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Abstract 

In risk analyses, two components are taken into account: (1) hazard analysis, including susceptibility 
and temporal occurrence, and (2) consequence analysis, including characterization of elements at risk 
(EaRs) and their vulnerability. This study focused on characterization of EaRs, in which items are 
spatially displayed and impacted by natural events. Several methods can assess these EaRs through 
expert or engineering approaches. Among the expert approaches, the multicriteria method is more 
flexible and allows integration of a wide range of information in order to characterize and discretize 
different EaRs. Traditionally, the mapping and criteria accuracy of EaRs is the same at all spatial 
analysis scales, while the hazard accuracy changes according to the spatial scales. Therefore, we 
propose an approach based on the selection of different information/criteria among several private or 
open access multiple geographical databases to adapt the mapping and criteria accuracy of each EaR 
according to the hazard analysis spatial scale. After harmonizing the different databases and merging 
them under GIS, a single database per work scale is created through a specific procedure with 
interoperability of results between scales. Thus, the number of criteria used to describe these EaRs will 
depend on the scale of work and the spatial scale of the analysis. To develop and test the 
transposability of this method, three experimental coastal study sites subject to several hazards 
(multirisk) have been selected in Normandy (France) with error estimations ranging between 10% and 
20%. Subsequently, these data can be integrated into risk and multirisk analyses.  

1. Introduction 

In coastal environments, the interaction between nature and societies is particularly high. For 
sustainable management of societies, risk and more specifically multirisk analyses are carried out and 
regularly updated due to global change (climate change and land use evolution). Risk analysis is a 
combination of hazard and consequence assessments, whereas multirisk analysis is a combination of 
several risks. Consequences are the result of an exposed element, called an element at risk (EaR) by 
the scientific community, and its vulnerability to a hazard. In this study, we focus specifically on 
characterization of EaRs that refer to physical injuries or structural or functional impacts that can be 
spatially displayed (Timmerman, 1981; Blaikie et al., 1996; Cutter et al., 2008; Birkmann et al., 2013; 
UNISDR, 2017). Usually, EaRs are only considered inside hazard areas. However, potential 
overextension due to uncertainties in the evolution process require consideration of EaRs outside 
current hazards areas (Papathoma-Köhle et al., 2007; Gallina et al., 2016). 

Two main approach are commonly used to assess EaRs in a territory: engineering and expert 
approaches. Different engineering approaches are available, including curve vulnerability analysis, 
which provides precise descriptions and absolute values of the loss and potential damage depending 
on the hazard (van Westen et al., 2008; Li et al., 2016). However, these methods involve a huge 
amount of data that leads to an in-depth analysis that cannot be replicated everywhere (Petrucci and 
Gullà, 2010). Among the expert approaches, methods such as ranking systems are commonly used in 
French document planning due to their swift implementation potential and low data requirements 
(Malet et al., 2006; MATE/METL, 2016). However, the subjectivity in the choice of variables induces 
difficult comparisons of the results (Kappes et al., 2012). Consequently, a multicriteria method has 
been developed to reduce the uncertainties involved in the use of ranking methods (Malet et al., 2006; 
Puissant et al., 2013). This method consists of assessment using criteria and a weighting system(s) 
index (Puissant et al., 2013; Carlier et al., 2017). The main advantage of this method is its flexibility, 
which allows adaptation to the number of criteria and databases used to describe EaRs (Reghezza-Zitt 
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and Rufat, 2016; Carlier et al., 2017; Puissant et al., 2013). However, the number of criteria used and 
their spatial accuracies must be consistent with the spatial scale analysis.  

Based on this multicriteria method (expert approach), two main objectives are highlighted to enhance 
EaR analysis using multiple scale analysis methods and geographical databases.  

The first objective is to propose consistent accuracy of EaRs in terms of mapping and criteria 
integration according to the spatial scale analysis. The following scales are drawn from scales used in 
hazard analyses (van Westen, 2000; van Westen et al., 2008): (1) small-scale analysis (Carpignano et 
al., 2009) in the range of 1:100,000 – 1:250,000, which is used by regional collectives for strategic 
planning (MATE/METL, 2016), (2) medium-scale analysis in the range of 1:25,000 – 1:50,000, which 
is preferred for identification of critical facilities (Kappes et al., 2011; van Westen et al., 2014), (3) 
large-scale analysis (1:10,000 – 1:25,000), which is used for characterization of infrastructures, such 
as buildings or networks (Puissant et al., 2013; Carlier et al., 2017), and (4) local-scale analysis 
(1:2,000 – 1:10,000), which provides more detailed information about the structural components of 
infrastructures, such as building materials and the date of construction (Kappes et al., 2012; Chen et 
al., 2016). In this study, we consider scales ranging from medium to local-scale analysis. Beyond the 
medium scale, EaRs are not considered accurate. From these different scale analyses, we used multiple 
geographical databases (GDBs) to characterize criteria and describe EaRs.  

The second objective concerns the acquisition and harmonization of multiple databases to assess EaRs 
and their criteria with a coherent degree of detail. The mapping accuracy and criteria integrated to 
describe these EaRs depend of\n the spatial analysis scale (see above). At the global scale, the use of 
remote sensing is privileged; however, at the medium to large scale, the use of GDBs must prevail. 
Three types of GDBs are identified: (1) GDBs provided by institutions under conditions, (2) GDBs 
originating from volunteered geographical information (VGI), which is an open data format, and (3) 
archive documents available under conditions that require digitalization (Foody et al., 2015; Bol et al., 
2016; Olteanu-Raimond et al., 2017). At the local scale, these databases are merged with field data 
acquisition or photointerpretation (Papathoma-Köhle et al., 2007; Lissak, 2012; Puissant et al., 2013; 
Hénaff et al., 2014). Difficulties associated with these different databases are related to harmonization 
and verification of these data and their integration into data warehouses.  

Consequently, the main challenge is defining EaRs and their criteria at different analysis scales using 
multiple GDBs. Multiple EaR scale descriptions and characterization are lacking in risk analyses. 
These terms have been defined at only one analysis scale and then zoomed in (or vice versa), and thus 
the accuracy of the EaRs is the same at a local or watershed scale. Furthermore, various EaRs that are 
incomparable are taken into account in the same analysis, such as biological areas and building 
functions. The development of GDBs has allowed identification of different EaRs at different scales, 
but different datasets must be merged to obtain adequate accuracy after verifying their reliability. The 
use of multiple GDBs will provide a better assessment of EaRs at the medium and large scales. At the 
local scale, field data acquisition is leading to identification of the intrinsic characteristics of buildings. 
Thus, the accuracy (spatial and attribute) varies according to the analysis scale.  

In the first part of this paper, we perform a bibliographical synthesis to identify EaRs and the criteria 
used in different risk analysis contexts. In second part, based on this synthesis, we define a set of 
criteria to characterize EaRs at each spatial analysis scale. In the third part, two data integration 
models are calibrated for EaR assessment at medium and large scales and from the use of multiple 
GDBs. Then, these models are validated by field observation. In the fourth part, transposition models 
are performed at two other study sites in the same region. The fifth part shows the integration model 
results and discusses the adaptability of the models to other study sites and the possibility of updating 
the results obtained at different scales. 

2. Methods 
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The proposed method consists of the following steps: (1) a review to define a different set of criteria 
according to different hazard and risk analyses, (2) the attribution of criteria for each of the three scale 
analyses according to the review, (3) an inventory of existing GDBs, which is necessary for the 
establishment of these criteria, and finally (4) creation of two integration models. 

2.1. Towards a review to define EaRs for different hazard categories 

To propose consistent criteria for a multistage EaR assessment and different types of risk, existing 
methods must be reviewed. In our case, three types of risks are taken into consideration: (1) flood risk 
analysis involving marine and continental flooding, (2) landslide risk analysis involving continental 
and coastal landslide hazards, and (3) multi-hazard risk analysis involving concomitance and cascade 
effects according to current hazards at the three study sites. In our study area, other hazards, such as 
collapse or seismicity, are less significant in terms of damage than hydro-gravitational hazards. At 
least three or more multi-criteria methods were developed for single hazard analysis with 
corresponding analysis scales ranging from 1:50,000 (medium scale) to 1:2,000 (local scale). Thirteen 
methods were reviewed, representing 21 authors (Table 1). 

Of the five different flood analysis methods (eight authors) and fifteen identified criteria, nine 
involved building analyses. Among these criteria, the most important is related to the functions (Kubal 
et al., 2009; Meyer et al., 2009a, b; Scheuer et al., 2011; Vojinovic et al., 2016) and the number of 
floors (Eckert et al., 2012; Hénaff et al., 2014). The secondary criteria used are the type of urbanized 
area (i.e., urban centre, residential area, etc.) and the type of natural surface (Camarasa Belmonte et 
al., 2011; Meyer et al., 2009a, b; Kubal et al., 2009; Scheuer et al., 2011). 
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Table 1. Criteria used for different risk analyses with multi-criteria methods from the 1:2,000 to 1:50,000 scales. 

Method Criteria used Attributes Scenario Country Source 
(1.1)  Flood 
 

Population (residential) Low, large, high density Working day (8-20 h) Spain (Valencia) Camarasa Belmonte et al. (2011) 

Urbanized area (type) Administration, cemetery, etc. Night time (20-8 h) 

Agricultural (type) Arable, citrus tree, etc. Holidays (8-20 h) 

Natural surface (type) Forestry, pasture, lagoon, etc. 
(1.2)  Flood 
(FloodCalc  
Urban) 

Transport (function) Streets, rails 50 Y-flood Germany (Leipzig) Kubal et al. (2009); 
Building (function) Residential, commercial, etc. 100 Y-flood Meyer et al. (2009a, b); 

Urbanized area (type) Fairground, sport, etc. 200 Y-flood Scheuer et al. (2011) 
Building (value) Land value per floor space 

Population (residential) Pop. per building (children, etc.) 

Population (building) School, hospital, kindergartens, etc. 

Natural surface (type) Forest, contaminated sites, etc. 

(1.3)  Flood Building (floors) 1, 2, [3-4], etc. 5 m sea waves Egypt (Alexandria) Eckert et al. (2012) 

Building (material) Concrete, traditional, mortar, etc. 9 m sea waves 

Building (environment) Shoreline distance 

(1.4)  Flood Building (environment) Water depth, distance to refuge, etc. None France (Pays de la Loire) Hénaff et al. (2014) 

(V.I.E.) Building (floors) 1 floor without windows or roof, etc. 
(1.5) Flood 
 

Building (type) Pillar house, two-story house, etc. Activity during event Thailand (Ayuthaya) Vojinovic et al. (2016) 

Building (function) Hospital, police station, etc. Activity after event 

Transport (material) Asphalt roads, gravel roads, etc. 

 
 
 
 
 
 
 
 
 
 



5 
 

Table 1 (continued). Criteria used for different risk analyses with multi-criteria methods from the 1:2,000 to 1:50,000 scales. 

Method Criteria used Attributes Scenario Country Source 
(2.1) Landslide 
(Potential Damage 
Index) 

Building (type) Housing, tourism activity, cemetery, etc. Summer period France (Alpes) Maquaire et al. (2004); 

Building (function) Education, emergency, trade, etc. Winter period Puissant et al. (2006); 

Building (floors) >6, 3-6, <3, etc. Lissak (2012); 

Building (state) Good, moderate, etc. Puissant et al. (2013); 

Building (material) Concrete, traditional, etc. Carlier et al. (2017) 

Building (age) >1900, 1970-1990, etc. 

Population (residential) 0, <3, [3-6], etc. 

Transport (function) Strategic road, servicing road, etc. 

Lifelines (type) Energy lines and power stations 

Urbanized area (type) Cemetery, camping, etc. 

Agricultural (type) Pasture and cropland 

Natural surface (type) Forest, grass, water, etc. 

(2.2) Landslide Building (function) Education, emergency, trade, etc. Summer period Germany (Swabian Alb) Papathoma-Köhle et al. (2007) 

Building (material) Concrete, traditional, etc. Winter period 

Building (age) >1900, 1970-1990, etc. Day time (8-20 h) 

Building (surrounding) Without walls, stone walls, etc. Night time (20-8 h) 

Building (floors) >6, 3-6, <3, etc. 

Transport (function) Strategic road, servicing road, etc. 

Lifelines (type) Energy lines and power stations 

Urbanized area (type) Cemetery, camping, etc. 

Agricultural (type) Pasture and cropland 

Natural surface (type) Forest, grass, water, etc. 

(2.3) Landslide Building (state) With (or less) damage None Italy (Volturno) Cascini et al. (2013) 

Road (state) With (or less) damage 

Urbanized area (type) Historical centre, residential area, etc. 
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Table 1 (continued). Criteria used for different risk analyses with multi-criteria methods from the 1:2,000 to 1:50,000 scales. 

Method Criteria used Attributes Scenario Country Source 

(2.4) Landslide Building (material) Stone masonry, concrete, etc. None Italy (Ancona) Uzielli et al. (2015) 

Building (surrounding) Without walls, stone walls, etc. 

Building (floors) >6, [3-6], <3, etc. 

Building (age) >1900, 1970-1990, etc. 

Building (foundation) Plinths, strip footing, etc. 

(2.5) Landslide Building (function) Administration, industrial, etc. None Italy (Volterra) Bianchini et al. (2017) 

Urbanized area (type) Campground and touristic complex 

Agricultural (type) Croplands, vineyards, etc. 

Natural surface (type) Grassland, wood, etc. 

Transport (function) State highway, toll road, etc. 
(3.1) Multi-hazard 
(Relative  
Vulnerability  
Index) 

Building (material) Stone masonry, concrete, etc. Day (summer/winter) France (Barcelonnette) Kappes et al. (2012); 
Building (floors) >6, [3-6], <3, etc. Night (summer/winter) van Westen et al. (2014) 

Building (surrounding) Without walls, stone walls, etc. Earthquake 

Building (warning signal) Presence (or absence) of warning signal Landslide 

Population (residential) Pop. per building (children, elder, etc.) Flood 

Population (vulnerable) Hospital, schools, etc. Storm 

(3.2) Multi-hazard Building (floors) >6, [3-6], <3, etc. River floods Romania (Nehoiu Valley) Godfrey et al. (2015) 

Building (surrounding) Openings towards slope, slope, etc. Flash floods 

Building (material) Cracks in structure, maintenance, etc. Slow moving landslide 

Building (foundation) Plinths, strip footing, etc. Debris flows 

(3.3) Multi-hazard Building (function) Commercial, residential, factory, etc. River floods Italy (Fella river valley) Chen et al. (2016) 

Building (material) Brick, concrete, masonry, etc. Debris flows 

Building (value) [750 - 5.000 €], [5,000 - 10.000 €], etc. Flash floods 
Population (tourism) [1-2 people per building], etc. Major to frequent event 

Urbanized area (type) Place of worship, recreational, etc. 
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Considering five different landslide risk analysis methods (table 1), fifteen criteria were identified to 
characterize the EaRs. Among them, nine focused on building analysis to define their functions, 
including the number of floors, construction materials and age (Maquaire et al., 2004; Papathoma-
Köhle et al., 2007; Lissak, 2012; Puissant et al., 2013; Uzielli et al., 2015; Bianchini et al., 2017; 
Carlier et al., 2017). Similar to flood risk analyses, other common criteria used include the 
urbanization type and agricultural and natural surfaces (Cascini et al., 2013; Bianchini et al., 2017). 

For the multi-hazard analysis, three different methods (table 1) considered nine criteria to characterize 
the EaRs. Among them, eight criteria concerned building analyses to define their functions, including 
the number of people, number of floors and surroundings (Kappes et al., 2012; van Westen et al., 
2014; Godfrey et al., 2015; Chen et al., 2016). The EaRs and criteria for all of these methods are 
described in Fig. 1.  

Fig. 1. Synthesis of the identified EaRs and the criteria used for the 13 multi-criteria methods (expert 

approach) based on three hazard types: flood, landslide and multi-hazard. 

The cross-analysis of twenty-one identified criteria (floods, landslides and multi-hazards) highlights 
buildings as the most important component, representing 60% of the total number of criteria.  

Among the 13 methods, the criteria most commonly used to characterize buildings are as follows:  
- the function within the study site (economic, administrative, cultural, etc.) (7 occurrences); 
- the number of floors (7 occurrences);  
- the construction materials (5 occurrences); and 
- the surroundings (5 occurrences). 

The secondary criteria taken into account are as follows: 
- the type of urbanized areas (7 occurrences) and 
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- the natural surfaces (6 occurrences).  

The third criteria taken into consideration are as follows: 
- the type of agricultural surfaces (4 occurrences); 
- the number of people by building (4 occurrences); and 
- the type of transport network (3 occurrences). 

Criteria with fewer than two occurrences are considered non-representative components, such as the 
transport network material (Vojinovic et al., 2016) or building foundation type (Godfrey et al., 2015).  

For each paper analysed, two patterns are noticeable in the choice of different criteria. For the first 
pattern, authors take all components of the territory into consideration, including natural surfaces, 
network transport and buildings (Puissant et al., 2013; Bianchini et al., 2017; Carlier et al., 2017). The 
weighting of criteria places the EaRs considered non-significant in the background with low weights. 
For the second identified pattern, the authors focus on only a few elements in the territory, such as 
buildings with different descriptions (Kappes et al., 2012; van Westen et al., 2014; Godfrey et al., 
2015; Chen et al., 2016). This approach allows analysis of different criteria with the same importance 
in the index weight. However, it prevents taking into account the different constraints present at the 
study site. The method proposed in this paper takes into account these two different approaches 
according to the scale analysis. 

2.2. Set of criteria adapted for multi-scale analyses 

Hazard analysis is well established in the literature and planning documents and operates through 
multiple spatial scales ranging from global to local. Thus, hazard mapping of the gain of accuracy and 
more details are integrated according to the spatial scale. However, in traditional EaR studies in which 
only one scale is considered, the spatial accuracy is the same at each scale (simply zoomed in or vice 
versa) (table 1). Consequently, the EaR details are the same at each spatial scale. In this context, the 
aim is to provide different sets of criteria to describe EaRs according to various scale analyses with a 
goal of improving EaR assessment methods.  

Van Westen et al. (2000, 2008) defined a four-scale analysis for risk assessment from small (greater 
than 1:50,000) to local (less than 1:10,000) scales. In the small-scale analysis, the accuracy is not 
sufficient to define the EaRs and distinguish the various components of the territories. Consequently, 
this analysis scale is not considered in this paper.  

In the medium-scale analysis (from 1:50,000 to 1:25,000) (Fig. 2a), the aim is to provide spatial 
information about all components and constraints of the study sites (overall analysis), such as 
protected areas or agricultural surfaces. This scale analysis must provide global information about the 
main components of the territories, critical facilities, future development of the territory or the main 
resources available in the area (Dilley et al., 2005; Armaş et al., 2016). The use of one criterion to 
characterize different EaRs in the territory (1. built-up area, 2. roads and lifelines, 3. urbanized area 
and 4. agricultural and natural surfaces) allows all EaRs to be pooled within the same analysis. 
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Fig. 2. Spatial and attribute accuracies of EaRs at three analysis scales with the same spatial extent.  

The purpose of the large-scale analysis (from 1:25,000 to 1:10,000) (Fig. 2b) is to identify physical 
injury and structural and functional impacts of infrastructure components (Maquaire et al., 2004; 
Malet et al., 2006; Lissak et al., 2013; Puissant et al., 2013; Carlier et al., 2017). These infrastructures 
are buildings and transport-energy systems. In contrast to the medium scale, the focus of this scale is 
to compare similar EaRs (infrastructures such as buildings, roads, etc.) and to avoid over- or 
underestimation.  

In this context, (1) physical injuries are defined based on the estimated population by building (Kubal 
et al., 2009; Scheuer et al., 2011; Kappes et al., 2012; van Westen et al., 2014; Chen et al., 2016) and 
road traffic, (2) functional impacts are defined based on the economic function of each building and 
the road and lifeline type, and (3) structural impacts are defined by both the type and number of floors 
of each building and by the number of lanes (road, highway, etc.). Moreover, agricultural and natural 
areas are not taken into account at this analysis scale, because the scale cannot consider the site 
specificity, such as biodiversity, economic gain or loss or productivity by plot (Ženka et al., 2016; 
Ernoul et al., 2018). 
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In the local-scale analysis (from 1:10,000 to 1:2,000) (Fig. 2c), the aim is to obtain a better assessment 
of the structural elements related to building. The focus of this analysis scale is to provide better 
information about different forms of vulnerability (Kappes et al., 2012; Papathoma-Köhle et al., 2017). 
Thus, for each building, five criteria can be used to characterize the structure: (1) the construction 
material, (2) the number of floors, (3) the construction type, (4) the date of construction and (5) the 
building condition. These criteria, which are complementary to the large-scale analysis, require the 
acquisition of field data and should be limited to a few buildings (Lissak, 2012). 

2.3. Geographical databases used in integration models 

The use of multiple GDBs to identify EaRs at different scales is a recent addition to risk analyses due 
to the development of multiple data platforms and sources (Jokar Arsanjani et al., 2015; Calazans 
Campelo et al., 2017; Johansson et al., 2017). These different platforms and sources represent an 
alternative to traditional data collection from the field or photointerpretation (Defossez et al., 2017; 
Ambrosi et al., 2018). In this paper, multiple GDBs were integrated for the medium- and large-scale 
analyses, and local-scale field data were promoted.  

Three types of GDBs are available for open access or under conditions (Table 2). The GDBs produced 
by national institutes are regularly updated and controlled. Consequently, confidence in these GDBs is 
particularly high.  

Table 2. Sources and data used for characterization of the EaRs in the medium-scale (M), large-scale 
(L) and local-scale (l) analyses. 

Range Source Data provided Updated M L l 

G
lo

ba
l 

Open Street Map (OSM) 

1. Building (surface, function, type, name) 2018 � � � 

2. Land use (surface, type, name) 2018 � � � 

3. Natural area (surface, type, name) 2018 � 

4. Place (surface, type, name) 2018 � � � 

5. Network (type, name) 2018 � � 

N
at

io
na

l (
F

ra
nc

e)
 

IGN1 (BD TOPO®) 

1. Traffic network (surface, type, name, state, etc.) 2017 � � 

2. Lifeline (type, tension, operating) 2017 � � 

3. Natural area (surface, type) 2017 � 

4. Building (surface, height, function, type) 2017 � � � 

5. Land use (surface, function) 2017 � � 

CdL2 
1. Protected area (surface, name) 2011 � 

2. Land cover (type) 2011 � 

RPG3 1. Agricultural plot (surface, type) [2007–2016] � 

INSEE4 1. Tiles_200*200 (population) 2010 � 

INPN5 1. Protected area (surface, type, name) 2017 � 

Notary/INSEE 1. Land price (value) 2018   � 

R
eg

io
na

l 

CETE6 1. Building (surface, date) 2011 
  

� 

MOS Normandy7 1. Land use (surface, type, function) 2009 � � 
 

L
oc

al
 

PLU/PLUi8 1. Land use (surface, function) [2007–2018] � � 
 

 
Field data and 
photointerpretation 

Building (Material construction, condition) 2018   � 

1IGN (National Geographic Institute); 2CdL (Coastal conservatory); 3RPG (Graphical Parcel Register); 4INSEE (French 

National Institute for Statistic and Economic Research); 5INPN (National Inventories for Cultural and Natural Heritage); 
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6CETE (Public Works Regional Engineering Centres); 7MOS Normandy (Normandy Land Cover); 8PLU/PLUi (urban 

planning documents). 

The second type of GDB comes from (2) VGI (Foody et al., 2015; Bol et al., 2016; Olteanu-Raimond 
et al., 2017), which is an open data format, such as Open Street Map (OSM). Multiple associations or 
users supply the GDBs produced by this institution. These GDBs are updated in near real-time but 
require an audit before integration with other GDB types.  

The third type of GDB comes from archive documents available in municipalities, such as the Local 

Urbanism Plan (PLU) or the Intercommunal Local Urbanism Plan (PLUi). New platforms, such as 
Geoportail Urbanism, are increasingly being developed. This platform provides digitalized urban 
documents with geo-referencing and harmonized data. The confidence in these data is high, but 
verification is required when the data update is long-standing. 

At the medium scale (1:50,000 – 1:25,000), (1) built-up areas and (2) road and lifeline types are 
defined through the BD TOPO® (provided by IGN) and OSM databases (Table 2). For (3) urbanized 
areas, we assign a higher importance to official urban documents (PLU/PLUi), which are regularly 
updated but are not available for all municipalities. Municipalities without official urban planning are 
subject to National Urban Planning Regulations. The MOS Normandy substitutes for urban documents 
when the municipalities are subject to the National Planning Regulation. This database is available for 
Upper Normandy and is provided by the Normandy region (last updated in 2009) to obtain 
information about land cover and land use. The (4) agricultural and natural areas are defined based on 
four data sources. The agricultural areas are defined with RPG, which provides information about the 
crop type, and official urban documents define the boundaries of agricultural surfaces. Natural and 
protected surfaces are defined with BD TOPO® and the INPN and CdL databases. 

At the large scale (1:25,000 – 1:10,000), most information concerning buildings, roads and lifelines is 
collected from BD TOPO® because of the spatial accuracy of the database. The OSM database is also 
used to complete the information obtained from BD TOPO®. In the results, the function and type of 
buildings are defined using this combination of data sources. To define physical injury, the function of 
the building and the number of floors must be known. In addition to these datasets, a third database 
(INSEE) can be exploited to obtain information about the number of people living in specific areas 
(200*200 tiles). Then, a weighting system can be used to estimate the population per building 
(physical injury). 

At the local scale (1:10,000 – 1:2,000), data about the building condition and construction material are 
gathered by photointerpretation or field data acquisition. The spatial footprint of the building comes 
from databases defined at the large scale. The construction date is available in the CETE databases and 
is provided under conditions. A complementary database is available concerning land prices at the 
communal scale (notarial database) to estimate the costs or benefits of buildings on the study sites. 

2.4. Integration models 

Once all criteria are defined (2.2) and the dataset is identified (2.3) for all analysis scales, the next step 
is the extraction, transformation and loading of GDBs into a final data warehouse (Biljecki et al., 
2018; Hanus et al., 2018; Yılmaz and Canıberk, 2018). This step, which is called the ‘integration 
process’ (pre-processing, input data, processing, and output Fig. 3 and 4), concerns only the medium- 
and large-scale analyses. Therefore, two integration models are produced to obtain adapted data 
corresponding to each scale. The first step (pre-processing) consists of delineation of the study area 
and extraction of the associated database. Concerning the input data shown in figure 3, the number 
following the source name corresponds to the data provided in table 2. Third, to initiate the processing 
step and to automate data standardization, an extra pretreated file is added. Therefore, these models 
two models extract data from database identify, transform (new classification) geometric primitives 
and/or attribute tables and load them in a final data warehouse.  
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For the integration model in the medium-scale analysis, thirteen databases from seven sources are used 
(Fig. 3). The aim is to obtain (1) built-up areas by simplification of attribute data and erosion-
dilatation of the spatial extent of buildings. For (2) roads and lifelines, the road width information 
allows the spatial extent determined by the buffering process to be defined. At this scale, only the type 
is used to characterize the EaRs. The main difficulties concern (3) urbanized areas and (4) agricultural 
and natural areas because of the importance of the information provided by each GDB. For each 
criterion, the cleaning process consists of a visual check (photo-interpretation and field survey) to 
identify possible inconsistencies between different attribute fields in case of conflict between two 
information sources. 

Fig. 3. Integration model for the medium-scale analysis with primitive visual scripting tools (model 

builder under the GIS environment). 

For the second integration model in the large-scale analysis (Fig. 4), the native resolution has been 
kept for the spatial extent of buildings to determine the four criteria (type, function, number of floors 
and estimated population). The number of floors and estimated population require complementary 
calculations. The type and function of buildings are defined from five data sources. BD TOPO® 
provides some of this information and can be completed by the OSM database, urban documents or 
regional databases. For network characterization, the spatial extent is the same as that of the medium 
scale, but more criteria are integrated in the analysis. Thus, we focused on the types of roads and 
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lifeline, the number of lanes in each road and the traffic density. BD TOPO® provides all of this 
information. 

Fig. 4. Integration model for the large-scale analysis with primitive visual scripting tools (model 

builder under the GIS environment). 

To estimate the population of each building (for physical injuries), we must define (1) the living space 
(m²), (2) number of floors, and (3) building footprint. Some authors use a unique average floor height 
value to identify the number of floors for all buildings (Zhao et al., 2015; Martani et al., 2018). BD 
TOPO® provides information about the minimal and maximum heights of each building in the 
territory from photogrammetry (< 1 m accuracy). However, at our study sites, the height of the floors 
significantly varies according to the building type. Therefore, we have used the European standards 
defined by the Council on Tall Buildings and Urban Habitat (CTBUH) to define the average floor 
height for different building types (Table 3). For the maximum height based on the building type and 
European standard, we have defined the number of floors by dividing the maximum height by the 
average elevation of floors for each building type. 

Table 3. Average floor elevation (f) based on European standards for different building types. 

European standards f (m) 
House 3.0 
Apartment 3.1 
Office 3.9 
Mixed use 3.5 
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Other 3.1 

CTBUH. 2015. Height Calculator. http://www.ctbuh.org/ 

For the criterion ‘estimated population by building’ (Logan et al., 2016), the INSEE database was 
associated with the total living space of each residential house, apartment and mixed-use building 
(Fig. 5). To obtain the living space, we have multiplied the number of floors by the surface area for 
residential buildings (Azad et al., 2018). Based on the population census, INSEE provides GDBs 
based on the number of people living in a 200 m × 200 m mesh size over all of the French territory. 
The population by mesh (i) has been reassigned for each residential building according to the total 
living space (Ls) of each building by mesh. 

 

Fig. 5. Calculation model for the number of floors and estimated population by residential building 

(house, apartment and mixed use). 

For the local-scale analysis, the CETE database has been used to obtain the date of building 
construction at the three study sites. The building condition and material construction have been 
acquired by photointerpretation or field campaign for a few buildings in selected areas according to 
their hazard proximity (Lissak, 2012; Letortu, 2013; Fressard, 2013). The spatial accuracy of the 
buildings and their types are obtained from large-scale databases in the data warehouse. 

3. Study sites 

Three study sites have been selected in French coastal environments (in the Normandy region) with 
distinctive characteristics to test the reliability and transposability of this method. These experimental 
study sites are affected by a range of hazards and issues and are located on the hedge (north-west) of 
the Parisian sedimentary basin. The first territory extends from Houlgate to Honfleur and covers 
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149 km² (Fig. 6). This site is the interface between the Touques River and the sea in the cuesta 
context. The average elevation is between 130 and 200 m with formation of a thick clavey-marly 
layer. The major problems of the first study site are linked to flash flood issues (Delahaye, 2008; 
Douvinet et al., 2015) at the valley bottom, coastal and continental landslides (Maquaire, 2000; 
Fressard, 2013; Lissak et al., 2013) and marine submersions (Letortu, 2013; Costa et al., 2014). 

Fig. 6. Locations of the study areas. These three study sites are prone to multiple hazards in urbanized 

areas located in the valley bottoms. 

The second territory is east of Le Havre and extend from Quiberville to Puys (161 km²). Three stream 
valleys (La Saâne Valley, La Scie Valley and L’Arques Valley from west to east) are arranged in 
alternating sequences with a chalky plateau (150 m altitude). Problems related to the second site are 
due to cliff retreat and rockfall (Costa et al., 2002, 2014; Dewez et al., 2013; Letortu et al., 2014), 
followed by the overflowed river in the valley bottom coupled with storm submersion and the 
relationship between the atmospheric pressure and climate indications (Laignel et al., 2008; Delmas et 
al., 2012; Turki et al., 2015). Lastly, runoff at the river basin head regularly leads to flash floods 
(Douvinet et al., 2015). 

The third territory is east of Dieppe and extends from Criel-sur-Mer to Ault (174 km²). This study site 
is similar to the second site and contains the Yères Valley and La Bresle Valley from west to east. The 
average altitude is between 100 and 120 m. This site has been the subject of resettlement of people 
from an integrated risk management perspective (Meur-Férec, 2006). This type of management 
actually leads to strong societal constraints with risk prevention plans at this site (MATE/METL, 
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2016). In this third study site, the identified risks are similar to those of study site n°2 (cliff retreat, 
flash flood, and continental and marine floods).  

All three territories benefit from a large number of GDBs from national or regional public 
organizations (i.e., the BD TOPO® databases), research observatories and academic databases but 
have a lack of visibility concerning the spatial evolution of different hazards related to climate change 
and the evolution of concomitant areas (Delmonaco et al., 2006; Marzocchi et al., 2009; van Westen et 
al., 2014).  

4. Results 

The results and margins of error of the two integration models will be presented successively based on 
the analysis scale. The two models are first developed at study site n°1. Then, they are validated by 
random sampling with a 5% margin of error at the same site. Once the models are validated, they are 
transposed to study sites n°2 and 3. The different data warehouses produced from the two models can 
be used for multifunctional applications in terms of mapping, statistical analysis or land use and cover 
analyses. 

4.1. Integration processes in the medium-scale analysis: land use and cover mapping 

For the medium-scale analysis, thirteen databases are required to cover the 484 km² of the three 
studied territories. To provide simplified EaR information, the built-up area has been classified into 
eight categories and represents 1.7% (site n°1) to 2.7% (site n°2) of the total land area. Seven 
categories have been defined for roads and lifelines that represent between 1.8% and 2.3% of the total 
area. The average proportion of urbanized area varies from 12% (site n°3) to 20% (site n°1) and is 
defined in twelve categories. Natural and agricultural surfaces represent proportions between 76% 
(site n°1) and 82% (site n°2) and are divided into eight categories (Fig. 7). 
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Fig. 7. Cumulated surface or linear areas for the four EaR types identified at the three study sites in 

coastal environments from thirteen GDBs. 

The use of a unique GDB has proven insufficient to characterize all of the EaRs. In the case of 
urbanized areas, urban documents (urban plans) provide accurate information for residential areas 
(collective or housing), urban centres or areas to be urbanized. All of these urbanized areas represent 
36% of the final adequate information (Fig. 7). To add information for farms, administrative areas, 
industrial areas, commercial areas, health centres and camps sites, BD TOPO® has been essential and 
has been associated with OSM databases to provide 64% of the global information. 

OSM databases are particularly accurate (type and function) in highly urbanized areas, such as urban 
centres, and allow detection and rectification of some erroneous data (cleaning process). For natural 
and agricultural surfaces, urban documents provide information on boundaries but are insufficient to 
define the crop type. Consequently, the combination of the RPG and IGN databases provides 
information about crop, forest, and hedge types and about protected areas with the INPN and CdL 
databases (Fig. 8).  
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Fig. 8. Spatial representation of the databases for the medium-scale analysis at study site n°1. 

The temporal accuracy of the GDBs at the medium scale is directly linked to database updates. 
Updates of urban documents depend on municipalities. The IGN databases are upgraded every year, 
and the OSM databases are updated every day. Consequently, medium-scale databases must be easily 
and regularly updated. Prospectively, urban documents integrate land reserves (areas to be urbanized) 
at 15-year and 30-year terms, which enables predictions of future land use/cover changes (Johnson and 
Iizuka, 2016; Stehman et al., 2018) using non-random patterns. To ensure spatial accuracy, footprint 
data from public institutions have been prioritized for the VGI and digitalized data. 

The data validation is based on the attribute accuracy. To validate EaR attributes, four EaRs have been 
identified (build-up, roads and lifelines, urbanized areas, and agricultural areas), and several items 
have been randomly selected. The number of chosen items is computed according to Cochran’s 
formula (2007) (5). Then, each sample is checked by a field audit and photointerpretation with World 
Imagery (ESRI) or using Google Street View (Google). 
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where e is the number of items, Z is the Z-score with a 95% confidence level, e is the desired level of 
precision at 5%, p is the estimated proportion of an attribute that is present in the population and q is 
1-p. 

Table 4. Attribute validation of the data warehouse for the medium-scale analysis with a margin of 
error of 5%.  

Element at risk Built-up Roads and lifelines Urbanized areas 
Agricultural and 

natural areas 
Total 

Number of items 23,978 9,117 1,129 7,441 41,665 
Sample size 379 369 287 367 1,402 
Validation 336 369 260 339 1,304 

Non-identifiable* 25 0 12 0 37 
Error 43 0 27 28 98 

Validity 88.7% 100.0% 90.6% 92.4% 92.9% 

 

Regarding our results, the built-up area accuracy varies between 85% and 90%. Roads and lifelines 
have the best accuracy, with 100% of the sample validated. Urbanized areas and agricultural and 
natural surfaces have an accuracy greater than 90%. Consequently, the margin of error of the data 
warehouse for the medium-scale analysis is below 10%, and the confidence degree is defined as 
sufficiently important for use in multifunctional applications.  

4.2. Mapping, integration process and assessment of the calculation model for the large-scale analysis 

At the large scale, the analysis is carried out for buildings, roads and lifelines. Four criteria have been 
defined: the type, function, number of floors and estimated population. The population is estimated for 
each building type (2.4). Thus, particular attention is given to the building type and function 
assessments to provide more accurate information. The model was run and validated at study site n°1 
before being transposed to study sites n°2 and n°3. 

To define the building types and functions, three GDBs have been used at study site n°1 (BD TOPO®, 
OSM databases and urban plans). Due to the spatial accuracy of the BD TOPO® database, it is used as 
a basis for the final database (especially for the location and building function items). BD TOPO® 
provides type and function information for 5% of the 31,251 buildings identified at site n°1 (Table 4). 
By integrating the OSM databases, the degree of information increases by 30%. A first cleaning phase 
is performed at this point in cases with conflicting information. For example, a building can be 
specified as an industrial building in BD TOPO® and as a commercial centre in the OSM databases. 
Consequently, field validation is performed to correct the final database (cleaning phase of the model 
in figure 4). Urban documents (PLU/PLUi) can complete missing information by defining residential 
buildings and specifying their types (housing or apartments). 

Table 5. Number of buildings by type and function at study site n°1 at different integration phases. 

Criterion 1 (type) It.1 It.2 It.3 Criterion 2 (function) It.1 It.2 It.3 
House 0 0 13,101 Residential 0 0 19,630 
Apartment 0 0 6,525 Commercial 57 250 250 
Office 0 126 126 Industrial 985 1,009 1,009 
Farm 169 215 215 Farm 169 215 215 
Industry 985 1,009 1,009 Administrative 26 72 72 
Mall 57 125 125 Education 68 68 68 
Castle  31 40 40 Health 0 37 37 
Church 37 66 66 Tourism 0 219 219 
Monument 27 27 27 Energy  188 188 188 
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Station 2 2 2 Leisure 0 164 164 
Warehouse 0 3,315 3,315 Transport 2 2 2 
Tower 7 7 7 Garage, shed, etc. 0 9,331 9,331 
Complex 23 164 164 Religion 37 66 66 
Shed/hut 12 6,530 6,529 Unknown 29,719 19,630 0 
Unknown 29,901 19,625 0     

It.1 is the first iteration with integration of the IGN databases, It.2 is the second iteration with 
integration of the OSM and IGN databases, and It.3 is the third iteration with integration of 
PLU/PLUi, OSM and BD TOPO®. 

For study site n°1, the height is missing for 5,426 building (17% of the global data). The margin of 
error (root mean square error (RMSE) 6) of the estimated population calculation (2.4) has been 
defined by comparison between the observed and predicted numbers of floors for 381 buildings. 

���� =  �∑�������²
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 (6) 

where Fo is the number of floors observed, Fp is the number of floors predicted and n is the total 
amount of sample. 

With this calculation model, 80% of the supplied information is accurate (table 6), and the number of 
floors of one building tends to be overestimated with an RMSE at 0.78 (Fig. 9). Hence, the calculation 
model can be improved but is considered reliable enough for use at this analysis scale. 

 

Fig. 9. Differences between observed and predicted floors for 381 buildings. 

Once these criteria have been defined, the number of people in a 200 × 200 m mesh from INSEE are 
distributed in residential buildings according to their living space (Fig. 10). Roads and lifelines are 
extracted from BD TOPO® and are incorporated precisely in the medium-scale database. 
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Fig. 10. 3D mapping for the large-scale analysis with different criteria for a portion of study site n°1. 

Similar to the medium-scale analysis, data from the large-scale analysis are validated with randomly 
picked items, and the sample size has been defined with Cochran’s formula (5). At this scale, the audit 
covers the criteria linked to buildings. The confidence degree of BD TOPO® concerning roads and 
lifelines is considered sufficiently important (Table 5) but has not been double checked. Furthermore, 
no data are available for the estimated population, and verification of this information is particularly 
complex because of the impossibility of determining the exact number of people per building in the 
field. This information is recorded in city halls but is not disseminated. Therefore, this criterion cannot 
be verified. 

Table 6. Determination of the confidence level of GDBs for the large-scale analysis (building) with a 
margin of error of 5%. 

Element at risk 
Building 

(type) 
Building (function) 

Building (number of 
floor) 

Building (estimated 
population) 

Total 

Number of items 31,319 31,319 31,319 ND 31,319 
Sample size 381 381 381 ND 1,143 
Validation 339 349 307 ND 995 

Error 42 32 74 ND 148 
Validity 88.9% 91.6% 80.6% ND 87.1% 

ND is non-documented. 
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In view of the obtained results, the type of building has an accuracy between 85% and 90%. The 
economic function has better accuracy at greater than 90%. The number of floors is the least accurate 
with 80% of the sample validated. Consequently, the margin of error of the data warehouse for the 
large-scale analysis is approximately 13% and is considered sufficiently accurate. 

4.3. 3D mapping of structural components in the local-scale analysis for EaRs located in hazard-prone 
areas 

The third scale concerns the analysis of EaRs at a local scale and focuses on structural aspects of the 
buildings. This analysis must be carried on few elements that are highly sensitive to various processes 
(flood, landslide, etc.) and consequently occur in hazard-prone areas. At study site n°1, plans for 
natural risk prevention have been used to identify the number of sensitive EaRs. Of the 31,251 
buildings, 13,142 (42%) are located in hazard-prone areas. Among them, 8,685 (28%) are affected by 
landslides, 4,197 (13%) are located in flood zone areas (Fig. 11) and 260 (1%) may be affected by 
both flood and landslide hazards. 

Fig. 11. EaRs identified in flood zone areas for a 1.2 m water level at the local scale. 

The model was applied to study sites n°2 (Fig. 12) and n°3. In fact, all municipalities in study site n°1 
have harmonized urban documents (PLU/PLUi). Only 4 out of 21 PLU/PLUi at study site n°2 and 2 
out of 23 are found at study site n°3. An alternative solution has been found to replace missing 
PLU/PLUi with other GDBs. The MOS Normandy database produced in 2009 at the regional scale 
provides the data sources for the two other study sites. The transposition of this model and these tools 
can be considered for other coastal or continental sites but requires adaptation of local GDBs.  
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Fig. 12. Replicability of the integration models with updated data from 2017 for study site n°2. 

5. Discussion 

The results from the data models at the medium (1:50,000 – 1:25,000) and large scales (1:25,000 – 
1:10,000) depend largely on the spatial resolution and accuracy of the input databases. At each of three 
study sites, the level of accuracy of the input dataset is considered according to the geometry 
delineation and data attribute precision, database completeness, importance of the provided 
information, and semantic and temporal accuracy (Kresse and Fadaie, 2004; Girres and Touya, 2010). 
In the case of volunteered geographical information (VGI), such as the Open Street Map (OSM) 
databases (Haklay, 2010), there are offsets in the spatial footprint (Brovelli et al., 2016) but good 
attributes and temporal accuracy due to regular updating by users. To resolve this issue, the geometry 
accuracy of BD TOPO® has been used as a reference, because it provides highly accurate building, 
network and natural surface locations (Betaille et al., 2016). Then, spatial information from other 
databases has been integrated into BD TOPO®. 

The results of our medium-scale analysis model are satisfactory (> 90%) due to harmonized 
intercommunal urban documents (last updated in 2012) for the whole of study site n°1. This accuracy 
will tend to decrease according to the availability and time validity of these documents at other study 
sites. The results concerning built-up areas (15% uncertainty) are mainly linked to erosion followed by 
expansion, which are partially generalized and can generate mistakes in attributed data (particularly in 
highly urbanized areas). In the large-scale analysis, uncertainties mainly concern computation of the 
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number of floors (20% uncertainty). In addition, this uncertainty increases if cellars are considered 
(actually, none of the data provide this information, because the method used to compute the number 
of floors concerns exclusively aboveground elements). The criteria concerning the building type and 
function and the roads and lifelines are high (≥ 90%) due to merging of the OSM and BD TOPO® 
databases. Concerning building characterization, the highest density of urban areas increases the 
accuracy of this attribute thanks to the VGI databases. In the local-scale (1:10,000 – 1:2,000) analysis, 
data are collected in the field, through photointerpretation or using software (such as Google Street 

Map), and thus the confidence degree is highest. 

The main challenge of our study is the standardization phase of the various databases. This step is 
crucial for the models. For the medium-scale model, thirteen databases are needed to extract, 
transform and load the final data warehouse (Johansson et al., 2017), and seven databases are needed 
for the large-scale model. Generally, this standardization phase is based on Urban Atlas, Corine Land 
Cover, OSM or GMESUA standardization (Jokar Arsanjani et al., 2015; Calazans Campelo et al., 
2017). However, these terminologies are adapted to define land use or land cover in the small-scale 
analysis, and adaptation is necessary to describe EaRs at the medium, large and local scales. 
Furthermore, one EaR has one or more criteria, and an increased number of criteria for the same 
element enhances the complexity of the integration phase. 

Checking whether the information provided for specific criteria is sufficiently precise or requires an 
upgrade with another database represents a difficulty. To check the correct connection between the 
input and upgraded data, defining the order of the execution model is fundamental. This step includes 
knowing the degree of information and importance provided by each database. For example, urban 
documents (PLU/PLUi) provide the first information for agricultural areas, but no information is given 
about the agriculture type. The RPG database provides information on the use of individual 
agricultural plots (Cantelaube and Carles, 2014) through volunteered geographical information. The 
combination of these two databases provides information about the official limit of the agricultural 
area, limit of the plots and type of agricultural plots. 

Once integration and transformation are completed, a verification and cleaning process is performed to 
avoid inconsistencies or missing information. This phase is more complex for the large-scale model 
than for the medium-scale model due to the number of criteria that need to be checked. In certain 
cases, conflict exists between information provided from two different databases. For example, BD 
TOPO may have identified the function of a building as an industrial building, while the OSM 
database indicates that this industrial building is actually a shopping centre. Therefore, the verification 
requires further analysis by field observation, photointerpretation or use of software, such as Google 

Maps or Google Earth. After this phase, the degree of confidence for all data produced must be 
assessed according to verification of the margin of error. The random sampling process (Cochran, 
2007) has shown than the margin of error is below 10% at the medium scale and is approximately 15% 
at the large scale. Consequently, the confidence degree of the produced data is defined as sufficiently 
important for use in multifunctional applications and by multiple users. 

The time validity of GDBs is a recurring issue in the literature (Devillers and Jeansoulin, 2006; Zhang 
et al., 2018). This question highlights the problem of upgrading and managing spatial data (Fonte et 
al., 2017). Near real-time systems have begun to be developed (Yılmaz and Canı berk, 2018) but 
require significant resources and will depend on the type of data integrated. At the three study sites, 
the OSM databases are updated every hour and are the closest source of near real-time data. BD 
TOPO® is updated every year (Girres and Touya, 2010), and the other databases are updated every 
two years, five years and more for urban documents. This question of updates will directly impact risk 
assessment and management. As shown in Fig. 12, buildings destroyed during the summer of 2013 
(Michoud et al., 2013) appear on orthophotographs from 2012 but are missing from the 2017 version 
of the GDBs. The two models presented at the medium and large scales have been planned for 
relatively fast and easy upgrades. The main constraint and time spent updating will be linked to the 
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standardization or transformation phase in the case of a new element to be incorporated. These models 
are optimized for annual updates. 

The replicability of models at study sites n°2 and n°3 have be applied quickly. The main difficulties 
are related to integration of new databases at the medium and large scales that do not exist at study 
site n°1. Furthermore, unlike those of study site n°1, urban documents are not harmonized at study 
sites n°2 and n°3. Only four of twenty-one urban documents at study site n°2 and two of twenty-three 
at study site n°3 were available. Other communes were found in the National Urban Planning 
Regulation. Therefore, the MOS Normandy database has been used to make up for the absence of 
these urban documents. For study site n°3, eleven of twenty-three communes are located in other 
departments and have no urban documents. Therefore, the CdL database, which provides information 
about land cover, has been used to fill the data gaps, and then the type of urban area has been 
identified by photointerpretation. Similar to the data updates, the main difficulty in transposing the 
models is the standardization and transformation of the input data. A complete inventory of datasets 
available for the study sites and their quality is required before executing the models. 

In other countries, the replicability of the methods will depend on the amount of data available. In 
Europe and Greenland, forty-one national agencies have been identified (Olteanu-Raimond et al., 
2017) that acquire topographic data, such as the National Geographic Institute of Belgium or National 
Land Survey of Finland. The combined use of national and VGI databases (Bol et al., 2016) will 
significantly increase the accuracy of the data even more if the countries have data in administrative 
units with urban documents. 

6. Conclusion 

The geographical database produced from institutional, volunteered geographic information and 
archive sources allowed elements at risk analysis at three scales. Analysis at the medium scale shifted 
the emphasis to surface analysis, which compared different elements present at the same site on the 
same basis. Large-scale analysis adds additional information about infrastructure to the analysis based 
on integrated physical injury of people in each building and the functional and structural aspects. 
Finally, the local-scale analysis takes into account intrinsic parts of the infrastructure by integrating 
material construction, surroundings, date of construction, etc. Therefore, these GDBs are set for 
multifunctional usage through a series of spatial or attribute requests for extraction of 2D or 3D maps 
or statistical elements. 

In the medium-scale analysis, the elements at risk are characterized using four criteria (type) with 
uncertainties of less than 10%. In the large-scale analysis, the uncertainties are approximately 15%. In 
the local-scale analysis, no uncertainties exist, because the data are collected from field observations, 
photointerpretation or using software (such as Google Street View). Consequently, determining the 
confidence degree of each data warehouse for different analysis scales is sufficiently important prior to 
their use in potential consequence analyses. 

From these GDBs, the objective will be to set up an index from criteria obtained using a weighting 
system, such as the Potential Damage Index (Maquaire et al., 2004 ; Malet et al., 2006 ; Puissant et al., 
2013 ; Carlier et al., 2017), Relative Vulnerability Index (Kappes et al., 2012 ; van Westen et al., 2014) 
or fuzzy logic method (Thiery et al., 2014; Castillo Soto, 2012; Grekousis and Thomas, 2012; 
Fressard, 2013; Potter et al., 2016). This quantification will serve to assess potential consequences at 
the three study sites a priori of hazard-prone areas. Finally, these potential consequences will be 
coupled with vulnerability analysis for each type of hazard in a multi-risk analysis approach (Godfrey 
et al., 2015; Chen et al., 2016). 

Finally, this method can be transferred to technical services for risk analyses to increase the 
assessment of elements at risk in the Risk Prevention Plan (PPR in France). The quick installation of 
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this method at different study sites supports the integration of physical, infrastructural and functional 
components. 
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