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Abstract
Sunlight can accelerate the decomposition process through an ensemble of direct and indirect processes known as photo-
degradation. Although photodegradation is widely studied in arid environments, there have been few studies in temperate 
regions. This experiment investigated how exposure to solar radiation, and specifically UV-B, UV-A, and blue light, affects 
leaf litter decomposition under a temperate forest canopy in France. For this purpose, we employed custom-made litterbags 
built using filters that attenuated different regions of the solar spectrum. Litter mass loss and carbon to nitrogen (C:N) ratio 
of three species: European ash (Fraxinus excelsior), European beech (Fagus sylvatica) and pedunculate oak (Quercus robur), 
differing in their leaf traits and decomposition rate, were analysed over a period of 7–10 months. Over the entire period, the 
effect of treatments attenuating blue light and solar UV radiation on leaf litter decomposition was similar to that of our dark 
treatment, where litter lost 20–30% less mass and had a lower C:N ratio than under the full-spectrum treatment. Moreover, 
decomposition was affected more by the filter treatment than mesh size, which controlled access by mesofauna. The effect of 
filter treatment differed among the three species and appeared to depend on litter quality (and especially C:N), producing the 
greatest effect in recalcitrant litter (F. sylvatica). Even under the reduced irradiance found in the understorey of a temperate 
forest, UV radiation and blue light remain important in accelerating surface litter decomposition.
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Introduction

Photodegradation involves direct (photochemical minerali-
zation) and indirect (photofacilitation) breakdown of organic 
matter mediated by sunlight which, alongside warm temper-
atures and high humidity, can accelerate the decomposition 
of plant litter (Brandt et al. 2007; Gallo et al. 2006, 2009; 
Almagro et al. 2015; Ma et al. 2017). Factors that enhance 
the exposure of plant litter to sunlight, such as changes to 
forest structure or phenology, modulate photodegradation 
and are an important environmental variable controlling 
decomposition rate in Mediterranean forests (Bravo-Oviedo 
et al. 2017; Gliksman et al. 2017). Decomposition rate partly 
governs nutrient cycling (Austin and Vivanco 2006) and suc-
cessional processes in the plant and belowground commu-
nities (Fahey et al. 1998; Bardgett et al. 2005). Therefore, 
the interactions between the abiotic (sunlight, soil moisture, 
precipitation and temperature) and biotic drivers of decom-
position have the potential to impact soil decomposer assem-
blages and plant functional composition in the understorey 
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(Almagro et al. 2015). These interactions make it important 
to quantify the relative importance of photodegradation and 
contribution of different spectral regions to this process.

Short wavelengths of solar radiation carry high energy 
and can directly break down organic matter through pho-
tochemical mineralization (Gallo et al. 2006; Austin and 
Ballaré 2010). Until recently, most studies have consid-
ered only UV, or specifically UV-B (280–315 nm), radia-
tion to be the main driver of photodegradation (reviewed 
by Song et al. 2013). However, recent studies have revealed 
that UV-A radiation (315–400 nm), blue (420–490 nm) and 
green (500–570 nm) regions of the spectrum (Sellaro et al. 
2010) are also important in this process (Brandt et al. 2009; 
Austin and Ballaré 2010; Austin et al. 2016). The capacity 
of lignin, cellulose and hemicellulose to absorb UV radia-
tion and blue and green light (Argyropoulos 2001; Austin 
and Ballaré 2010; Lin and King 2015) further suggests that 
these wavelengths are potentially involved in the photodeg-
radation of litter. Solar radiation also affects decomposition 
rate through direct effects on both the activity (Duguay and 
Klironomos 2000) and community composition of decom-
poser organisms (Pancotto et al. 2003; Robson et al. 2005). 
Because these multiple environmental factors interact to 
produce complex effects, the relative contribution of photo-
degradation to decomposition is difficult to quantify.

Photodegradation has mainly been studied in habitats 
with a low-stature vegetation, such as grasslands or scrub-
lands, where litter is exposed to near full sunlight all year 
round. In these environments, especially in arid and semiarid 
climates, photodegradation is particularly relevant (Gallo 
et al. 2009) and represents a key driver of the process of 
litter decomposition (Austin et al. 2016, but see King et al. 
2012 and Song et al. 2013). Few studies have been under-
taken in temperate environments and particularly in forest 
ecosystems (Messenger et al. 2012; Newsham et al. 2001), 
where decomposition is expected to be controlled by pre-
cipitation and temperature (Adair et al. 2008; Aerts 1997; 
Meentemeyer 1978). However, photodegradation can play a 
role in peat lands (Rutledge et al. 2010; Foereid et al. 2018), 
aquatic systems (Måns et al. 1998) and Arctic tundra (Cory 
et al. 2013) by interacting with microbial activity to produce 
a change in decomposition rate. This suggests that the eco-
logical relevance of sunlight is not limited to dry environ-
ments receiving high irradiances of UV radiation but extends 
to Arctic and alpine environments (Foereid et al. 2011). 
There is a need to examine the extent to which photodegra-
dation, and its interaction with decomposer organisms, con-
tributes to decomposition in these environments to improve 
our estimation of how carbon cycling might be affected by 
climate change (Smith et al. 2012), which will expose lit-
ter to novel combinations of temperature, precipitation, day 
length and solar spectral irradiance. We aimed to test how 
the spectral composition of received solar radiation affects 

the decomposition of newly fallen leaf litter from three dif-
ferent tree species (Fagus sylvatica L., Quercus robur L., 
and Fraxinus excelsior L.), on the floor of a temperate forest. 
We performed a litterbag experiment with five different sun-
light attenuation filter treatments and two mesh treatments. 
We anticipated that the effect of photodegradation increases 
when the initial carbon to nitrogen (C:N) ratio is high (King 
et al. 2012) and expected that differences in initial litter 
quality according to species identity would lead to differing 
response in our sunlight attenuation treatments. Hence, we 
assessed litter decomposition of the three species over dif-
ferent time periods. We expected that UV radiation and blue 
light would enhance decomposition due to their capacity to 
break down organic material through photochemical miner-
alization (Gallo et al. 2009) and provide more nutrients for 
microbial activity as a result (photofacilitation, Austin et al. 
2016). Consequently, we expected exposure to near-ambi-
ent UV radiation and blue light to lower the litter carbon 
content (Kotilainen et al. 2009; Almagro et al. 2017) and, 
therefore, the C:N ratio. The complexity of soil–decomposer 
assemblages is known to be important in the decomposi-
tion process (Hättenschwiler et al. 2005). Consequently, we 
expected that the exclusion of large decomposers (macro-
fauna and part of the mesofauna) from fine-mesh litterbags 
would interact with our filter treatments and produce differ-
ent responses to the spectral regions of sunlight.

Materials and methods

Site description

The experiment was conducted in a mature beech for-
est (Fagus sylvatica L.) in Forêt Verte (49°31′12.6″N 
1°07′00.7″E) close to Rouen University, France. The site has 
a relatively flat topography and the elevation is about 150 m 
a.s.l. The climate is “oceanic-temperate” with a mean annual 
air temperature of 10.5 °C and the total annual precipitation 
average of 851.7 mm, which is distributed relatively evenly 
over the year (ESM Fig. S1, climate data at the weather sta-
tion “Rouen-Boos from 1981 to 2010”, data from website 
Infoclimat: http://www.infoc​limat​.fr).

Spectral irradiance was measured before (February 
2017) and after (May 2017) canopy closure at five loca-
tions within the study site and compared with an open area 
nearby. Spectral irradiance was also measured inside the lit-
terbags for each filter treatment to test filter transmittance 
(Fig. 1). Measurements were taken using an array spectro-
radiometer (Maya2000 Pro Ocean Optics, Dunedin, FL, 
USA; D7-H-SMA cosine diffuser, Bentham Instruments 
Ltd, Reading, UK) that had been calibrated within the pre-
vious 12 months for measurements spanning the regions of 
solar UV radiation and photosynthetically active radiation 

http://www.infoclimat.fr
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(PAR) (see Hartikainen et al. 2018 for details of the calibra-
tion, Aphalo et al. 2012, 2016). Hemispherical photos were 
taken on multiple occasions at the same five locations as 
the spectral irradiance measurements. To capture the differ-
ent stages of canopy development, pictures were taken on 
8th February 2017 when the canopy was dormant, during 
canopy flushing (once a week between 25th April 2017 and 
30th May 2017) and after canopy closure (10th June 2017). 
These photos were used to characterize canopy cover by 
calculation of the global light index (GLI) and the leaf area 
index (LAI) with the software “Hemisfer” (Schleppi et al. 
2007; Thimonier et al. 2010). The LAI was estimated to 
be 0.895 ± 0.012 during winter (Dec 2016–Apr 2017) cor-
responding to a GLI of 50.5%. On 24th May 2017, when 
canopy leaves were completely expanded, the LAI reached 
2.930 ± 0.131 while the GLI dropped to 3.8%. A time series 
of modelled daily PAR (Fig. 2 and ESM Fig. S3) over the 
whole experimental period was reconstructed with a library 
of radiative transfer programs, libRadtran, version 2.0.1. 
(Emde et al. 2016). We used the radiative transfer equa-
tion solver DISORT for the simulations to produce spectra 
of 280–900 nm (based on Lindfors et al. 2009). Inputs to 
the model were column integrated water vapour data from 
AERONET (https​://aeron​et.gsfc.nasa.gov/cgi-bin/webto​
ol_aod_v3?stage​=2&place​_code=10&regio​n=Europ​
e&state​ = Franc​e&submi​t = Get + AERON​ET + Sites​), total 

ozone column data from the Aura Validation Data Center 
(AVDC) (https​://avdc.gsfc.nasa.gov/pub/data/satel​lite/Aura/
OMI/V03/L2OVP​/OMUVB​/) and surface type as defined by 
the International Geosphere Biosphere Programme (IGBP). 
Modelled above-canopy data were cross-validated against 
satellite-derived irradiance data provided by SoDa Helio-
clim-3 and against the spectral irradiance measured with 
the above-mentioned spectroradiometer. Modelled under-
storey data (Fig. 2 and ESM Table S12) were calculated 
by applying the GLI to the above-canopy modelled data 
(Canham 1988) and were cross-validated against a subset 
of daily PAR irradiance measured in the understorey on the 
forest floor, recorded continuously from 25th May to 10th 
Oct 2017 as 15-min averages with two calibrated quantum 
sensors (QSO-S, Decagon Devices, Pullman, Washington, 
USA) (ESM Fig S2). Estimates of received UV-A and UV-B 
radiation are given (Fig. 2, ESM Table S12) according to the 
spectral composition of modelled incident solar radiation 
without adjusting for the relative enrichment of UV radiation 
in shade which makes a minor contribution to the daily sum. 

Experimental design and litterbag design

We assigned litterbags to randomized locations within the 
study site (ESM Fig. S4). The experiment comprised 3 
species of leaf litter × 5 filter treatments × 2 mesh sizes × 3 

Fig. 1   Measured spectral irradiance under the five filter treatments 
used in the experiment compared with ambient sunlight (no filter). 
Spectra were recorded with spectrometer at solar noon in Helsinki in 

July in an open area to measure the litterbags transmittance. Figure 
was produced using the photobiology packages in R (Aphalo 2015)

https://aeronet.gsfc.nasa.gov/cgi-bin/webtool_aod_v3%3fstage%3d2%26place_code%3d10%26region%3dEurope%26state%e2%80%89%3d%e2%80%89France%26submit%e2%80%89%3d%e2%80%89Get%e2%80%89%2b%e2%80%89AERONET%e2%80%89%2b%e2%80%89Sites
https://aeronet.gsfc.nasa.gov/cgi-bin/webtool_aod_v3%3fstage%3d2%26place_code%3d10%26region%3dEurope%26state%e2%80%89%3d%e2%80%89France%26submit%e2%80%89%3d%e2%80%89Get%e2%80%89%2b%e2%80%89AERONET%e2%80%89%2b%e2%80%89Sites
https://aeronet.gsfc.nasa.gov/cgi-bin/webtool_aod_v3%3fstage%3d2%26place_code%3d10%26region%3dEurope%26state%e2%80%89%3d%e2%80%89France%26submit%e2%80%89%3d%e2%80%89Get%e2%80%89%2b%e2%80%89AERONET%e2%80%89%2b%e2%80%89Sites
https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2OVP/OMUVB/
https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2OVP/OMUVB/
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collection times × 5 replicates, giving a total number of 450 
litterbags. The design of the litterbags for the experiment fol-
lowed that described by Day et al. (2007). The dimensions of 
the litterbags were 150 × 150 mm, with the upper part made 
from a sheet of perforated film filter material and the bottom 
part made from a sterile Teflon mesh sheet of two different 
pore sizes: 0.1 mm allowing only microflora (fungi and bac-
teria) access to the litter, and 1 mm allowing microflora and 
part of the mesofauna (hereafter referred as mesofauna) to 
pass (ESM Figs. S5 and S6). The filter and the mesh sheet 
were not directly in contact but were held 8 mm apart by 
a frame made from plastic drinking straws (Ikea, Leiden, 
Netherlands), which helped to prevent contact between the 
leaves and the filter during decomposition. This separation 

was also important to prevent the build-up of condensation 
on the filter. Five different filter treatments were created 
(Fig. 1): a control treatment (full spectrum at near-ambient 
irradiance) of polyethene film (0.05 mm thick, 04 PE-LD; 
Etola, Jyväskylä, Finland) transmitting > 95% of incident 
PAR and UV radiation; no-UV-B treatment (attenuating 
UV-B radiation < 320 nm) using polyester (0.125 mm thick, 
Autostat CT5; Thermoplast, Helsinki, Finland); no-UV 
treatment using Rosco #226 (0.2 mm thick, West Light-
ing, Helsinki, Finland) attenuating UV radiation < 380 nm; 
no-UV/blue treatment using Rosco #312 Canary yellow 
(0.2 mm thick, West Lighting, Helsinki, Finland) attenuat-
ing UV radiation and blue light < 480 nm; and a dark treat-
ment using polyethene film, solid white on the upper side 

Fig. 2   a Daily photosyntheti-
cally active radiation and blue 
light in the understorey. Time 
series of modelled PAR recon-
structed using radiative transfer 
modelling of solar irradiance 
and the global light index (GLI) 
calculated from hemispherical 
photos taken at the site over the 
course of the experiment. Mod-
elled data were cross-validated 
against a subset of daily meas-
ured PAR irradiance at the site 
from 25-05-2017 to 10-10-2017 
(ESM Fig. S2). Vertical dashed 
lines show dates of litterbag col-
lection, and solid line show the 
period of spring flush from bud 
burst to canopy closure from a 
visual assessment of the buds of 
canopy trees. b Daily estimated 
unweighted UV-A (filled circle) 
and UV-B (filled triangle) radia-
tion in the understorey. Time 
series of solar irradiance were 
reconstructed using radiative 
transfer modelling, validated 
with above-canopy irradi-
ance data provided by SoDa 
Helioclim-3, and gap light index 
calculated from hemispherical 
photos taken at the site over 
the course of the experiment. 
Vertical dashed line shows dates 
of litterbag collection, and solid 
lines show the period from bud 
burst to canopy closure from 
assessment of tree flush. (This 
figure is available in color in the 
online version of the journal)
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and solid black on the lower side (0.15 mm thick, Casado 
Sarl, France), attenuating > 95% of PAR and UV radiation.

Litterbags were deployed on 20 Dec 2016, to coincide 
with the end of leaf fall and follow the natural timing of 
decomposition as faithfully as possible. They were pinned 
to the soil surface through a homogeneous thin layer of 
the previous years’ litter that remained in contact with the 
underside of the litterbags. Once a week, any debris that fell 
on the litterbags were removed, to ensure that they remained 
uncovered by other litter and unshaded by understorey 
plants. Air temperature and relative humidity (RH) inside 
a representative subsample of litterbags were continuously 
monitored with sensor ECH2O 5TM (Decagon Devices, 
Pullman, Washington, USA). The environment under the 
dark treatment was on average 0.4 °C (± 0.2) cooler (how-
ever, not statistically significant, ESM Table S14) and 1% 
(± 0.5) RH moister than the other treatments, while small-
mesh-size (0.1 mm) bags were 0.8% (± 0.3) more moist than 
1-mm mesh bags (ESM Tables S13 and S14).

Litter material

Leaf litter was used from three widespread European tree 
species growing within the experimental area, selected 
according to their different litter quality: pedunculate oak 
(Quercus robur L.); European beech (Fagus sylvatica L.) 
and European ash (Fraxinus excelsior L.). The latter is 
known to produce labile litter with low lignin:N ratio of 
13.6, able to decompose completely in 6–7 months (Melillo 
et al. 1982), oak litter represents intermediate-quality litter 
with a lignin:N ratio of 17.6 (Henneron et al. 2017) and 
beech produces more recalcitrant litter which decomposes 
over longer periods (up to 3 years) due to its higher lignin 
content (lignin:N ratio of 36.5: Trap et al. 2013). Fully senes-
cent “sun” leaves at the point of abscission were sampled 
directly from trees on the southern edge of the stands. The 
point of abscission was determined as the moment when the 
leaf would detach without any effort in pulling it away from 
the branch. Leaves were collected from oak and ash trees in 
small stands near the University in Rouen (49°27′44.2″N 
1°03′48.2″E), while the equivalent beech leaves were col-
lected in the Forêt Verte (49°30′17.0″N 1°06′44.9″E) close 
to the study site. The petiole was removed from the leaves 
before they were weighed and scanned to obtain fresh weight 
(FW) and leaf area was calculated with the software WinFO-
LIA (Image analysis for plant science, Regent Instruments 
Inc., Nepean, Canada). Immediately after sampling, both 
leaf adaxial (upper) and abaxial (lower) epidermal flavonoid 
content and leaf chlorophyll content were optically assessed 
using a Dualex Scientific + (ForceA, Paris Orsay, France) 
device. This allowed us to verify that there were no initial 
differences in pigmentation or epidermal UV transmission 
among the leaves of each species (ESM Table S1). The 

leaves were then dried at 35 °C for 1 week and reweighed 
(dry weight: DW) before being placed in the litterbags (ESM 
Table S1). Entire leaves were placed inside litterbags with 
the adaxial leaf epidermis facing up in a single layer of 
non-overlapping litter (consisting of 2–5 leaves per litter-
bag, weighing 300–800 mg according to the species: EMS 
Fig. S5).

Litter mass loss, and carbon and nitrogen content

Five replicate litterbags from each treatment combination 
were collected after 3, 5 and 7 months for ash litter, and 
3, 6 and 10 months for oak and beech litter, as well as a 
zero-time sample from all species. After collection, litter 
was dried at 35 °C, cleaned with small brushes to eliminate 
any soil particles and worm casts present, and weighed on a 
precision balance (Entris 224i-1S, Sartorius Lab Instruments 
GmbH & Co. KG, Göttingen, Germany). The litter was then 
ground to a fine powder, and a quantity of 3–4 mg DW was 
used to determine the percentage of C and N content using a 
CN Soil Analyzer Flash 2000 (Thermo Scientific, Waltham, 
USA). Ash-free dry mass (AFDM) was determined by com-
bustion of subsample of each replicate in a muffle oven at 
550 °C for 12 h to allow quantification of mineral contami-
nation, e.g. from worm casts and soil.

Data analysis

Treatment effects for mass loss, C:N ratio, C and N content 
were tested for each species separately, due to their differ-
ing collection dates, using a three-way ANOVA including 
fixed experimental factors: filter, mesh size and time and 
respective interactions between them. The normal distribu-
tion of the residuals and homoscedasticity of variance were 
checked when performing the statistical analyses. Where a 
significant (p < 0.05) interaction was given by the ANOVA, 
the pairwise comparisons were tested (Function glht in Pack-
age Multicomp). Holm’s adjustment was used to account for 
multiple pairwise comparisons. All statistical analyses were 
performed in R version 3.3.3 (2017).

Results

Litter mass

The three species had different decomposition patterns 
confirming our initial hypothesis (Fig. 3). During its first 
3 months, ash litter lost the largest proportion of its dry mass 
(60%) and by the time of its final collection (7 months) it 
had lost almost 70% of its initial dry mass. Oak litter 
decomposed much slower; only 50% mass was lost after 
10 months, beech litter actually increased in mass during 
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the first 3 months; this was particularly evident in the dark 
(+ 25%) and in the no-UV/blue (+ 40%) treatments (Fig. 3). 
This initial increase was followed by a decrease during the 
next 7 months, resulting in a 10–20% decrease from its origi-
nal mass after 10 months (Fig. 3).

The effect of filter treatments on remaining mass of ash 
litter changed over time and according to the mesh size 
(Mesh × Filter × Time interaction: p = 0.032, Table 1, Figs. 3 
and 4), suggesting a different effect of spectral composition 
on different groups of decomposers (micro- and part of the 
mesofauna). In both mesh sizes, there was no effect of filter 
treatment on remaining mass in the first 3 months (Figs. 3 
and 4, ESM Table S2) suggesting photodegradation did not 
significantly contribute to the early phase of decomposition. 

After longer periods of decomposition, the effect of filter 
treatments differed only among the litter in 1 mm mesh-size 
litterbags. Significantly less mass remained under the dark 
filters (6%–10% less) than under the other filter treatments 
(ESM Table S3 and Fig. 4).

The effect of filter treatment on remaining mass of oak 
and beech litter depended on neither “time” nor “mesh 
size” (Mesh × Filter × Time interaction: p = 0.439 for oak 
litter and p = 0.960 for beech litter, Table 1, Fig. 3). For 
both oak and beech, more mass remained in the dark and 
no-UV/blue treatments than the full-spectrum treatment 
(ESM Table S4, Figs. 3 and 4), suggesting that the pres-
ence of blue light accelerated mass loss in litter of these two 
species. Beech litter actually gained mass during the first 
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*Dates with significant differences between the filter treatments. Pair-
wise comparisons were performed with the function glht in package 
Multicomp applying Holm’s adjustment. (This figure is available in 
color in the online version of the journal.)
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phase of decomposition, and 9.9% more litter remained in 
the no-UV treatment than the no-UV-B treatment (p = 0.031, 
ESM Table S4 and Fig. 4), i.e. the presence of UV-A radia-
tion contributed to mass loss. There was no significant dif-
ference in mass loss from litter between the no-UV-B and 
full-spectrum treatments among any of the species (ESM 
Tables S3 and S4 and Figs. 3 and 4).

Litter carbon and nitrogen content

The C content of the litter decreased over the decomposi-
tion period following a similar pattern to dry mass, while 
the N content increased in the early phases of decomposi-
tion (ESM Figs. S7 and S8); these relative changes in C and 
N resulted in a decrease in the C:N ratio over time (ESM 

Fig. S9). The effect of filter treatments on both C and N 
content in ash litter changed over time and according to the 
mesh size (Mesh × Filter × Time interaction: p = 0.014 and 
p = 0.048, respectively, Table 2, Fig. 4), suggesting again 
an effect of spectral composition on the interaction between 
different groups of decomposers. In both mesh sizes, there 
was no effect of light treatments on C and N content in the 
first 3 months (Fig. 4, ESM Tables S5 and S6). Following 
decomposition over longer time periods, the effect of filter 
treatments differed only for litter in litterbags with the 1 mm 
mesh size, with a significantly lower C content in the dark 
filters (− 6% to − 9% depending on the treatment) than the 
other filter treatments (ESM Table S7, Fig. 4). Considering 
N content, there was a significant effect of filter treatments 
only for litterbags with mesh size 0.1 mm. In these litterb-
ags, the dark treatment produced litter with a higher N con-
tent (+ 19 to 27% depending on the treatment) than all other 
filter treatments (ESM Table S8, Fig. 4).

For both oak and beech litter, there was no significant 
change in the effect of filter treatments on C and N content 
over time (Table 2, Fig. 4). For both species litter, there 
was no significant difference in C and N content between 
the dark and no-UV/blue treatments (Fig. 4, ESM Tables S9 
and S10). These two treatments had the highest C content 
(Fig. 4, ESM Table S9), suggesting blue light stimulated 
C loss through photodegradation. Likewise, both oak and 
beech litter had the highest N contents in the dark and 
no-UV/blue treatments (Fig. 4, ESM Table S10), a sign 
of greater fungal colonization. For beech litter, the no-UV 
treatment had higher C content than the no-UV-B treatment 
(+ 9.9%, p = 0.031, Fig. 4 and ESM Table S9) implying that 
UV-A radiation was involved in promoting C loss. No sig-
nificant difference in C content between the no-UV-B and 
full-spectrum treatments was found in any of the species’ 
litter (Fig. 4, ESM Tables S7, S8, S9, S10), suggesting that 
UV-B radiation was not involved in the process of C loss in 
our experiment.

Discussion

The main findings of our experiment confirmed our expec-
tations that litter decomposition would be significantly 
affected by solar radiation and its spectral attenuation in 
a temperate woodland, but that these responses would fol-
low a different pattern according to initial litter quality and 
species identity. Oak and beech litter lost the greatest mass 
when exposed to the full-spectrum treatment, compared with 
treatments excluding UV radiation and both UV radiation 
and blue light, but this effect was not detected in ash lit-
ter. By the end of the experiment, litter exposed to the full-
spectrum treatment lost between 20% (oak) and 30% (beech) 
more mass than litter in the dark treatment, and around 20% 

Table 1   ANOVA results for three fixed factors (Mesh: mesh size with 
two levels, Filter with five levels and Time with three levels) and 
their interactions on a single dependent variable: ash-free dry mass 
remaining for the three species’ litter

Degrees of freedom (d.f.), sum of squares (SS), mean square (MS), F 
statistic (F) and p value (p) are presented. Significant terms are shown 
in bold. Non-significant terms were retained since dropping them did 
not significantly affect the model

Factors d.f. SS MS F p

Ash (Fraxinus excelsior L.)
 Mesh 1 140 140.0 8.242 0.005
 Filter 4 492 122.9 7.235 < 0.001
 Time 2 612 306.0 18.019 < 0.001
 Mesh ×  filter 4 795 198.7 11.701 < 0.001
 Mesh ×  time 2 340 170.0 10.007 < 0.001
 Filter ×  time 8 237 29.6 1.743 0.095
 Mesh × filter ×  time 8 299 37.3 2.198 0.032
 Residuals 120 2038 17.0

Oak (Quercus robur L.)
 Mesh 1 61 60.7 1.158 0.284
 Filter 4 1786 446.5 8.517 < 0.001
 Time 2 18,055 9027.5 172.210 < 0.001
 Mesh ×  filter 4 430 107.6 2.053 0.091
 Mesh ×  time 2 381 190.4 3.632 0.029
 Filter ×   time 8 524 65.6 1.251 0.276
 Mesh ×  filter ×  time 8 419 52.4 1.001 0.439
 Residuals 120 6291 52.4

Beech (Fagus sylvatica L.)
 Mesh 1 31 31.4 0.163 0.687
 Filter 4 9881 2470.2 12.819 < 0.001
 Time 2 29,176 14,588.1 75.705 < 0.001
 Mesh ×  filter 4 1190 297.5 1.544 0.1939
 Mesh ×  time 2 337 168.6 0.875 0.4195
 Filter ×  time 8 2323 290.4 1.507 0.162
 Mesh ×  filter ×  time 8 484 60.4 0.314 0.960
 Residuals 120 23,124 192.7
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(both oak and beech) more mass than when both UV radia-
tion and blue light were attenuated. These results develop 
further similar findings from past studies (Newsham et al. 
2001; Messenger et al. 2012; King et al. 2012), showing that 
PAR/visible light interacts with UV-A and UV-B radiation 
to affect decomposition rates in temperate forests.

We are not able to infer the mechanism of response to 
blue light and UV-A radiation from our study. However, 
other experiments have found that lignin is able to absorb 
light in the blue and green range of the solar spectrum (Hon 
and Shiraishi 2001; Austin and Ballaré 2010), which may 
contribute to photochemical mineralization of lignin in the 
cell walls. For instance, Austin et al. (2016) found blue and 
green light to enhance litter decomposition via acceler-
ated lignin breakdown in 23 temperate plant species. The 
increased bioavailability of cell-wall compounds through 
direct photodegradation may also prime this material for 
easier microbial colonization and breakdown by extracel-
lular enzymes (Gallo et al. 2006; Baker and Allison 2015) 
via a so-called photofacilitation effect (Austin et al. 2016). 
In our experiment, exposure to blue light and UV-A radia-
tion increased mass loss, while UV-B did not have any 

effect. Since microbial decomposition can be slowed by 
UV-B radiation (Lin et al. 2015, 2018; Wang et al. 2015), a 
trade-off may occur between the potential of UV-B radiation 
to break down organic matter and its capacity to decrease 
microbial activity and colonization (Verhoef et al. 2000). 
The importance of UV-B radiation in a forest understorey is 
also lessened because only approximately 2% of full sunlight 
is received during the period of canopy closure (Fig. 2).

The C:N ratio of litter from all three species decreased 
during the experiment, as a result of an overall increase in N 
content and a decrease in C content, which is consistent with 
other decomposition studies (Anderson 1973; Xuluc-Tolosa 
et al. 2003). This increase in N over time with declining 
mass has been observed in mesic environments, but it is not 
typical of arid environments where photodegradation plays 
a greater role (Parton et al. 2007). The litter C content in 
all those treatments receiving some portion of sunlight was 
lower than that of the dark treatment, which had the highest 
C content of all three species’ litter at the end of the experi-
ment. These results corroborate an effect of solar radiation 
on C mobilization in a moist temperate forest which is in 
line with previous studies in arid, semiarid and subtropical 
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biomes (Ma et al. 2017; Pan et al. 2015; Wang et al. 2017). 
Litter exposed to the full-spectrum treatment had a lower C 
content than litter receiving no-UV/blue light, in agreement 
with our hypothesis. This result suggests that blue light is 
involved in the breakdown of organic matter, as previously 
shown in a temperate grassland (Austin et al. 2016). Our 
results, together with previous studies, suggest that the PAR 
region of the spectrum is more important for photodegra-
dation than the UV region in a temperate deciduous forest 
such as ours. This is not surprising given the far greater 
contribution of blue light than UV radiation to the received 
irradiance during dormancy in winter and before canopy 
closure in spring (Fig. 2, ESM Fig. S3, Grant et al. 2015; 
Hartikainen et al. 2018).

The filter treatments in our study had a smaller effect on 
ash litter than oak and beech litter. This reflects the impor-
tance of litter quality, and especially high initial C:N ratio, 
in determining the contribution of photodegradation to 
decomposition (reviewed by King et al. 2012), suggesting 
that microbial limitation due to low N content is likely to 
benefit most from photofacilitation. Similar trends occur in 
arid and semiarid environments (Gaxiola and Armesto 2015; 
Day et al. 2015) but are likely to be most relevant in moist 
environments where microbial decomposition dominates and 
the pool of fungal decomposers is far larger (Hodge et al. 
2000). Furthermore, limiting the faunal groups able to colo-
nize the litterbags (using a fine mesh) reduced the effect of 
light treatments on mass loss but increased this effect when 
considering litter N content. Soil fauna and microorganisms 
interact strongly during the decomposition process (Osler 
and Sommerkorn 2007); therefore, the interaction effect of 
our filter treatments with mesh size has implications for the 
relationships among these decomposers. This interaction, 
which is particularly evident in ash litter, suggests that func-
tional groups of decomposers could have been differentially 
affected by spectral attenuation altering overall decomposi-
tion rates. However, further controlled experiments would 
be required to provide a mechanistic explanation for the 
patterns that we report here since our experiment did not 
consider the effect of macrofauna.

Beech litter gained mass during the first 3 months of 
decomposition; a similar increase in mass has been reported 
in studies addressing the first months of beech litter decom-
position (Zeller et al. 2000; Idol et al. 2002; Brandstätter 
et al. 2013). Fungal colonization during the early phases of 
decomposition may account for this, as this is known to be 
particularly intense in beech litter compared to other spe-
cies (Asplund et al. 2018) and fungal biomass can account 
for 23% of total detrital mass (Baldrian et al. 2013; Gulis 
et al. 2009; Gessner and Chauvet 2011). The strong correla-
tion between change in mass and N content in beech litter 
over the first 3 months (r2 = 0.8–0.9 according to light treat-
ment, ESM Fig. S10) suggests fungal colonization was the 

overwhelming process occurring during this period (Ander-
son 1973; Dickinson 1974; Zeller et al. 2000; d’Annunzio 
et al. 2008), presumably aided by the moist environment in 
our litterbags even with perforated filters. The higher N con-
tent of the litter in the absence of blue light and UV radiation 
is likely to be due to higher fungal biomass, because these 
wavelengths are known to inhibit the development of some 
fungi (De Lucca et al. 2012; Verhoef et al. 2000).

In our study of leaf litter decomposition in a moist tem-
perate forest, UV-A radiation and blue light were found to 
have a more important role in photodegradation than UV-B 
radiation. This finding is consistent with other studies in 
similar climatic regions, in a dune grassland (Hoorens et al. 
2004) and in a temperate woodland (Newsham et al. 2001), 
but differs from most arid (Day et al. 2007, 2015) and semi-
arid (Austin and Vivanco 2006) environments studied where 
UV-B radiation typically also increases mass loss. The rela-
tive importance of direct microbial inhibition by UV-B radi-
ation reported in the literature vs. photochemical mineraliza-
tion may provide an explanation for the different net effect 
of UV-B radiation on decomposition in a moist temperate 
ecosystem where biotic decomposition processes are more 
dominant than in drier ecosystems. The importance of pho-
todegradation in arid and semiarid environments as a driver 
of carbon loss during decomposition is well known (Austin 
and Ballaré 2010; Austin et al. 2016); this study allows us to 
extend that finding to temperate forest environments, albeit 
acknowledging that this study focused on decomposition of 
the top layer of surface leaf litter and not buried material. 
Compared to grassland ecosystems, forest ecosystems have 
greater litter thickness and litter mass, and consequently a 
lower ratio of exposed litter. For instance, in the area where 
our study site is located, the typical litter layer thickness 
(OL) is about 1.5 (± 0.6) cm (Aubert et al. 2004), while leaf 
litter production is about 2.5 (± 0.5) t ha−1 yr−1 (Trap et al. 
2011). While the effect of photodegradation will decrease 
with increasing litter layer thickness (Henry et al. 2008 and 
Mao et al. 2018), there remains potential for it to have a 
priming on surface litter, which would subsequently affect 
decomposition of covered litter due to photopriming (Lin 
et al. 2018). Photodegradation is able to mineralise up to 
14% of NPP in arid systems and it is responsible for up 
to 23% of litter mass loss (King et al. 2012; Foereid et al. 
2011); however, data are lacking from temperate forest envi-
ronments. Knowing the role that photodegradation plays in 
decomposition is crucial to understanding its consequences 
for the global carbon cycle in forests, especially under a sce-
nario of climate change. Within this framework, our results 
clearly suggest that parameterization of models designed to 
integrate photodegradation in the global carbon cycle should 
weight the wavelength regions of the solar spectrum differ-
ently, which is not yet the case (Foereid et al. 2011).
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Conclusion

This study found that even under the low solar irradiances 
in the understorey of a temperate forest, photodegradation, 
particularly by UV-A radiation and blue light, remains 
important in accelerating surface leaf litter decomposi-
tion (increasing mass loss by up to 30%). The extent of this 
effect is modulated by litter quality, which itself is known 
to depend on forest succession and light environment. This 
illustrates that sunlight is involved in mediating the rate of 
nutrient cycling in forest soils, not only through primary 
production but also through its effect on decomposition.
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