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Background 

ALK Tyrosine Kinase Inhibitors (ALK TKIs) have demonstrated efficacy in the treatment of 

ALK-rearranged Non-Small Cell Lung Cancer (NSCLC), but the disease eventually 

progresses in all patients. In many cases, resistance to ALK TKIs arises through ALK 

mutations. Although clinical and biological data suggest variations in TKI efficacy according 

to the mechanism of resistance, ALK mutations are still rarely investigated in routine practice.  

Material and methods  

We performed a retrospective multicentric study aiming to determine the frequency and 

clinical relevance of ALK alterations detected by targeted Next-Generation Sequencing (t-

NGS) in patients with advanced ALK-rearranged NSCLC following progression on an ALK 

TKI. Clinical, pathological, and molecular characteristics and patient outcomes were 

collected. 

Results 

We identified 23 patients with advanced ALK-rearranged NSCLC who, between January 

2012 and May 2017, had undergone at least one repeat biopsy at progression on an ALK 

TKI. A resistance mechanism was identified in 9 of the 23 patients (39%). The anomalies 

involved included 9 ALK mutations in 8 patients and one ALK amplification. The ALK 

mutation rate was 15% after failure of a first ALK TKI and 33% after failure of two ALK TKIs. 

Five out of seven patients who received a different ALK TKI following detection of an ALK 

mutation achieved an objective response. All the patients who received a TKI presumed to 

act on the detected ALK mutant achieved disease control. 

Conclusions 

Targeted NGS is suitable for detecting ALK resistance mutations in ALK-rearranged NSCLC 

patients in routine practice. It may help select the best treatment at progression on an ALK 

TKI. 



1. Introduction  1 

ALK rearrangements are found in approximately 4% of non-squamous Non-Small Cell Lung 2 

Cancer (NSCLC) [1]. The fusion protein resulting from ALK rearrangements has a 3 

constitutively activated ALK kinase leading to activation of downstream signaling pathways 4 

involved in cell proliferation and cell survival[2,3]. The discovery of ALK rearrangements has 5 

led to the development of tyrosine kinase inhibitors (TKIs) targeting the ALK kinase. 6 

Crizotinib and ceritinib have demonstrated superiority over chemotherapy against untreated 7 

advanced ALK-rearranged NSCLC patients, and alectinib has demonstrated superiority over 8 

crizotinib in the same context [4–6]. Several TKIs have proved active following crizotinib 9 

failure, including ceritinib, alectinib, brigatinib, and lorlatinib [7–10]. 10 

Mechanisms of resistance to ALK TKIs in ALK-rearranged NSCLC patients are partly known 11 

and are of two main types: i) on-target mechanisms, including mutation of the ALK kinase 12 

domain and amplification of the ALK-rearranged gene and ii) off-target mechanisms, 13 

including activation of an alternative signaling pathway such as EGFR or KIT and 14 

pathological transformation [11]. 15 

ALK mutations are the main cause of resistance to ALK TKIs. With high-throughput methods 16 

of detection [11], they are found in 20-50% of tumor samples obtained at progression on an 17 

ALK TKI. Numerous ALK kinase mutations can confer resistance to ALK TKIs in ALK-18 

rearranged NSCLC [12–19], and the frequency and type of ALK mutations detected at 19 

progression depend on the type of ALK TKI received [11]. Thus, each ALK TKI has its own 20 

spectrum of activity against ALK kinase mutants [20], and a given ALK kinase mutant is not 21 

resistant to all ALK TKIs. For example, the L1196M mutation is reported to confer resistance 22 

only to crizotinib, the C1156Y mutation is associated with resistance to crizotinib and ceritinib 23 

but remains sensitive to alectinib and brigatinib, and the G1202R mutation leads to 24 

resistance to most ALK TKIs but not to lorlatinib [21–24]. 25 

Thus, identifying the mechanism of resistance to an ALK TKI may help in choosing the most 26 

appropriate treatment after progression on that ALK TKI, particularly since several ALK 27 



inhibitors are now available for use in this context. Here we show that targeted NGS 1 

performed in routine practice is suitable and relevant for detecting ALK mutations in tumor 2 

tissue samples or circulating tumor DNA from ALK-positive NSCLC patients whose disease 3 

has progressed after treatment with an ALK TKI.  4 

 5 

2. Material and methods  6 

2.1. Study design and patients 7 

In this observational, multicentric, retrospective study, we identified patients with advanced 8 

ALK-positive NSCLC from whom tumor samples had been obtained at progression on an 9 

ALK TKI as part of the routine procedure. Both tissue biopsies and circulating tumor DNA 10 

samples were considered. Clinical and molecular data were collected retrospectively at each 11 

center. The investigators used RECIST1.1 to evaluate responses to ALK TKIs. The objective 12 

response rate was defined as the rate of complete or partial response. The disease control 13 

rate was defined as the rate of complete or partial response or stable disease. Overall 14 

survival was calculated from the start of the first ALK TKI treatment received.  15 

All the data reported in this study were extracted from a database approved by the French 16 

National Data Protection Authority (CNIL). This non-interventional study was conducted in 17 

accordance with the Declaration of Helsinki and Good Clinical Practice guidelines. It was 18 

approved by a national ethics committee and by the French Advisory Committee on 19 

Information Processing Related to Research in the Field of Health. All included patients 20 

received information from their referring physician.  21 

 22 

2.2. Detection of ALK mutations 23 

Targeted NGS (t-NGS) analysis was conducted with the NGS commercial panel “Ion 24 

Ampliseq Colon and Lung Research Panel V2” at two molecular centers certified by the 25 

French National Cancer Institute. In the case of tissue samples, genomic DNA was extracted 26 

from formalin-fixed paraffin embedded (FFPE) samples received in the two laboratories 27 

between February 2012 and February 2017. DNA was extracted with the QIAamp FFPE 28 



tissue kit (Qiagen) according to the manufacturer’s instructions. In the case of blood 1 

samples, cell-free DNA was extracted from plasma with the QIAamp Circulating Nucleic Acid 2 

Kit (Qiagen) according to the manufacturer’s instructions. Extracted DNA was quantified with 3 

the Quant-it PicoGreent dsDNA Assay Kit (Thermofisher Scientific) on a Xenius XC 4 

spectrofluorometer (Safas Monaco). AmpliSeq libraries were prepared with the Ion AmpliSeq 5 

Library Kit 2.0 Ion Xpress barcode adapters kit, primers (Ion AmpliSeq custom panel or 6 

Colon and Lung V2) (Thermofisher Scientific), and 10 ng or less of each DNA sample 7 

according to the manufacturer’s instructions (Table S1). Emulsion PCR, enrichment, and chip 8 

loading were performed on an Ion Chef instrument with the Ion PI™ Hi-Q™ Chef Kit or the 9 

Ion 540™ Kit-Chef. Samples were sequenced with Ion P1 chips on Ion Proton System or Ion 10 

540 chips on the Ion S5XL system (Thermofisher Scientific). Data were analyzed with the 11 

Torrent suite software v.5.2.2 (Thermofisher Scientific). For the ALK, EGFR, and KRAS 12 

genes, manual inspection of sequences was done on an integrative genomic viewer (IGV).  13 

 14 

2.3. Statistical analysis 15 

Quantitative variables are expressed as means (standard deviation, SD) in the case of a 16 

normal distribution or as medians (interquartile ranges) otherwise. Categorical variables are 17 

expressed as numbers (percentages). The normality of distributions was assessed with 18 

histograms and the Shapiro-Wilk test. Survival rates were calculated from the date of 19 

introduction of the first ALK TKI until the date of death or last news and derived from Kaplan-20 

Meier survival curves. Medians of survival were calculated with confidence intervals. 21 

Statistical testing was conducted at a two-tailed α-level of 0.05. Data were analyzed with the 22 

SAS software version 9.4 (SAS Institute, Cary, NC). 23 

 24 

3. Results 25 

The study included 23 patients with advanced ALK-positive NSCLC having undergone at 26 

least one biopsy at progression on an ALK TKI between January 2012 and May 2017 (Table 27 

1). The patients were mostly never smokers (n=19, 83%) and the median age was 57.0 28 



years (range 17-70). Sixteen patients (70%) had received platinum-based chemotherapy 1 

prior to ALK TKI treatment. Twenty-two patients (96%) had received crizotinib as the first ALK 2 

TKI. A second-generation ALK TKI (alectinib, ceritinib, or brigatinib) had been given to one 3 

patient (4%) as first-line treatment and to seventeen patients (74%) following crizotinib 4 

failure. Three patients having first received crizotinib and then a second-generation ALK TKI 5 

had subsequently received a third-generation ALK TKI (lorlatinib).  6 

 7 

The number of biopsies performed on the 23 patients totaled 42, including 26 tissue biopsies 8 

and 16 liquid biopsies (cell-free DNA samples). This corresponds to a mean of 1.83 biopsies 9 

per patient (range 1-7). Main biopsy sites were lungs in 8 patients, pleural effusion in 5 10 

patients and liver in 4 patients (Table S2). The samples studied were from 13 of the 23 11 

patients (57%) having progressed on a first TKI, 12 of the 15 patients (80%) having 12 

progressed on a second TKI, and 3 of the 7 patients (43%) having progressed on a TKI given 13 

as a third TKI or further. The studied samples also included five biopsies performed at 14 

progression on therapies other than ALK TKI.  15 

The results of targeted NGS applied to these samples are as follows. ALK mutations were 16 

detected in eight patients (35%). They included four G1202R mutations and one C1156Y, 17 

one V1180L, one I1171N, and one L1196M mutation. In one of the patients where a G1202R 18 

mutation was detected initially, a G1202R/G1269A compound mutation was found in a later 19 

biopsy. Seven ALK mutations were detected in tissue biopsies and three in circulating free 20 

DNA. For 3 patients, liquid and tissue biopsies were performed at the same time. The results 21 

were consistent in one patient.    22 

An ALK amplification with no concomitant ALK mutation was detected by FISH in one biopsy 23 

(4.34 %) (Figure 1). In addition to an ALK mutation, seven patients had a TP53 mutation 24 

(A138P, R175H, C238R, C277G, R248Q, R337C, R337P) and one had a MET mutation in 25 

exon 18 (c.3686_3686 + 3del). No mutation was identified in any other oncogene tested with 26 

this NGS panel..  27 



Among the nine ALK mutations detected, one was found in a sample taken at progression on 1 

crizotinib given as the first TKI. The eight remaining mutations were identified in samples 2 

from patients exposed to a second- or third-generation TKI. The rate of detection of ALK 3 

mutations at progression was 15% after a first TKI (2 out of 13 patients tested), 33% after a 4 

second TKI (4 out of 12 patients tested) and 66% after a third TKI or more (2 out of 3 patients 5 

tested) (Figure 2).  6 

Among patients on the first ALK TKI, the objective response rate was 74% and the disease 7 

control rate was 91%. By the end of data collection, twelve patients (52%) had died. Median 8 

overall survival from the start of the first ALK TKI treatment was 37.28 months (95% CI; 9 

19.58-NR). We did not observed any difference in OS between patients with or without TP53 10 

mutations. Among the eight patients in whom an ALK mutation was identified, seven (87%) 11 

received a new ALK TKI after the mutation was found (Figure 3 ). In these seven patients the 12 

ORR with the new TKI was 71% (5/7). Among the patients in whom no ALK mutation was 13 

found, the ORR with the third ALK TKI was 33% (1/3).  14 

Among the seven patients with an ALK mutation who received a subsequent ALK TKI, six 15 

received a TKI presumed on the basis of in vitro data to act against the identified mutant [11]. 16 

Among these six patients, five achieved an objective response and one showed stable 17 

disease. To the remaining patient alectinib was given despite detection of a G1202R 18 

mutation, as at the time alectinib was the only available next-generation TKI and data were 19 

still sparse regarding the activity of different ALK TKIs according to the ALK mutation 20 

present. This patient displayed progressive disease at first assessment (Figure 3). 21 

 22 

4. Discussion  23 

The present study has focused on targeted NGS, a technique now widely used in daily 24 

molecular testing. We show that its use in routine practice allowed identifying an ALK TKI 25 

resistance mechanism in 9 out of 23 patients (39%) with advanced ALK-positive NSCLC. 26 

Gainor et al. report a similar rate of ALK mutations for other NGS panels [11]. Thus, targeted 27 

NGS appears suitable for detecting ALK mutations in routine practice. 28 



 1 

It is anticipated that ALK mutations will be detected more frequently in the near future, Gainor 2 

et al. having shown that they arise more frequently following second- or third-generation TKI 3 

treatment (54-71%) than after crizotinib (20% of patients) [11]. Meanwhile two second-4 

generation TKIs, ceritinib and alectinib, have demonstrated efficacy as first-line treatment, 5 

[4,25] and ongoing clinical trials are currently evaluating next-generation TKIs 6 

(NCT03052608, NCT02737501, NCT02767804) in this context. Although no report so far has 7 

provided rates of ALK mutations after progression on second-generation TKIs given as first-8 

line therapy, it is reasonable to speculate that they will exceed the 20% observed after 9 

crizotinib failure. Data further suggest that the ALK mutation rate also increases when 10 

several ALK TKIs are given sequentially. Solomon et al. report ALK mutation rates of 16.6% 11 

(14/84) following first-line ALK TKI treatment and 29.2% (31/106) after at least two ALK TKIs 12 

[26]. We have likewise observed a 15% ALK mutation rate after failure of a first ALK TKI and 13 

a 33% ALK mutation rate after failure of two ALK TKIs. Whether this is due to the number of 14 

ALK TKIs administered or to the use of next-generation TKIs remains to be determined. 15 

All these findings and the fact that ALK-positive patients have been shown to benefit from 16 

receiving multiple TKIs [8,27,28] suggest that the future will see an increase in the proportion 17 

of patients exposed to next-generation ALK TKIs, along with an increase in the rate of ALK 18 

mutations. 19 

 20 

Detection of ALK mutations in patients having progressed after ALK TKI treatment is 21 

becoming crucial to determining the optimal therapeutic strategy. In vitro, different ALK 22 

mutations have been found to predict different sensitivities to a single ALK TKI, and ALK 23 

TKIs do not all share the same spectrum of activity against ALK mutants [11,29]. Similar 24 

findings have been reported in patients, although extrapolating from in vitro data to patients 25 

requires caution. In two patients, for example, the I1171N mutation has been found to drive 26 

resistance to alectinib and sensitivity to ceritinib [30,31].  In another patient, the L1152R 27 

mutation has on the contrary been reported to confer resistance to ceritinib and to predict a 28 



response to alectinib [32]. Consistently, we have found that all six patients who were treated 1 

with an ALK TKI presumed to act against the detected mutation achieved disease control, 2 

whereas the only patient who was treated with an ALK TKI not presumed to act effectively 3 

against the detected mutation displayed progressive disease at first assessment. 4 

Interestingly, two patients harboring a G1202R mutation achieved a partial response on 5 

brigatinib, reported to exert intermediate activity on G1202R mutants in vitro. 6 

To date, no clinical trial has assessed the clinical relevance of identifying ALK mutations at 7 

progression on an ALK TKI. Yet besides the above-mentioned case reports, data from 8 

prospective trials suggest that patients harboring an ALK mutation are more likely to respond 9 

to subsequent ALK TKIs. In patients receiving the third-generation TKI lorlatinib after failure 10 

of two or three prior ALK TKIs, Shaw et al. report objective response rates of 26% in patients 11 

with no ALK mutation and 61% in patients with at least one ALK mutation [33]. Interestingly, 12 

we have found a similar trend in our set of patients treated in routine practice: we observed a 13 

71% ORR with subsequent TKI treatment in patients known to have an ALK mutation and a 14 

33% ORR in patients with no ALK mutation, after treatment with a third TKI. Here, the 15 

presence of an ALK mutation may reveal sustained dependence on the ALK pathway and 16 

thus predict sensitivity to ALK inhibition [26], and the type of ALK mutation should guide the 17 

choice of the ALK TKI to be used. Inversely, the absence of any ALK mutation suggests that 18 

resistance may be due to an ALK-pathway-independent mechanism that is not sensitive to 19 

ALK inhibition. Various ALK-independent resistance mechanisms have been described, 20 

including activation of EGFR, IGF1R, and SRC, mutation of KRAS or PIK3CA, amplification 21 

of cKIT and gene fusions [12,13,18,34–37]. In in vitro studies, cells having acquired 22 

resistance to an ALK TKI via an ALK-independent mechanism showed cross-resistance to 23 

other ALK TKIs, but sensitivity to ALK TKIs could be restored by combined treatment with 24 

another TKI [34,37,38]. Efficacy of ALK TKI in patients having acquired resistance to a given 25 

ALK TKI via an ALK-independent mechanism is still poorly known [37]. Patients having 26 

progressed on crizotinib with no evidence of an ALK mutation have been shown to benefit 27 

from second-generation ALK TKIs [39], but whether their resistance was due to an ALK-28 



independent mechanism, to an ALK-dependent mechanism not involving an ALK mutation, 1 

or to an ALK mutation that escaped detection because of sensitivity issues remains 2 

unknown. 3 

Sequential treatment with several ALK TKIs may select resistant clones harboring multiple 4 

(i.e. compound) ALK mutations. In a recent study, Yoda et al. found a 35% compound 5 

mutation rate in patients treated with lorlatinib [40]; in our set, two patients had progressed 6 

on lorlatinib and a compound mutation was detected at the time of progression in a patient 7 

known to harbor a G1202R mutation. In vitro, compound mutations have been found to 8 

confer resistance to most ALK TKIs, including lorlatinib [40]. Yet a patient having acquired 9 

resistance to crizotinib, ceritinib, and lorlatinib successively and who was found to harbor a 10 

C1156Y/L1196M compound mutation achieved an objective response on crizotinib. It is 11 

necessary to further determine the sensitivity of compound mutants to ALK TKIs [16]. 12 

Finally, other molecular alterations may impact patients outcome. Recent findings have 13 

shown that TP53 mutations or ALK variants may be associated with shorter PFS and OS in 14 

ALK-positive NSCLC patients [41,42]. In our study, no difference in OS was found between 15 

patients with or without TP53 mutations, but the number of patients in each subgroup was 16 

too low to draw any conclusion from this result. ALK variants were not assessed in our study. 17 

 18 

Conclusions:  19 

In summary, our findings demonstrate that mechanisms of resistance to ALK TKIs can be 20 

detected in routine practice in a third of ALK-positive NSCLC patients. Identifying ALK 21 

resistance mutations may help selecting the best subsequent treatment 22 

23 
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Legends 1 

Table 1 2 

Baseline characteristics 3 

 4 

Figure 1 5 

Distribution of mechanisms of resistance to ALK TKIs 6 

* One patient with a G1202R mutation was found, following treatment with lorlatinib, to 7 

harbor a G1202R/G1269A compound mutation.   8 

 9 

Figure 2 10 

Treatment of ALK-positive NSCLC patients. Swimming plot showing, for each patient, the 11 

treatments received and the number, type(s), and time of completion of the biopsies 12 

performed. Each bar represents one patient. Treatments received before the first ALK TKI 13 

are not represented. 14 

 15 

Figure 3 16 

Clinical review of patients treated with a TKI after identification of an ALK mutation. 17 

Presumed activity was defined by sensitive or intermediate IC50 based on in vitro data by 18 

Gainor et al[11].   19 
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Tables 1 

Table 1 2 

 3 

 n = 23 

Age, median (years) (range) 57 (17-70) 

Sex, n (%) 

- Male 

- Female 

 

12 (52%) 

11 (48%) 

Adenocarcinoma, n (%) 23 (100%) 

Stage at diagnosis, n (%) 

- Stage III  

- Stage IV 

 

2 (9%) 

21 (91%) 

Never Smokers, n (%) 19 (83%) 

Number of lines of treatment before first ALK 

TKI, n (%) 

0 

1 

2 or more 

 

 

7 (30%) 

13 (57%) 

3 (13%) 

Type of ALK TKI received (n, %) 

1st generation 

2nd generation  

3rd generation  

 

22 (96%) 

17 (74%) 

3 (13%) 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 
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