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I. INTRODUCTION

MPC has proven to be an excellent candidate for controlling complex systems and is now widely implemented in industry for many years [START_REF] David | Application of generalized predictive control to industrial processes[END_REF], [START_REF] Qin | A survey of industrial model predictive control technology[END_REF]. Its parameters N c , N p and λ influence significantly the closed-loop behavior, stability and robustness in a complex manner [START_REF] Qi | Robust stability of model predictive control[END_REF], [START_REF] Ankush | Effect of tuning parameters on performance of first-order plus dead-time processes using generalized predictive control[END_REF]. MPC parameters tuning is, therefore, a challenging issue. Over the last decades, many research efforts have led to the development of MPC tuning approaches, [START_REF] David W Clarke | Generalized predictive control-part i. the basic algorithm[END_REF], [START_REF] Jorge | Model predictive control tuning methods: A review[END_REF], [START_REF] Rc Gutiérrez-Urquídez | Systematic selection of tuning parameters for efficient predictive controllers using a multiobjective evolutionary algorithm[END_REF]. We can classify these methods on three categories:

• The first category includes the analytical methods (more or less numerical-based). Only few work has been published due to the complexity of the problem [START_REF] Shridhar | A tuning strategy for unconstrained siso model predictive control[END_REF], [START_REF] Shridhar | A novel tuning strategy for multivariable model predictive control[END_REF], [START_REF] Bagheri | Analytical approach to tuning of model predictive control for firstorder plus dead time models[END_REF], [START_REF] Bagheri | An analytical tuning approach to multivariable model predictive controllers[END_REF], [START_REF] Gholaminejad | Adaptive tuning of model predictive control based on analytical results[END_REF].

• The second category includes the heuristic methods. It aims to find an approximation of optimal values for the MPC. Different approaches have been extensively published in the literature. Some of them are based on fuzzy logic [START_REF] Mamboundou | Commande prédictive à base d'état adaptive indirecte supervisée par la logique floue[END_REF], [START_REF] Mamboundou | Indirect adaptive model predictive control supervised by fuzzy logic[END_REF], [START_REF] Ali | Automatic tuning of model predictive controllers based on fuzzy logic[END_REF] on genetic algorithms [START_REF] Haber | Optimal choice of horizons for predictive control by using genetic algorithms[END_REF], [START_REF] Ben Aicha | A multivariable multiobjective predictive controller[END_REF] and on neural networks [START_REF] Tohidi | Self-tuning adaptive multiple model predictive control with application to ph control process[END_REF], [START_REF] Han | Nonlinear model predictive control based on a selforganizing recurrent neural network[END_REF]. Other {adnan.yassine@univ-lehavre.fr} choose to use the Analysis of Variance (ANOVA) and nonlinear regression [START_REF] Ebrahimi | Tuning of generalized predictive controllers for first order plus dead time models based on anova[END_REF].

• The third category includes the empirical approaches where the MPC parameters are determined regarding the designer's experience [START_REF] Mohammad B Shadmand | Auto-tuning the cost function weight factors in a model predictive controller for a matrix converter var compensator[END_REF], [START_REF] Valencia | Programmable logic controller implementation of an auto-tuned predictive control based on minimal plant information[END_REF], [START_REF] Chang | Online parameter tuning technique for predictive current-mode control operating in boundary conduction mode[END_REF], [START_REF] Boucher | La commande prédictive[END_REF].

The majority of these methods have a trial-and-error nature, which does not always permit to identify explicitly the robustness area of the control system. None of the published methods deals with a general case of a process whatever its order and none of these methods offers a setting of the control horizon while taking into account the constraints. In this paper, we intend to overcome these limits thanks to our original approach by computing the control horizon while enhancing the numerical condition of the controlled process regarding an analytical method. Important abilities of our approach are highlighted when linear inequality constraints have to be considered. Indeed, the tuning strategy easily integrates the constraints without increasing the calculation effort or undoing the proposed optimization algorithm. Its advantage lies on the fact that it is applicable to any controllable and observable SISO linear system. This paper is outlined as follows: section II reminds the theoretical background on MPC based on state-space representation. Section III highlights the proposed analytical tuning approach for the control horizon. In section IV, a comparative study of the obtained performances on a simulated pH neutralization process is carried out. Simulations results are shown to emphasize the effectiveness of our approach.

II. REMIND ON MODEL PREDICTIVE CONTROL DESIGN

A. Augmented state-space model

Let consider a SISO system represented by the following discrete-time state-space model:

x m (k + 1) = A m x m (k) + B m u(k) y(k) = C m x m (k) (1) 
Where y ∈ R is the output system, u ∈ R the manipulated variable and the row matrix x m is the state variable vector of size n Am . k is the sampling instant (positive value). In (1), A m ∈ n Am ×n Am , B m ∈ n Am ×1 and C m ∈ 1×n Am are the state-space matrices.

In order to design predictive controller, let adopt the formulation of augmentated-state-model with embedded integrators whose advantages have been already discussed [START_REF] Wang | Model predictive control system design and implementation using MATLAB R[END_REF]. Such a formulation has been inspired by the integral functionality [START_REF] David W Clarke | Generalized predictive control-part i. the basic algorithm[END_REF].

The difference of the state and control variables are:

∆x m (k) = x m (k) -x m (k -1) ∆u(k) = u(k) -u(k -1) (2) 
1

By integrating the increments of the variables x m (k) et u(k). Equation (2) becomes:

∆x m (k + 1) = A m (x m (k) -x m (k -1)) + B m (u(k) -u(k -1)) = A m ∆x m (k) + B m ∆u(k).
Now, let consider a new state space vector as:

x(k) = ∆x m (k) y(k)
Finally, the augmented state-space model is as following:

x(k+1)

∆xm(k + 1) y(k + 1) = A Am 0 t m CmAm 1 x(k) + B Bm CmBm ∆u(k) y(k) = C 0m 1 ∆xm(k) y(k) (3) 
Where

0 m = [0 0 • • • 0] is a row matrix of size n Am . The matrices A, B and C of size respectively (n A × n A ), (n A × 1)
and (1 × n A ) (with n A = n Am + 1), constitute the discrete time augmented state-space representation.

B. MPC formulation

As an hypothesis, the system is supposed to be observable and controllable. The incremental control signal vector ∆U of size (1 × N c ) is defined as:

∆U = ∆u(k) ∆u(k + 1) • • • ∆u(k + N c -1) t (4) 
While superscript t denotes matrix transpose. The desired output Y des of size (N p × 1) is:

Y des = y des (k + 1) y des (k + 2) • • • y des (k + N p ) t
Assuming the predicted output vector Ŷ defined by [START_REF] Wang | Model predictive control system design and implementation using MATLAB R[END_REF] 

Ŷ = F x(k i ) + Φ∆U (5) 
where

Ŷ = ŷ(k + 1 | k) ŷ(k + 2 | k) • • • ŷ(k + N p | k) t , F = CA CA 2 CA 3 • • • CA Np t , (6) 
and

Φ =        CB 0 0 ... 0 CAB CB 0 ... 0 CA 2 B CAB CB ... 0 . . . CA Np-1 B CA Np-2 B CA Np-3 B ... CA Np-Nc B        (7)
Let the cost function J to be minimized as follows:

J = (Y des -Ŷ ) t (Y des -Ŷ ) + ∆U t R∆U ( 8 
)
where R is a (N c × N c ) matrix defined by: R = λI (Nc×Nc) [START_REF] Shridhar | A novel tuning strategy for multivariable model predictive control[END_REF] and I denotes the identity matrix.

In order to calculate the optimum value of the manipulated variable, let the partial derivation of J with respect to ∆U as:

∂J ∂∆U = -2Φ t (Y des -F x(k)) + 2(Φ t Φ + R)∆U (10) 
The optimal control sequence ∆U is found by solving [START_REF] Bagheri | Analytical approach to tuning of model predictive control for firstorder plus dead time models[END_REF] equals to zero, which leads to:

∆U = (Φ t Φ + R) -1 Φ t (Y des -F x(k)) (11) 
According to the receding horizon principle, the control signal applied to the process will be the first element of ∆U as:

u(k) = u(k -1) + ∆u(k) u(k) = u(k -1) + I (1×Nc) (Φ t Φ + R) -1 Φ t (Y des -F x(k))
Note that the estimation of the optimal control requires the state vector x(k). Here the control signal is subject to linear inequality constraints as proposed by [START_REF] Wang | Model predictive control system design and implementation using MATLAB R[END_REF]:

U min ≤ U ≤ U max . (12) 

III. ANALYTICAL TUNING OF THE CONTROL HORIZON

This section is devoted to explain the analytical method we propose to tune N c .

Most often in the literature, N c is taken equal to unity as proposed in the guidelines provided by [START_REF] David W Clarke | Generalized predictive control-part i. the basic algorithm[END_REF] and lower than the predicted horizon N p . In fact, considering N c = 1 gives acceptable control performance. A higher N c is recommended when systems to control have unstable poles [START_REF] David W Clarke | Generalized predictive control-part i. the basic algorithm[END_REF].

A. The Hessian condition number

In order to compute analytically the optimal value of N c , the concept of numerical stability is considered. Indeed, the numerical stability concerns mainly the condition number of a square nonsingular matrix [START_REF] Michael | Scientific computing: an introductory survey[END_REF]. Generally speaking, this specific matrix is the Hessian matrix (or just the Hessian) of an algorithm. Dealing with MPC, the Hessian matrix is present in the formulation of the optimal control sequence [START_REF] Keyser | Model based predictive control for linear systems[END_REF]. With the assumption that (Φ t Φ + R) -1 exists, let consider the Hessian matrix H of size (N c × N c) defined as:

H = (Φ t Φ + R) -1 (13) 
To evaluate the conditioning of the Hessian matrix H, one calculates its condition number defined by:

cond(H(k)) = H(k) 2 . H(k) -1 2 = σ max (k) σ min (k) (14) 
Where σ max (k) and σ min (k) are respectively the maximum and the minimum singular values of matrix H. Then, the condition number of a matrix indicates how close a matrix is to be singular: a matrix with a large condition number is nearly singular, wheras a matrix with a condition number close to unity is far from being singular [START_REF] Michael | Scientific computing: an introductory survey[END_REF].

Regarding the literature, different ways exist to improve the condition number of a Hessian matrix: thus [START_REF] Wills | Interior-point methods for linear model predictive control[END_REF] suggests using a numerical stable projection or re-writing the Hessian formulas. [START_REF] Laurí | Data-driven latent-variable model-based predictive control for continuous processes[END_REF] improves the condition number of the Hessian matrix using a latent variable method with MPC. [START_REF] Rojas | An svd based strategy for receding horizon control of input constrained linear systems[END_REF] establishes a strategy combining a singular value decomposition (SVD) and a receding horizon control (RHC) principle to enhance the Hessian conditioning. A sub-optimal control signal is produced by discarding the smallest singular values of the Hessian. De Keyser recommends solving this numerical problem using principal component analysis (PCA) [START_REF] Keyser | Model based predictive control for linear systems[END_REF]. This method looks like the SVD-RHC technique of [START_REF] Rojas | An svd based strategy for receding horizon control of input constrained linear systems[END_REF]. Both approaches cannot systematically leads to satisfactory results in comparison with the method proposed in [START_REF] Wang | Model predictive control system design and implementation using MATLAB R[END_REF], [START_REF] Wang | Use of exponential data weighting in model predictive control design[END_REF] and [START_REF] Wang | Discrete model predictive control using laguerre functions: numerical sensitivity analysis[END_REF]. This one uses an exponential data weighting in the cost function to enhance the Hessian conditioning. This additive weighting technique yields a more straightforward and practical method for engineers and researchers. Here in this paper, we intend to overcome these limits and enhance the condition number of the Hessian matrix by computing analytically the control prediction.

B. Improving the condition number: a dimension reduction problem

As shown in [START_REF] Scattolini | On the choice of the horizon in long-range predictive control-some simple criteria[END_REF] and [START_REF] Marco | An infinite horizon model predictive control for stable and integrating processes[END_REF], high MPC horizons guarantee the system closed-loop stability. Ideally, these values tend towards infinity (N c → ∞, N p → ∞). Then, we notice that the issue of improving the condition number of the Hessian matrix is converted into a dimension reduction problem of matrix H. Thus, when the dimension reduction problem is solved, an optimal value of N c is deduced (Figure 1). In order to reduce the dimension of matrix H, the concept of the effective rank (ER) is considered [START_REF] Roy | The effective rank: A measure of effective dimensionality[END_REF] (Appendix 1). 

C. Relation between the Effective Rank and N c

In this part, we relate the concept of the effective rank with MPC design in order to evaluate the optimum value of the control horizon. The different steps for calculating the optimal value of N c are as follows:

1) Tending N c → ∞ and N p → ∞ (N c < N p, N c ∈ N * and N p ∈ N * ). 2) Taking A ER = H.
3) Evaluating Q defined as follows: 7) Evaluating finally the optimal value of N c by solving the following minimization problem using Yalmip toolbox [START_REF] Lofberg | Yalmip: A toolbox for modeling and optimization in matlab[END_REF]:

Q = min{M ER , N ER } = min{N c, N c} = N c.

4) Decomposing into singular values the matrix H and evaluating the matrix

σ = [σ 1 σ 2 • • • σ ∞ ] t : H = U H D H V H σ 1 ≥ σ 2 ≥ • • • ≥ σ ∞ (15) (16 
     N copt = round(e HShannon(p1,p2,••• ,p∞) ) min cond(H(k)) -1 N copt (17) 
Under the following constraints:

   N c ∈ N * 1 ≤ N c < N p U min ≤ U U max
As a practical advantage, this strategy does not require an apriority knowledge of the minimum rank and it takes no account of the full singular value spectrum [START_REF] Roy | The effective rank: A measure of effective dimensionality[END_REF]. As a conclusion, the smallest control prediction we take, the better condition number is. Thus, the numerical stability is enhanced. Note 1 Linear inequality constraints considered in the MPC do not influence the tuning approach proposed in this paper. Note 2 [START_REF] Wang | Model predictive control system design and implementation using MATLAB R[END_REF] shows that the minimization of MPC horizons enhance the numerical condition of the controlled process. One way to reduce the control horizon is using the concept of the effective rank.

IV. APPLICATION TO A SIMULATED CHEMICAL PROCESS

As a benchmark, a simulated pH neutralization process is considered in this part [START_REF] Michael | Adaptive nonlinear control of a ph neutralization process[END_REF], [START_REF] Nie | Modeling ph neutralization processes using fuzzy-neural approaches[END_REF].

A. Performances criteria

In order to carry out a comparative study between the conventional guideline proposed by Shridhar [START_REF] Shridhar | A tuning strategy for unconstrained siso model predictive control[END_REF] and our approach, the following performance indexes are considered:

1) The stability degree index (SDI) is used to evaluate the system closed-loop stability. It is the difference between the radius of the unit circle and the modulus of the pole most remote from the unit circle centre [START_REF] Mamboundou | Indirect adaptive model predictive control supervised by fuzzy logic[END_REF]:

SDI(k) = 1 -max(|p 1 | , |p 2 | , • • • , |p A N |). ( 18 
)
where

{p 1 , p 2 , • • • , p A N } are the eigenvalues of A cl = A -BK mpc . So the closed-loop system is stable when SDI ∈]0, 1[. 2)
The variance of control signal (VARU) makes it possible to observe the mean value of the square deviations of u(k) from its average as follows [START_REF] Ben | Identification et commande numérique des procédés industriels[END_REF]:

V ARU (k) = u(k) 2 -u(k) 2 ( 19 
)
where ū is the mean of u.

3) The rise time (RT) is from 10% to 90% [START_REF] Ben | Identification et commande numérique des procédés industriels[END_REF]. 4) The settling time (ST) is within 2%. 5) The overshoot (OV) is the overshoot in the output signal. 6) The static error (SE) 7) The control signal energy (CSE) is:

CSE = ST k=0 u 2 (k) (20) 
8) The control effort energy (CEE) is:

CEE = ST k=0 ∆u 2 (k) (21) 
9) The computational load (CL) depends heavily on the control horizon [START_REF] Ben | Identification et commande numérique des procédés industriels[END_REF]. 10) the condition number of H (Cond(H) is computed from equation ( 14).

B. Process description

The considered benchmark is a nonlinear multivariable system. For simplification reasons, we deal with a SISO pH neutralization process. The process consists of acid, base and buffer streams mixed in a vessel. A schematic diagram of the studied process is presented in Figure 2. In the SISO case, acid (HN O 3 ) stream represents the measured system disturbance, the base (N aOH) stream is the control signal and the buffer (N aHCO 3 , N aOH) stream represents the unmeasured disturbance of the system.

The main objective of this part is to control the value of the pH of the outlet stream. In addition, it is assumed that the pH of the outlet stream is measured at a distance from the plant, which introduces a measurement time delay θ. The sampling time T s is set to 8 ms as in [START_REF] Bagheri | An anova based analytical dynamic matrix controller tuning procedure for fopdt models[END_REF].

C. Process linearisation

Since the SISO system is highly nonlinear and for control purpose, we adopt the linear model constructed by [START_REF] Bagheri | An anova based analytical dynamic matrix controller tuning procedure for fopdt models[END_REF] around an operation point (pH = 7) whose the augmented-state representation in the discrete time domain is the following:

A = 0.9102 0 0.0397 1 , B = 1 0.0436 , C = [0 1] . (22) 

D. Tuning parameters

The prediction horizon and the weighting factor values are chosen according to [START_REF] Shridhar | A tuning strategy for unconstrained siso model predictive control[END_REF]. Based on the tuning approach described in Section III, the control horizon is analytically computed as follows:

• Initializing N c = 39, N p = 40 and λ = 0.063. 

+ θ Ts + 1 λ f K 2 f K 2 f 0 Nc = 1 Nc 500 ( 3.5τ Ts -Nc-5 2 ) Nc > 1 0 Nc = 1 Nc 500 ( 3.5τ Ts -Nc-5 2 ) Nc > 1
• Decomposing H into singular values, evaluating σ and computing the Shannon entropy value based on ( 15), ( 16) and ( 27) as:

H Shannon = 0.5530

• Computing the optimal value of N c based on [START_REF] Ben Aicha | A multivariable multiobjective predictive controller[END_REF] as:

N copt = e HShannon(p1,p2,••• ,p∞) = 1.7385 2

E. Simulation test

The tuning strategy detailed in [START_REF] Shridhar | A tuning strategy for unconstrained siso model predictive control[END_REF] propose guideline for tuning a First Order Plus Dead Time (FOPDT) model whose transfer function is, in the general case as follows:

G F OP DT (s) = Ke -θs τ s + 1 (23) 
The proposed tuning equations are shown in Table I. The simulation results are depicted in Figure 3. The parameters II.

The linear inequality constraint of the control signal is taken as: 0 ml/s ≤ u ≤ 25 ml/s. As shown in Figure 3, the fastest response is obtained using Schridhar approach [START_REF] Shridhar | A tuning strategy for unconstrained siso model predictive control[END_REF]. However, this latter leads to the highest VARU, CSE and CEE indices. The best SDI is obtained thanks to the guideline of [START_REF] Shridhar | A tuning strategy for unconstrained siso model predictive control[END_REF] but this method causes a high overshoot and a considerable static-error. The condition number computed with our approach is about 200 times smaller than the one given by [START_REF] Shridhar | A tuning strategy for unconstrained siso model predictive control[END_REF] which indicate a remarkable improvement in the calculation conditions. In conclusion, only with the computation of the control horizon, few performance criteria have been greatly improved. In the work perspective, an analytical method for calculating the prediction horizon and the weighting factor is expected.

V. CONCLUSION

An analytical approach with an enhancement of numerical condition to tune the control horizon value has been proposed in this paper. This approach is dedicated to nonlinear systems around the operating points. Some advantages of our novel approach are highlighted when constraints have to be considered. Indeed, the tuning strategy easily integrates the linear inequality constraints without increasing the computational effort or undoing the proposed optimization algorithm. Future work will aim to find an analytical approach for computing the prediction horizon and the weighting factor.

VI. APPENDIX 1

Effective Rank concept Let consider a complex-valued non-all-zero matrix A ER of size (M ER × N ER ) whose SVD is given by A ER = U ER D ER V ER . Where U ER and V ER are unitary matrices of size (M ER × M ER ) and (N ER × N ER ), respectively, and D ER is an (M ER × N ER ) diagonal matrix containing the real positive singular values:

σ 1 ≥ σ 2 ≥ • • • ≥ σ Q ≥ 0, with Q = min{M ER , N ER }.
Let define for writing simplification σ = σ 1 σ 2 • • • σ Q t and the singular value distribution:

p k = σ k σ 1 (25) 
where . 1 denotes the l 1 norm defined as σ 1 = Q k=1 |σ k | Definition VI.1. Effective Rank The effective rank of the matrix A ER is defined as:

erank(A ER ) = exp H Shannon (p 1 , p 2 , • • • , p ∞ ) (26) 
where H Shannon (p 1 , p 2 , • • • , p Q ) is the Shannon entropy:

H Shannon (p 1 , p 2 , • • • , p Q ) = - Q k=1 p k log p k . (27) 
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 1 Fig. 1. Proposed Nc tuning strategy
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 5 Evaluating the singular value distribution pk with k = [1, 2, • • • , ∞]. 6)Computing the Shannon entropy defined in[START_REF] Keyser | Model based predictive control for linear systems[END_REF].
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 2 Fig. 2. Sketch of the pH neutralization process

Fig. 3 .

 3 Fig. 3. Output and control signals vs. time
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 II MPC PARAMETERS AND PERFORMANCE COMPARISONS OF MPC TUNING METHODS FOR THE PH NEUTRALIZATION PROCESS

		Shridhar and Cooper 1997 [8] Proposed approach
	Ts(ms)	8	8
	Nc	4	2
	Np	40	40
	λ	0.063	0.063
	SDI	0.2850	0.2789
	VARU	37.3001	12.7142
	RT (s)	7.2537	8.3255
	ST (s)	14.2457	15.2734
	OV (%)	1.7938	0
	SE	0.6159	0.2965
	CSE (e + 03)	6.3796	4.8804
	CEE (e + 03)	4.3775	0.4237
	CL	5.8155	4.6622
	Cond(H)	352.3533	1.7244