN). However, as mentioned in the introduction current
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solutions to perform reasoning on ontologies are limited to work on rather static scenarios. They are not appropriate
for the dynamic nature of the streams on the Industry 4.0 scenario.

Stream reasoning appeared as an initiative to tackle this problem. It has been applied in many fields, such as smart
cities, to process and understand the information relevant for the life of a city and use it to make the city services
run better and faster [27, 13], remote health monitoring, to generate automated and personalized systems for remote
patient monitoring [25, 3], maritime safety and security, to represent and to perform reasoning over ship trajectories
[22], semantic analysis of social media, to extend traditional analysis based on graphs enriching the connections
between people and concepts with semantic annotations [14, 6], among others.

However, although the Industry 4.0 domain could be considered as a particular application field for the Semantic
Sensor Web to the best of our knowledge stream reasoning approaches are so far unexplored in it. Sensor data in the
manufacturing domain represents an ideal scenario for stream reasoning mainly for two reasons. Firstly, the amount
of data collected from sensors is considerable, and it is produced at high (and low) frequencies. Secondly, integrating
data coming from different sensors (and from different sensor networks) that measure different properties of the
manufacturing processes and machines involved in them is necessary in many settings for deriving useful information
such as the detection of abnormal behaviour of machines or processes.

Stream Reasoning engines. There are various existing approaches aiming to perform reasoning over data streams.
Two of those are C-SPARQL and CQELS.

C-SPARQL (Continuous SPARQL) [2] proposes a query language to process RDF streams. It provides continuous
query capabilities in SPARQL query language [23]. It supports timestamped RDF triples as input and uses periodic
execution strategy to continuously execute queries over these RDF streams. It has the capability of integrating both
RDF streams and static background knowledge represented as RDF triples. Given that streams are intrinsically infinite,
data are usually read through time windows using the CQL window concept [1]. Queries are executed on all the triples
which happen during a given time interval.

CQELS [18] is another system that combines static and streaming data in RDF format. Similar to C-SPARQL,
it provides windowing and relational operators together with ad-hoc operators for generating new streams from the
obtained results. CQELS queries deal with triples in element-based window (a given number of triples). The main
difference with C-SPARQL is that CQELS offers a processing model in which query evaluation is not periodic, but
triggered by the arrival of new triples. These different execution methods lead to the possibility of having different
query results produced for the same query and input data.

These approaches do not perform complex reasoning tasks because (1) they do not manage incomplete informa-
tion and (2) they only consider a snapshot of the stream. Therefore, classical reasoning approaches can be used as
complements to stream reasoning.

As mentioned in the introduction, early detection of situations that may lead to failures in the Industry 4.0 scenario
requires the integration of data from different data sources, with different underlying meanings, different temporal
resolutions as well as the need to process these data in real time. Thus, we propose to use stream reasoning to face these
issues but also considering the application of classical reasoning approaches to overcome the limitations of the stream
reasoning method. In other words, our proposal uses a combination of these approaches to meet the requirements of
Industry 4.0 for the detection of relevant situations.

3. System Overview

The idea driving the proposed approach is that certain situations that may lead to machine failures can be detected
by interpreting observations in their contexts, i.e. if an observation has an abnormal value it may be because another
parameter is having abnormal values too. For example, consider the case where the temperature of a machine and
the temperature of one of its components are being monitored. It is known that an increase in the temperature of the
machine may be due to an increase in the temperature of the component, or vice versa. This allows the exploitation or
use of expert knowledge about relationships between the values of certain parameters from the machines, processes
and their context for interpreting observations. Therefore, through the early detection of the aforementioned situations
types, operators have enough time to adapt the maintenance schedule or take further measures to prevent unexpected
downtime.
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3.1. General framework

In [28] the authors focus on the conceptual model, architecture and key elements needed for the support and en-
hancement of Industry 4.0 with knowledge based and intelligent systems. They emphasize that contextual knowledge,
user experience and semantics involved in manufacturing and production processes should be taken into considera-
tion if a company aims to improve equipment and production systems safety, availability, to reduce the number of
unnecessary maintenance tasks and to optimize production costs.

In order to interpret raw sensor readings combined with contextual knowledge for the detection of certain situations
that may lead to failures, our proposal relies on an adaptation of this framework. This adaptation is depicted in Figurel
and is described below.

o The Sensors and Actuators layer contains the sensors and actuators that are deployed in the machines or the
environment. A sensor is a device that detects and responds to some type of input from the physical environment.
Some examples are pressure sensors, accelerometers for measuring vibration, acoustic sensors for detecting
leaks, temperature detectors, etc.. The output is generally a signal that can be converted to human-readable
format or transmitted electronically over a network for reading or further processing. An actuator is a component
of a machine that is responsible for moving and controlling a mechanism or system, for example by opening a
valve. It can be activated by electric voltage or current, pneumatic or hydraulic pressure, or even human power.
When it is activated the actuator converts the signal’s energy into mechanical movement.

o The Communication layer is in charge of pre-processing the data coming from the Sensors and Actuators
layer through processes such as filling missing values, smoothing the noisy data, etc. Furthermore, the data
can be normalized, aggregated and/or generalized as required. This layer is also able to divide and distribute
information and must ensure security and anonymity where necessary.

o The Semantic Enhanced CPS Representation layer contains the reasoning process and modules that allow the
semantic enrichment of the raw data coming from sensors. The Reasoner module makes use of First Order
Logic (FOL) under the Open World Assumption (OWA). In this layer, we propose to add a module named
Stream Reasoner to process data in real time. It executes continuous queries over the streams of data. The
Reasoner and the Stream Reasoner are not only fed with data but also with rules provided by domain experts.
The Expert Knowledge module is in charge of storing such rules. It also embraces data from other external
sources like Business Information Systems (BIS) and Enterprise Resource Planning (ERP).

e The Application layer comprises different applications that exploit the semantic enriched information, for ex-
ample a human to machine interaction module.

Our proposal is part of the Semantic Enhanced CPS Representation layer. It makes use of all its components to
go from raw sensor readings combined with background knowledge to the detection of relevant situations to support
decision making tasks at the Application layer.
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3.2. Relevant Situations Detection and Identification

The main components of our proposal are shown in Figure 2. The workflow starts from raw sensor readings to the
detection of relevant situations to support decision making tasks. The modules to detect situations in real time are (1)
Translation, (2) Temporal relations, (3) Cause determination, while the (4) Update/Create situations module manages
classical reasoning. All these modules rely on a context ontology to semantically enrich the data representation and
treatment.

3.2.1. Semantic representation: The Context Ontology

The Context ontology is an essential component in our approach. Firstly, it provides the formal representation of the
manufacturing domain. It enables to represent a production line: the machines that compose it, the tasks they perform
and the observations made by the sensors on certain properties of interest about the machines, processes, products
and the environment. Secondly, it allows to represent the context in which an observation is measured. This is a key
point to consider because that information is useful to interpret the observation not just as a single value allowing to
determine the causes and what actions can be taken in a more informed way.

The ontology is an adaptation from a previous work [7] based on the definition of context given by [5]. This
ontology-based context model for industry is built upon the following head concepts: resources, processes, Sensors,
time, location and situations. It reuses different ontologies in order to obtain a model that satisfies the Industry 4.0
requirements and facilitates context representation of the resources and processes.

The main concepts of the ontology and their relationships are presented in Figure 3. Among the reused ontologies it
is worth mentioning the use of the Time Ontology [4] (used as a temporal model to guarantee a consistent representa-
tion of temporal content and properties), the GeoSPARQL Ontology [17] (for representing the abstraction of physical
spatial places and relations among them), the SSN Ontology [9] (for annotating heterogeneous sensor data with for-
malized semantics), the ontologies to describe the resources of a factory and the manufacturing processes, and the
ontology to represent the relevant situations. For condition monitoring, a crucial concept is the concept of situation. A
situation defines an abstract state of affairs that represents a particular scenario of interest and involves observations,
resources and processes. In other words, a situation is a combination of one or several sensor measurements linked
through spatial, temporal and/or spatio-temporal relationships.

The data models and ontology languages used in this approach are RDF [20], RDFS [19] and OWL [15] [11]. These
languages are used to infer implicit knowledge through inference process. This is also known as reasoning and can be
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Fig. 3. The Context Ontology (adapted from [7])

performed for several purposes. For example, it can be used to execute automatic consistency check when integrating
multiple sources of knowledge, or to classify new information, or enrich query answers with new knowledge.

3.2.2. RDF Stream Reasoning for Situation Detection

The three modules of processing involved in our approach for situation and cause detection are Translation, Tem-
poral Relations, and Cause Determination. The Decision Making module is not part of the task of detecting situations,
but it exploits this information to support decision making tasks.

Translation. This module is mainly responsible for acquiring data from sensors and (i) converting it to RDF streams,
and (ii) inserting it as instances into the ontology. Both tasks are performed by the Stream Generator and the Instance
creator sub-modules respectively.

The Stream Generator component performs semantic annotation of the acquired data, using the concepts and re-
lations among them as defined in the ontology. This allows the module to stream out semantic annotated data
streams that are then consumed by the Stream Reasoner. The output streams are RDF streams. An RDF stream
is defined as an ordered sequence of pairs, where each pair is constituted by an RDF triple and its timestamp ¢:
(<Subject,Predicate,0bject>,r). An RDF triple is defined as <Subject ,Predicate,Object>e JUB)x [ x
(I U BU L) where I is a set of IRIs (Internationalized Resource Identifiers), B is a set of blank nodes and L is a set of
literals.

The Instance creator component creates instances from the received data and inserts them in the ontology, i.e. it is
in charge of populating the ontology with observations and their corresponding metadata, such as the sensors which
made the observation, the observed property, the time, etc.

Temporal Relations. Once the data from the distributed and heterogeneous data sources is available in a homoge-
neous, contextualized and ordered representation, the streams can be explored to generate new information. A set of
queries, which combine background knowledge extracted from the ontology and some parts of the streams that are
relevant, are registered and executed by the Stream Reasoner over the data streams. These queries represent particular
situations to be identified and they include mainly temporal dependencies between observations and/or anomalies. The
Stream Reasoner represents queries as query graphs, with query evaluation performed through graph pattern matching
over graphs formed by the incoming data streams. It offers two types of processing models: either the query evaluation
is periodic through windows of time, or the query evaluation is not periodic but triggered by the arrival of new triples.
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For this component, C-SPARQL was chosen over CQELS because although both have similar characteristics C-
SPARQL is open source and handles continuous queries. Therefore, C-SPARQL [2] is used to execute queries against
the streaming data.

This module produces situations streams as output. This output feeds another stream reasoner in the cause determina-
tion module and the situations detected are stored in the ontology. In this way, the Stream Reasoner itself can be seen
as an advanced sensor able to produce high level data.

Cause/s Determination. The purpose of this module is to identify the possible causes that generated a situation
detected by the previous module. For this, two components are used separately.
In the case where situations are generated at high frequency, the Stream Reasoner identifies the causes. Otherwise,
the Reasoner is used over the ontology to infer the causes. This last option has some advantages over the previous
one. For example, it is possible that some situations do not have identified causes in a real scenario, in which case
the system notifies that the causes are unknown. Therefore, it is necessary to consider the Open World Assumption,
which states that the absence of a statement alone cannot be used to infer that the statement is false. If the cause is
identified later, it can be added to the knowledge base and linked to the situation for future use.
In both cases, the module provides the Decision Making module with the identified situation together with the possible
causes in case they are known. The association between the situation and the causes is also added to the Ontology.

Decision Making. Considering the situations and its causes, it is possible to support decision making tasks to
determine what actions to launch to correct the behaviour of machines or avoid breakdowns. The actions to be triggered
are diverse and depend on other external factors. For example, certain maintenance tasks can be launched remotely and
performed by the machines themselves or the application can issue an alert to notify the operator closest to the machine
to inspect it, if human action is needed. Each application can perform more advanced reasoning and processing on the
received data.

3.2.3. Static Reasoning for Situation Identification or Refinement

The Translation module, in addition to generating the data streams, populates the ontology with semantically
enriched data. The data models and the ontology languages used in this approach are RDF [20], RDFS [19] and OWL
[15], because they facilitate the execution of automatic consistency checking when integrating multiple sources of
knowledge, or the classification of new information, or the enrichment of query answers with new knowledge after an
inference process.

Compared to the processing performed by stream reasoning, reasoning is more computationally expensive. De-
pending on the complexity of the ontology language adopted, reasoning can even become undecidable. To alleviate
these problems, the W3C has defined several profiles [16] of OWL that reduce the complexity of reasoning making
it more tractable and scalable. Despite these efforts, reasoning remains a complex task. Because of this, it is mainly
applied to static data that is assumed not to change, or to not change very often in time.

Thus, the main purpose of the Update/Create situations module is to exploit the historical data stored in the knowl-
edge base (ontology) to refine the already defined situations or even to find new ones. This can be accomplished by, (i)
reasoning over the ontology to derive implicit information, and (ii) interacting with the ontology by issuing one-time
queries, expressed in the SPARQL [23] language.

4. Case study

In this section, a case study is presented to illustrate the application and the advantages of detecting abnormal
situations by interpreting anomalies or observations in their contexts. Firstly, a sample case of two properties which
values have a causal relationship correlated in time is described formally. Secondly, an illustrative case in an industrial
scenario with two sensors deployed in a machine is presented.

The formal definition, illustrated in Figure 4, is the following: Consider two properties Py and Py. At time t, the
property Py exceeds its threshold Ty indicating a positive deviation from their normal values. At time t; the property
Py exceeds its threshold Ty also indicating a positive deviation from their normal values. This effect is a consequence
resulting from the increased of Px. At time t, an action is triggered to correct the behaviour of Py and at time t,
the property Px is under Tx. Then at t, the property Py is also under Ty. In this case, the value sensed of Py at t;
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Fig. 4. Example of a relevant situation involving two properties and an action triggered to correct the values.

is interpreted in the context that since t, the property Px exceeds its threshold. The action launched at t, is decided
considering this interpretation.

In the industrial scenario, consider a machine M; that is part of a production line in a company. This machine
has a component M;, that is a main component on which the operation of the machine depends. Both the machine
and its component have sensors, called SensorTM; and SensorTM,, which measure respectively the temperatures of
the machine and its component. The focus of the example is to monitor the temperature of the machine and of its
component. We note Py and Px the temperature properties of the machine and its component.

As shown in Figure 4, during the execution of the task performed by the machine, an increase in M, temperature
is observed. Let us assume this is due to dirty filters in the cooling system. The M, temperature deviates from normal
behavior at t;, while Py is normal. The observation made by SensorTM, at time t, is represented in RDF format
using the structure of our ontology in Listing 1. Afterwards, at time t; the M; temperature also leaves normal behavior
and indicates a positive deviation.

This effect is a consequence of the increased M, temperature, as M, is the main heat source in M;. Consequentially
a higher M, temperature leads to a higher M; temperature. Our approach allows to exploit this knowledge about the
link between the values of the two temperatures. Through this interpretation of the anomaly in Py it is possible to
detect that situation, named AbnormalT-M1M2. The C-SPARQL query shown in Listing 2 detects this situation and
selects the observations and the resources involved. Once the situation is detected an instance (Abnormal T-M1M2) is
added to the ontology, as are the relations with the corresponding observations (obsTempM1 and obsTempM2). The
representation of the described scenario is visualized using our model in Figure 5.

hasCauses hasObservations _sosa:madeObservation sosa:hosts
Cause Situation _ _ i sosa:Observation [~ _| sosa:Sensor Resource
Y 7'y isInSituation kA sosa:madeBySensor A sosa:isHostedBy A 4
sosa:observedProperty i
‘ sosa:ObservableProperty |
Pl - - | | olio
' | ‘tlme:TemporaIEntlty “hasTimeObs lio lio i io
| 1A i L
! ! | ) | lio
D [ N :h leResult |
i 3 Ty xsd.floatéosa asSimpleResu i lio
io i | lio hasTimeObs | |
io 1 i i
io ‘ sosa:madeObservation sosa:hosts
T ;Sens@/
hasObservations sosa:madeBySensor sosa:isHostedBy
AbnormalT-M1M2 isinSituation
isInSituation —
hasDescription hasObservations IsFa

hasTimeObs /" sosa:madeObservation

obsTemM

v
"Cooling system Leakage"”~ ~xsd:string

sosa:madeBySensor sosa:isHostedBy
io ®4sosa:observedProperty
sosa:hasSimpleResult
Tx”~xsd:float
Legend
[ Jclass  Dlnstance < io (instance of) <«—— objectProperty < dataProperty

Fig. 5. Representation of the scenario presented in the case study using our model.
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:obsTempM2 a sosa:0bservation;
sosa:observedProperty Px ;
sosa:madeBySensor :SensorTM2 ;
sosa:hasSimpleResult Tx~"xsd:float ;
:hasTimeObs tr ;

:isInSituation AbnormalT-M1iM2

Listing 1. Example of an observation in RDF using the structure of our ontology.

The detection of this situation and its interpretation avoids a general inspection of M; due to its high temperature.
Only the state of its component M, has to be verified. This allows to take action to correct the behavior of Py considering
its context. At time t, an action is taken about M, (cleaning or replacement of the cooling system filters) that solves the
problem, which enables the temperature of M, to decrease. After some time, this leads to a decrease in the temperature
of Ml .

REGISTER QUERY sit-AbnormalT-M1iM2 AS REGISTER QUERY sit-AbnormalT-M1iM2-avg AS
PREFIX :<http://contextOntology#> PREFIX :<http://contextOntology#>
PREFIX f: <http://larkc.eu/csparql/sparql/jena/ext#> | SELECT 70l 702 ?ml ?m2
SELECT 701 702 ?ml ?m2 FROM STREAM <http://.../sensorTM1> [RANGE 5s 1s]
FROM STREAM <http://.../sensorTM2> [RANGE 5s 1s] FROM STREAM <http://.../sensorTM2> [RANGE 5s 1s]
FROM STREAM <http://.../sensorTMi1> [RANGE 5s 1s] WHERE {
WHERE { :sensorTM1 :isHostedBy 7ml

:sensorTM1 :isHostedBy ?ml . :sensorTM1 :madeObservation 7ol

:sensorTM1 :madeObservation 7ol . 7?0l :hasSimpleResult 7?resl

70l :hasSimpleResult ?resil . 70l :hasTime 7t1

701 :hasTime 7t1 . ?s2 :isHostedBy 7m2

?7s2 :isHostedBy 7m2 . ?s2 :madeObservation 702 .

?s2 :madeObservation 702 . { SELECT ?s2 ( avg(?p2) AS 7average )

702 :hasSimpleResult ?7res2 . WHERE {

702 :hasTime ?7t2 . ?s2 :madeObservation 702

FILTER ( 702 :hasSimpleResult ?res2

f:timestamp (: sensorTM1,:madeObservation,?o1l) 702 :hasTime 7t2

< f:timestamp (?s2,:madeObservation,?02) ¥

&& ?resl >= Ty GROUP BY 7s2

&& ?res2 >= Tx HAVING ( avg(?res2) >= Tx )

&% ?s2 != sensorTMi }

&& ?ml = M1 && 7m2 = M2 ) . FILTER ( ?resl >= Ty && 7s2 != :sensorTM1 )
L L
Listing 2. C-SPARQL query to detect the described situation. Listing 3. C-SPARQL query considering the average of Py.

Although the case study presented in this section involves only two properties, it shows the advantages of interpret-
ing an observation in its context and the exploitation of background knowledge. In real cases, more complex situations
can be detected using the proposed approach: for example, as an extension to the previous case, it is possible to inter-
pret the anomaly of the temperature Py regarding the average of the values of the temperature Py measured during the
time window w instead of only considering if one of these values is greater than the threshold Ty. The corresponding
C-SPARQL query is displayed in Listing 3.

5. Conclusions & Future Work

This paper presents an approach that uses stream reasoning to detect certain situations that could lead to failures in
order to make the most appropriate decision to avoid the interruption of manufacturing processes. Data collected from
sensors are enriched with contextual information to allow real-time situations detection. The use of stream reasoning
allows the integration of data from different data sources, with different underlying meanings, different temporal
resolutions as well as the processing of these data in real time. Furthermore, our proposal also uses classical reasoning
approaches to compensate for possible non-detections of causes by the stream reasoning method.

In future work the following lines will be addressed. Firstly, a broader case study with more complex situations,
involving more properties measurements that are temporal and spatially related, will be explored. This raises scalabil-
ity and complexity issues to detect situations in real time. Therefore, tests will be performed with different variants of
stream reasoning engines to evaluate their efficiency and scalability. Secondly, a complete study on how to update and
refine the situations (queries) will be inspected as well as how to register and deregister queries as appropriate in each
case. For example, in case a particular situation is detected, it would be necessary to deregister that query until the
problem(s) are solved, to avoid detecting it continuously. Finally, the identification of causality patterns could enable
to define generic queries for certain types of anomalies. These generic queries could be reused in different cases and
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would perform more complex operations among the sensed values than those presented in the previous case study,
such as the comparison between two measurements or the average of a set of measurements in a given time interval.
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