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Abstract
The volume-based scale distribution is the 3D extension of 2D surface-based scale distribution originally defined by
Dumouchel et al. (2008). It allows characterizing the multi-scale features of shapes with complex morphology. It
thus appears as an attractive metric for characterizing the primary atomization process where liquid structures are
generally not spherical. On the other hand, curved surfaces such as liquid-gas interfaces can also be well repre-
sented by differential geometry and the use of intrinsic observables such as the two principal curvatures. In this
study, we use results from differential geometry to build analytical bridges between the volume-based scale distribu-
tion and the geometry of the liquid-gas interface (namely the surface area, the mean and Gaussian curvatures). We
also present some links between these quantities and the statistical moments of ’equivalent’ systems constituted of
either sheets, cylinder or droplets.
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Introduction
Among the spray characteristics, the droplet size-distribution is generally considered as one of the most important
quantity [11]. For any spray engineering system, the latter needs to be assessed, predicted and controlled with
respect to the requirements of a given industrial or domestic application [12]. The droplet size-distribution is well
defined in the far field of the spray for which the notion of size reduces to only one variable, i.e. the droplet diameter.

The formation of stable droplets constituting the spray results from the successive fragmentations and/or coales-
cence of liquid structures which detach from the bulk liquid stream. This mechanism mostly takes place in the
so-called primary atomization zone [2]. Experimental and numerical investigations in this particular region of the
flow have evidenced liquid structures of very rich and complex morphologies which cannot be described by a unique
length-scale. Therefore, one needs some more complex tools to describe the scale-distribution. Ultimately, such
new observables should comply with the following requirements:

(i) they ought to apply to any type of morphologies from the primary atomization zone down to the dilute spray
region.

(ii) they should unambiguously define the notion of scale(s) which then can be easily translated in the physical
world for being experimentally or numerically measured.

(iii) they should ’degenerate’ to the usual droplet size distribution as we progress towards the far field.

As far as we are aware, there exist only two approaches fulfilling these requirements: the Volume-based Scale
Distribution (VSD) [4, 3] and the Surface Curvature Distribution (SCD) [7, 1]. The VSD is the 3D extension of the 2D
surface-based scale distribution initially introduced by [4]. It was designed for liquid structures of arbitrary shapes to
be characterized. It was largely inspired by the Euclidean Distance Mapping method [8] which is used for quantifying
fractal characteristics of corrugated interfaces in the plane. In 3D, it reads as the volume comprised between the
liquid-gas interface and a surface translated by a given distance in the interface normal direction. The VSD is thus
readily measurable and the notion of scale (the distance between the two surfaces considered) is clearly defined.
The time evolution of the surface-based scale distribution during jet atomization has been analysed in the light of
the heuristic scale-entropy diffusion model proposed by Queiros-Conde [14] (see [5, 6]). A transport equation can
thus be assigned to the VSD. Another immediate corollary of the application of the VSD is the notion of equivalent
systems [4]. Is called equivalent system, a system made of an ensemble of geometrically simpler elements (e.g.
spheres) characterized by its numeric, length, surface and volume distributions which ultimately leads to the same
VSD as the actual measured system. This allows conceptualizing a real system made of liquid structures of complex
shape as a system characterized by virtual diameter-distributions. As a consequence, the VSD translates directly
into the usual numeric, length, surface and volume droplet distributions in the far field.

The Surface-Curvature-Distribution (SCD) is a very recent approach [7, 1]. It is an elegant attempt to extend the
concept of droplet size distribution to non spherical surfaces, thereby allowing the full atomization process (from
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the liquid injection to the dilute spray formation) to be described within a single analytical framework. The Surface-
Curvature-Distribution finds its foundation of some results of differential geometry and reads a joint probability
density function of finding H and G (the mean and Gaussian curvatures, respectively) at some point on the liquid-
gas interface. This, together with distribution of the surface area and liquid volume, is expected to provide a more
complete set of geometrical metrics for characterizing objects of any shapes. Introducing the mean and Gaussian
curvature allows defining the local characteristic scales of the interface as the local radius of curvature. In the SCD
framework, the droplet size distribution becomes a particular case pertaining only to spherical objects for which
H2

“ G “ 4{D2 (D is the droplet diameter). The SCD is thus an attractive observable since it naturally degenerates
to the usual drop-size distribution in the far field of the spray. In [7] the SCD is further supplemented by transport
equations for H and G in the line of Pope’s illuminating paper [13]. This potentially allows providing a closed set
equation for modelling the SCD in the context of e.g. the Eulerian-Lagragian-Spray-Atomization (ELSA) model.

After introducing the SCD, Canu et al. [1] make the following statement: "A connection [of the VSD] with curvatures
is surely present but further investigations are required on this point". The present paper precisely aims at exploring
the link that could exist between the VSD and the SCD. We also intend to provide insights into the analytical relations
between the VSD, the SCD and the more usual numeric, length, surface and volume distributions of equivalent
systems. The present paper is purely analytical and for the most technical part of the analysis, inspiration was
found in the mathematical field of differential geometry.

The paper is organised as follows. First, the definition of the VSD is recalled, and light is shed on a simple way of
evaluating it from the level-set and volume-of-fluid fields. Then we will proceed with the application of differential
geometry to a liquid-gas interface of arbitrary geometry. This will allow highlighting a very close relation between the
successive derivatives of the VSD and moments of the SCD. Then, the notion of equivalent system is introduced,
with particular emphasis on the relation between the VSD, the SCD and the size-distributions of an ensemble of
constitutive spheres, cylinders and sheets. Conclusions are drawn in a last section.

The volume-based scale distribution
The volume-based scale distribution noted E3pdq is defined as the volume comprised between two surfaces parallel
surfaces S0 and Sd, separated by a distance d{2 in the normal direction n (Fig. 1). Generally S0 characterizes
the liquid-gas interface while Sd can be any surface parallel to it, either in the liquid side (d ą 0) or in direction of
the gas phase (d ă 0). Because d can be taken arbitrarily, there exists an infinite number of such parallel surfaces
and E3pdq is defined for all d. The parallel surfaces have for implicit parametrization Γpxq “ d{2 where Γpxq is the
well-known level-set scalar field, which is defined as the minimum euclidean distance between x and S0.

S0

Sd

d

2
n

Figure 1. Synthetic illustration of E3pdq, i.e. the volume comprised between two parallel surfaces S0 (dark gray surface) and Sd
(light gray surface) separated by a distance d{2 in the normal direction n.

In practice, the VSD is inferred by computing the total volume-of-fluid present within the iso-volume Γpxq ě 0 from
which is subtracted the one within the iso-volume Γpxq ě d{2, viz

E3pdq “

¡

@xPR

φ pΓ pxq ě 0q d3x´

¡

@xPR

φ

ˆ

Γ pxq ě
d

2

˙

d3x (1)

where φpxq is the volume-of-fluid (VOF) field, delimited by the iso-surface Γpxq “ d{2. φpxq “ 1 in zones where
Γpxq ą d{2, φpxq “ 0 for all x where Γpxq ă d{2 and 0 ă φpxq ă 1 when Γpxq “ d{2 Using this definition for E3pdq,
it becomes readily accessible from numerical codes using interface tracking methods (e.g. the ARCHER code [10],
the Paris-simulator [9], etc) for which one can easily have access to both the level-set and VOF fields.
The iso-volume Γpxq ě d{2 and the iso-surface Γpxq “ d{2 are sometimes referred to as the eroded volume and
surface, respectively. This term makes reference to the erosion operation which is the method used to compute
E2pdq (the surface-based scale distribution) from experimental binary images.

This work is licensed under a Creative Commons 4.0 International License (CC BY-NC-ND 4.0).



ILASS – Europe 2019, 2-4 Sep. 2019, Paris, France

By definition, the level-set field forms a set of parallel surfaces. Such type of surfaces has been intensively described
in a number of textbooks devoted to differential geometry (e.g. [16]). In the following, we apply such elaborations to
provide a theoretical expression for the volume-based scale distribution.

Differential geometry of parallel surfaces
For analytical purposes, E3pdq is more easily computed when the surface is described in terms of intrinsic coor-
dinates instead of the implicit parametrization introduced before. In this vein, let ξ1 and ξ2 be the intrinsic surface
coordinates attached to a surface S0 at point p0 and aligned with the principal directions of curvature. Let e1 and e2

denote the unit normal vector tangential to the parametric curves ξ1,2 “ const. Then n “ e1 ˆ e2 is the unit normal
vector to S0. pe1, e2,nq forms an orthogonal triad of unit vectors attached to S0 at point p0 as represented in Fig. 2.

~e1

~e2

~n

ξ1

ξ2

Figure 2. (b) Synthetic representation of the intrinsic curvilinear coordinate system attached to the surface S0 at a given point p0

A surface Sd, which is at constant distance d{2 along the normal of S0, is said to be parallel to S0. Then the point
pd is related to p0 by

pd “ p0 `
d

2
n (2)

Eq. (2) serves as a transformation that relates the Cartesian coordinates px1, x2, x3q to the new coordinate system,
and can be inverted to express pξ1, ξ2, dq in terms of px1, x2, x3q. Results from differential geometry provides the
scale factors or Lamé coefficients

h1 “ p1`
d

2
κ0
1q (3a)

h2 “ p1`
d

2
κ0
2q (3b)

h3 “ 1 (3c)

which are used in the computation of the vector differential operators. Here κ0
1 and κ0

2 are the principal curvature of
S0 at point p0 in the ξ1- and ξ2-directions, respectively. The scale factors are also useful to express the elementary

volume between two parallel surfaces separated by a distance
d

2
, viz.

d3V “
1

2
p1` κ0

1
d

2
qp1` κ0

2
d

2
qdξ1dξ2dd

“
1

2
p1`H0d` G0

d2

4
qdξ1dξ2dd (4)

H0 “ pκ
0
1`κ

0
2q{2 and G0 “ κ0

1κ
0
2 are respectively the mean and Gaussian curvature of S0. The volume Vd comprised

between two parallel surfaces separated by a distance d{2 then writes

Vd “
1

2

ż

ξ1

ż

ξ2

ż d

0

p1`H0δ ` G0
δ2

4
qdξ1dξ2dδ

“ S0
d

2

„

1` xH0y0
d

2
` xG0y0

d2

12



(5)

where

S0 “

ż

ξ1

ż

ξ2

dξ1dξ2 (6)

is the surface area of S0 and x y0 denotes the area weighted average over S0, i.e.

x‚y0 “
1

S0

ż

ξ1

ż

ξ2

‚ dξ1dξ2 (7)
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We can also write an expression for the area of the surface Sd

Sd “ S0

„

1` xH0y0 d` xG0y0
d2

4



(8)

For the principal curvature component, we have

κdi “
κ0
i

1` κ0
i
d
2

(9)

so that the mean and Gaussian curvature of Sd write

Hd “
H0 ` G0

d
2

1`H0d` G0
d2

4

(10a)

Gd “
G0

1`H0d` G0
d2

4

(10b)

Surface averages over Sd of the latter quantities write

xHdyd “
S0

Sd

„

xH0y0 ` xG0y0
d

2



(11a)

xGdyd “
S0

Sd
xG0y0 (11b)

The scale-based volume distribution noted E3pdq is by definition equal to Vd as expressed by Eq. (5). Successive
derivatives of E3pdq with respect to d (noted with the prime) write

e3pdq “ E1
3pdq “

S0

2

„

1` xH0y0 d` xG0y0
d2

4



(12a)

e1
3pdq “ E2

3 pdq “
S0

2

„

xH0y0 ` xG0y0
d

2



(12b)

e2
3pdq “ E3

3 pdq “
S0

4
xG0y0 (12c)

By virtue of Eq. (8), (11a) and (11b), the area, mean and Gaussian curvatures of any surface Sd separated from S0

by a distance d{2 can thus be related to e3pdq, e1
3pdq and e2

3pdq as

Sd “ 2e3pdq (13a)

xHdyd “
e1
3pdq

e3pdq
(13b)

xGdyd “
2e2

3pdq

e3pdq
(13c)

Therefore Eqs. (13) highlight the link between the volume-based scale distribution and some geometrical features
of the liquid-gas interface. More precisely, we prove that e3 “ E1

3, e1
3{e3 and 2e2

3{e3 is a measure of the surface
area, the area weighted average of the mean curvature and Gaussian curvature of the system eroded by a distance
d{2. Therefore, successive derivatives of the VSD at d “ 0 are directly related to the statistical moments of the
SCD. These conclusions will remain valid as long as the different normal segments ensuing from different points on
the surface do not cross each other. This effect is generally referred to as the Huygen’s effect and will translate in
deviations between E3pdq and Vd. This effect is expected to appear for scales

|d{2| ě min
S0

p
1

|k01|
,

1

|k02|
q (14)

Because d can take any values, and as long as |k01|, |k
0
2| are finite, we can thus always define a sufficiently small d

for the analytical correspondence between E3 and Vd to hold. At the limit, it applies to d “ 0. When |k01| “ |k
0
2| “ 0

as in the case of a sheet, then d should be smaller than the sheet thickness.
Previous results from the application of differential geometry can be illustrated for some simple geometries. Con-

sider first a cylinder of diameter D and length L (hereafter L “ 1 without loss of generality). The volume based
scale distribution writes

E3pdq “
πD

2
d

„

1´
d

2D



(15a)

e3pdq “
πD

2

„

1´
d

D



(15b)
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which yields Vd and Sd{2 as given by Eq. (5) and Eq. (8), recalling that, for a cylinder, S0 “ πD, H0 “ ´1{D and
G0 “ 0. Secondly, for a sphere of radius D, the volume based scale distribution writes

E3prq “
πD2

2
d

„

1´
d

D
`

d2

3D2



(16a)

e3prq “
πD2

2

„

1´
2d

D
`
d2

D2



(16b)

which again is equivalent to Vd and Sd{2 given that for a sphere S0 “ πD2, H0 “ ´2{D and G0 “ 4{D2.
Another important result of differential geometry is the so-called Gauss-Bonnet theorem, which relates the geometry
(its curvature) and the topology of the surface considered. For a bounded compact 2D surface, the theorem states
that

ż

G0dξ1dξ2 “ xG0y0 S0 “ 2πχ (17)

where χ, the Euler-characteristic, an integer, is a topological invariant. This means that two homeomorphic surfaces
have the same Euler characteristic. For instance, ovoïds share the same Euler characteristic as spheres (χ “ 2) and
a torus is topologically identical to a cylinder (χ “ 0). Further, because eroded systems are topologically invariant,
then xGdyd Sd should be constant, independent of d. This is indeed verified by Eq. (11b). When the system M
under consideration is made of N disconnected I objects then χpMq “ N ˆ χpIq. This property indicates that
the atomization process, i.e. the successive break-up/coalescence of liquid structures, as inferred from the Euler
characteristic, is quantized in that sense that it can only take discrete values. Simiarly to the work by [7, 1], the
Gauss-Bonnet theorem then appears as a nice way of computing the numeric droplet distribution from the SCD or
the VSD.

Equivalent system of spheres, cylinders and sheets
The notion of equivalent system, which dates back to [4], relies on the observation that two different systems
can have the same VSD. Consider a real system with a given E3pdq. Next, consider another system made of
geometrically simpler constitutive elements (spheres, cylinder, ...) characterized by its numeric F0pDq, length F1pDq,
surface F2pDq and volume F3pDq cumulative distribution (where D is the typical size of the constitutive element).
The latter system is said to be equivalent to the former if their VSD are equal.
In [4], was considered the example of 2D mono- or poly-size projected spheres (i.e. disks). Here, our contribution
is twofold: first we consider the 3D case and extend the analysis to other constitutive elements which leads us to
explore the case of spheres, cylinders and sheets. For all such elements, we consider the dependence to only one
scale parameter noted D, i.e. the sphere diameter, the cylinder diameter (its length being 1), the sheet thickness
(the other two dimensions being 1). Then, the VSD and its derivatives can be written for

• An equivalent system of spheres

E3pdq “ N
π

2

ˆ

D3
30

3
F3pdq `

D2
20

2
d r1´ F2 pdqs ´

D10

2
d2 r1´ F1 pdqs `

d3

3
r1´ F0 pdqs

˙

(18a)

e3pdq “ N
π

2

`

D2
20 r1´ F2 pdqs ´ 2dD10 r1´ F1 pdqs ` d

2
r1´ F0 pdqs

˘

(18b)

e1
3pdq “ Nπ p´D10 r1´ F1 pdqs ` d r1´ F0 pdqsq (18c)

e2
3pdq “ Nπ r1´ F0 pdqs (18d)

• An equivalent system of cylinders

E3pdq “ N
π

2

ˆ

D2
20

2
F3pdq `D10d r1´ F1 pdqs ´

d2

2
r1´ F0 pdqs

˙

(19a)

e3pdq “ N
π

2
pD10 r1´ F1 pdqs ´ d r1´ F0 pdqsq (19b)

e1
3pdq “ ´N

π

2
r1´ F0 pdqs (19c)

e2
3pdq “ N

π

2
f0pdq (19d)

• An equivalent system of planar sheets

E3pdq “ N pD10F3 pdq ` d r1´ F0 pdqsq (20a)

e3pdq “ N r1´ F0 pdqs (20b)

e1
3pdq “ ´Nf0pdq (20c)

e2
3pdq “ ´Nf 1

0pdq (20d)
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where f0 “ F 1
0 and f 1

0 “ F 2
0 . In practice, the equivalent system is found by assuming a given functional for the

cumulative distributions FipDq (e.g. a lognormal, a generalized Gamma distribution) and adjusting its parameters in
such way to fit the VSD of the measured system. When doing so, our experience had showed that the constraints
imposed on the equivalent system are more stringent for spheres than they are for cylinders, than they are for
sheets. This is explained by the geometrical constraints that are more strict for spheres than they are for cylinders
(one degree of freedom, its length, being released) than for sheets (two degrees of freedom being released).
Consequently, while it is always possible to match a given VSD by an equivalent system of sheets, it is not possible
to describe all real systems by an ensemble of cylinders and there exists an even lower number of real systems
being possibly fitted by spheres. Furthermore, a careful analysis of Eqs. (19d) & (20d) reveals that a real system
with non-zero Gaussian curvature can possibly be described by an ensemble constitutive elements whose Gaussian
curvature is zero (cylinders or sheets). This incongruity is translated mathematically in Eq. (19d) where we observe
that f0p0q can differ from zero (the probability of finding a cylinder of zero diameter is possibly not zero) or in Eq.
(20d) by f 1

0p0q ‰ 0. Similarly, a real system with non zero mean curvature can always be described by an ensemble
of sheets. This becomes possible as soon as f0p0q ‰ 0, meaning that the equivalent system possibly possesses
sheets of zero thickness.
We have shown that the correspondence between E3pdq and Vd (and their derivatives) as illustrated in the previous
section holds at the limit for d “ 0 (for the liquid-gas interface). Therefore, it is possible to draw illuminating
connections between (i) statistical moments of the SCD (the mean and Gaussian area weighted curvatures), (ii) the
VSD and its derivatives and (iii) the ’mean diameters’ of equivalent systems. These are summarized in Table 1

Diff. Geom. Vol. Distrib. Sphere Eq. Cylinder Eq. Sheet Eq.

VL E3p8q Nπ
D3

30

6
Nπ

D2
20

4
ND10

S0 2e3p0q NπD2
20 NπD10 2N

xH0y0
e1
3p0q

e3p0q

´2

D21

´1

D10
´f0p0q

xG0y0
2e2

3p0q

e3p0q

4

D2
20

2

D10
f0p0q ´2f 1

0p0q

Table 1. Summary of the interlinks between differential geometry, the volume-based scale distribution, and the mean diameters
of constitutive spheres, cylinders and sheets of the equivalent systems. VL is the total liquid volume

Table 1 indicates that there exist explicit relations between the mean diameters (Dij) of equivalent spheres, cylinders
or sheet distribution and the volume, surface and curvatures of the actual liquid-gas interface. Also appears N the
total number of elements constituting the equivalent system. In case of spheres, it can be easily obtained through
the Gauss-Bonnet theorem, i.e. 4πN “ xG0y0 S0. For cylinders it writes πN “ ´xH0y0 S0, for sheets N “ S0{2. By
further examining the sphere column in Table 1, it appears that a new interpretation ofD21 can be given, highlighting
that D21 is the diameter of a sphere having the same area weighted mean curvature than the actual system.
Table 1 also provides a simpler way of calculating the parameters of the pdf used to fit the actual system. For
instance in the case of sphere constitutive elements, given that VL, S0, xH0y0 and xG0y0 are known, one can access
the values for D30, D20 and D21 from which the most appropriate parameters of the chosen expression for f0pdq
can be directly calculated. To say it differently, inferring VL, S0, xH0y0 and xG0y0 allow generating a size-distribution
of an equivalent ensemble of cylinders, spheres, or sheets.
It is worth stressing that the analysis presented here could have nice potential notably for improving Lagrangian
spray models such as e.g. the Eulerian Lagrangian Spray Atomization (ELSA) model [15]. Indeed, instead of
transporting only D32 as usually done in Lagrangian models, one could generate a full size-distribution at the
condition that xH0y0 and xG0y0 are known (together with the usual surface density and liquid volume fraction) before
switching to the Lagrangian part of the solver. This requires however either resolving additional modelled (closed)
equations for the transport of the mean and Gaussian curvatures or switching directly from an interface capturing
method (e.g. VOF, level-set, etc) which allows computing H0 and G0 directly to a Lagrangian model.

Conclusions
The present study is motivated by the need of observables capable of describing the full atomization process,
from the liquid injection to the dilute spray region. Light was shed on two supposedly different approaches, the
volume-based scale distribution [4] and the surface curvature distribution [7, 1]. Both seem attracting because
they generalize the notion of drop-size distribution to liquid structures of arbitrary shapes. Spherical droplets then
become a special case so that such approaches naturally degenerate to the usual drop size distribution in the far
field of the spray.
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Our main goal was here to explore the possible links that could exist between the VSD and SCD. Both are purely
geometrical quantities. It was therefore quite intuitive to tackle this problem on pure geometrical grounds. By using
rather simple tools from the mathematical discipline of differential geometry, we have highlighted that successive
derivatives of the VSD with respect to the scale d can be simply expressed as a function of statistical moments of
the SCD, namely the surface area, the mean and Gaussian curvatures. This is one the main result of the present
study as it provides a clear answer to the aforementioned statement of Canu et al. [1].

This has led us reinterpreted the notion of equivalent system [4] in the light of these new findings. We considered
in particular equivalent system made of an ensemble of spheres, of cylinders and sheets. We were then able
to express the different mean diameters of the equivalent system to the liquid volume, surface area, mean and
Gaussian curvatures. By doing so, a new interpretation of the D21 has been provided, which reads as the diameter
of the sphere having the same area weighted average mean curvature as the actual system.

An obvious corollary is that one can possibly generate a full size-distribution of spheres, cylinders or sheets once a
minimal number of informations about the liquid-gas interface are known. For instance, we showed that in addition
to the surface density and liquid volume fraction, the mean and Gaussian curvatures are essential metric of the flow
under consideration. This could be interesting for modelling the spray evolution in the context of e.g. Lagrangian
spray models such as the ELSA framework. This however requires disposing of sufficient informations about H0

and G0. Clearly, this encourages us better explore the time and space evolution of H0 and G0 in the line of recent
studies [7, 1].
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