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Abstract

Because sulfur (S) depletion in soil results in seed yield losses and grain quality degrada-

tion, especially in high S-demanding crops such as oilseed rape (Brassica napus L.), moni-

toring S fertilisation has become a central issue. Crop models can be efficient tools to

conduct virtual experiments under different fertilisation management strategies. Using the

process-based model SuMoToRI, we aimed to analyse the impact of different S fertilisation

strategies coupled with the variablility observed in major plant characteristics in oilseed rape

i.e. radiation use efficiency (RUE), carbon (C) allocation to the leaves (β) and specific leaf

area (SLA) on plant performance-driven variables encompassing total biomass (TDW), S in

the photosynthetic leaves (QSmobile.GL) and leaf area index (LAIGL). The contrasting S sup-

ply conditions differed in the amount of S (5 levels), and the timing of application (at bolting

and/or at flowering, which included a fractioned condition). For this purpose, we performed a

global sensitivity analysis (GSA) and calculated two sensitivity indices i.e. the Partial Raw

Correlation Coefficient (PRCC) and the Sobol index. The results showed that whatever the

timing of S supply, TDW, LAIGL and QSmobile.GL increased as S input increased. For a given

S supply, there was no difference in TDW, LAIGL and QSmobile.GL between a single and a

fractioned supply. Moreover, delaying the supply until flowering reduced the TDW and LAIGL

whereas QSmobile.GL increased. Results showed that RUE had the greatest impact on TDW

under all levels of S supply and all application timings, followed by β and SLA. RUE mostly

impacted on QSmobile.GL, depending on S supply conditions, whereas it was the parameter

with the least impact on LAIGL. Ultimately, our results provide strong evidence of optimised

S fertilisation timings and plant characteristics that will guide producers in their agricultural

practices by using specific varieties under constrained S fertilisation strategies.

Introduction

Crop models can be efficient tools to simulate and analyse agricultural practices, such as the

impact of fertiliser management strategies on crop performances [1–6]. They provide a
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framework to untangle interactions between plants and their environment, and often deliver

quantitative outputs indicating thresholds to target specific objectives. In the current context

of sustainable agriculture, which implies reduction of fertiliser inputs, modelling experiments

are less expensive and easier to set up than field or greenhouse experiments but allow fertilisa-

tion constraints to be tested. In addition, most crop models have been used extensively to ana-

lyse the impacts of on-going global changes and to project crop yields worldwide [7–11].

Modelling approaches to assist crop management in low input systems can target fertilisa-

tion strategies (amount, timing and fractioning) or plant characteristics, which in both cases

aim to alleviate the negative impact of decreased resources. The advantage of process-based

models is that (i) they clarify plant characteristics and central processes such as photosynthesis,

nutrient uptake, assimilation or remobilisation by means of equations and parameters, and (ii)

they take into account the variability of plant features. Therefore, exploring the effects of the

variation in plant parameters on model outputs can be achieved with sensitivity analyses (SAs)

[12]. SAs are usually carried out to assess the sensitivity of model outputs with respect to the

inputs i.e. parameters and/or variables (due to their estimation uncertainty or inherent vari-

ability). SAs with process-based models have several objectives: (i) to explored model function-

ing; (ii) to improve model calibration by adding or deleting processes (i.e. parameters and

equations) which define the level of complexity in the model according to their impacts on

output variations [13]; (iii) to quantitatively estimate the extent of the impacts of input vari-

ables (representing resource allocation for instance) on crop performance; and (iv) to identify

the most influential plant parameters (representing plant features) according to their effect on

output variations, and thus to help defining ideotypes (or virtual genotypes). Two categories of

SAs are usually carried out. First, the local approach (LA) aims to study the variability of out-

puts induced by the small variation of a single parameter and/or variable (input) to the point

when an estimate is chosen while keeping the other parameters fixed [14]. Second, a global

sensitivity analysis (GSA) considers in contrast the whole variation range or domains of the

inputs, which allows outputs to be analysed with regard to the combined variability [14]. GSA

are commonly used with complex models where the conventional method (LA) would fail to

represent the interactions between the numerous parameters and input variables [15].

In this study, we aimed to analyse the impact of different sulfur (S) fertilisation strategies

coupled with the variablility observed in major plant characteristics in oilseed rape. Like most

of the Brassica species, oilseed rape is a high-S demanding crop with recommended inputs

(RI) (Terres Inovia, http://www.terresinovia.fr/colza/cultiver-ducolza/fertilization/soufre/) of

about 30 kg S.ha-1 (corresponding to 75 kg SO3.ha-1) [16]. Sulfur is present in a wide range of

metabolites such as methionine (essential amino acids (AA)) and cysteine (non-essential AA),

proteins, glutathione and glucosinolates, which makes it an essential element for growth,

development and resistance to abiotic and biotic stresses. The importance of tightly monitor-

ing S fertilisation, especially in Brassica species, has emerged over recent decades when drastic

environmental policies aimed at lowering industrial sulfur dioxide (SO2) emissions [17] and in
fine led to an increased risk of soil S oligotrophy. Several studies in oilseed rape have indicated

that low S availability can drastically impact seed yield and corresponding components (e.g.

thousand seed weight, pod number, seeds per pod), seed nutritional characteristics (e.g. oil

and protein contents, and fatty acid (FA) and seed storage protein (SSP) compositions) as well

as physiological quality of seeds (e.g. germination rates, storage capacity) [18–20]. In this con-

text, modelling S requirements and allocation within the plant could be a helpful approach to

correct deficiencies occurring during vegetative growth and the transition between vegetative

and reproductive stages which are crucial phases for S storage and thus for providing S to

growing reproductive sinks [21–23]. The process-based model SuMoToRI (Sulphur Model

Towards Rapeseed Improvement) [2] simulates the dynamics of crop growth and S status until
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the onset of pod formation. Its original feature is based on the prediction of an S-mineral pool

that is assumed to remobilise to provide S requirements for growing sinks throughout the

reproductive stage. The model is run with a limited number of plant parameters that refer to

the potential leaf growth and carbon (C) demand by the leaves driven by climatic variables

(temperature and radiation), genetic characteristics, C assimilation and S uptake as well as S

allocation (among compartments) and partitioning (S-organic vs. S-mineral compounds).

The objective of this modelling analysis is to highlight the most suitable combinations of

plant model parameters under contrasting fertilisation strategies which allowed high plant per-

formances (biomass, leaf area or S content in leaves). For this purpose we performed a global

sensitivity analysis (GSA) and determined two sensitivity indices i.e. the Partial Raw Correla-

tion Coefficient (PRCC) and the Sobol index. Both indices are based on measures of impor-

tance (quantitative sensitivity indices) in contrast with coarse screening methods e.g. the

Morris method [24], which is usually used to explore the behaviour of model outputs by vary-

ing a broad number of parameters, thus helping to detect the least influential ones. Because we

aimed to focus on specific plant parameters, we used methods based on linear regression (i.e.

PRCC) and on the decomposition of functional variance using Sobol indices. This allowed (i)

estimation of the strength of linear associations between outputs and each input parameter

after removing the linear effect of the other parameter (PRCC) and (ii) distinguishing and

quantifying the principal and interaction effects of the parameter on the output variation using

Sobol indices [25].

In our study, the GSA was performed under contrasting S supply conditions that differed in

S availability (5 levels), date (at bolting or at flowering) and fractioning (once or twice during

growth from the end of winter) of S inputs. Three plant parameters of the model SuMoToRI

were targeted because they were shown to display variability in response to S [2] and/or differ-

ent conditions that have been reported in the literature [26]. These parameters were the Radia-

tion Use Efficiency (RUE, g DW.MJ-1), the Specific Leaf Area (SLA, m2.g DW-1) and the C-leaf

allocation coefficient (β, dimensionless). The outcomes for the GSAs are twofold (i) ranking

the targeted plant parameters according to their impacts on plant performances, that are the

total biomass production, the S in the leaves available for remobilisation towards growing

pods (used as a proxy of seed quality) and the leaf area index (the central variable in the

model) under different S supply strategies and (ii) identifying the most suitable combinations

of plant parameter values (namely ideotypes) under these contrasting S supply strategies. This

will eventually help producers to adjust agricultural practices by using specific varieties under

constrained S fertilisation strategies.

Materials and methods

Overview of the SuMoToRI model

SuMoToRI was described extensively in Brunel-Muguet et al. [2]. Briefly, this process-based

model predicts with daily time increments, the dynamics of the leaf area index (LAIGL which is

the leaf area, LAGL, multiplied by plant density), the biomass, the S amounts and the fractions

of organic and mineral S for three main plant compartments considered, namely the photo-

synthetic leaves, which are simplified as a single Big Leaf (BL), the fallen leaves (FL) and the

rest of the plant. The model considers the three environmental factors of temperature, Photo-

synthetically Active Radiation (PAR, MJ m-2) and the amount of S taken up by the plant. The

simulation period covers the end of vernalisation until the onset of pod formation. The min-

eral fraction in the leaves is estimated by the sulfate amount and this is used as an indicator of

the potential for S remobilisation towards growing pods. The model is run with 23 plant

Sensitivity analyses and sulfur management
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parameters, most with generic values, which describe potential leaf expansion, C-assimilation,

allocation of C and S among the three compartments and S-partitioning (mineral vs. organic).

Simulations and sensitivity analysis procedures

The model was used to predict plant growth and S status under several S supply conditions

that were expected to highlight contrasting plant behaviour simulations. Then the GSA was

performed (i) to rank three plant parameters according to their respective impact on plant per-

formance and (ii) to determine the most suitable plant parameter value combinations under

these special conditions. Our underlying questions were the following: (i) what are the most

impacted outputs resulting from the variations in the targeted parameters? (ii) To what extent

do S fertilisation conditions modulate the impact of the parameter variations on outputs? The

GA procedure consists of the following steps:

Step 1. Choice of targeted plant parameters and setting of their variation range. The

GSA was performed on three of the 23 parameters in order to assess their impact on biomass

and S-content: the Radiation Use Efficiency (RUE), the Specific Leaf Area (SLA), and the β
parameter, which indicates the allocation of C-assimilates to the leaves. These parameters were

chosen (i) because value variations were observed in response to S availability for RUE (vari-

ability observed in the model calibration and evaluation datasets) and for the Specific Leaf

Area (SLA), and the β coefficient (with variability for the validation dataset only) (unpublished

data and [2]) and (ii) according to the literature and prior experiments including those

reported from other species [26–28]. Following these observations, the mean, the standard

deviation, the distribution profile and the truncation thresholds (minimum and maximum)

were determined for each parameter (Table 1). All three parameter distributions were assumed

to be uniform (not negative). All other model parameters were assumed constant (Table 1).

Step 2. Calculation of S uptake functions. The model was initially calibrated and evalu-

ated with the cultivar Yudal, under two contrasting S supply conditions (High S, HS and Low

S, LS) [29]. They corresponded respectively to 300 and 20 units (U) of sulfur trioxide (SO3: kg.

ha-1), which were provided throughout the crop cycle following the relative addition rate nutri-

ent-dosing system [30,31]. Consequently, measured plant S uptake dynamics for both extreme

conditions were fitted to the Hill’s model (Eq 1):

QS ¼
QSmax � TTn

Ka þ TTn
þ QSini ðEq 1Þ

where QSmax (mg S.plant-1), Ka (˚Cd) and n parameters were the three plant parameters

describing the uptake process, QSini (mg S.plant-1) the initial amount taken up by the plant at

the end of vernalisation and TT, the thermal time (in ˚Cd) [32]. Three other intermediate S

fertilisation levels were selected as follows (i) the recommended inputs (RI) for the whole crop

cycle, matching 75U SO3, (ii) 50U SO3 (2/3 of the RI) and (iii) 37.5U SO3 (half of the RI).

These amounts were supplied once at the end of winter (GS30, bolting) and 20 days later (200

˚Cd, GS60, flowering) [33] (Fig 1A), or split at two times in equal amounts at GS30 and GS60

(Fig 1B) according to the following Hill’s model (Eq 2):

QS ¼
QSmax1TTn1

Ka1 þ TTn1
þ

QSmax2TTn2

Ka2 þ TTn2
þ QSini ðEq 2Þ

The Hills’ model parameters were determined for the 15 S-supply conditions i.e. 5 amounts

x 3 timings (once at GS30, once at GS60 and twice at GS30 and GS60 for the fractioned condi-

tion) (Table 2). Initial values were the same for the 15 conditions, assuming that the plants
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were previously grown under similar environmental conditions and optimal S nutritional sup-

ply (75 U SO3). Therefore, the initial amount of total S (QSini) was determined relative to both

HS and LS conditions by averaging the values obtained with the respective Hill’s adjustments

for HS and LS. Then linear regressions were used to calculate the initial total dry weight

(TDWini), the initial leaf dry weight of green leaves (LDWGLini) and the initial amount of S in

green leaves (QSGLini) (Table 1).

Step 3. Simulations of plant performances under contrasting S-supply conditions.

Simulations were performed under 15 different S-supply conditions that differed in terms of

S-amount and timing of application (including one fractioned condition) (Table 2). A single

Table 1. Model parameters and initial values.

Symbol Definition Value Unit Source

sd Sowing density 40 Plant.m2

PAR interception

k PAR extinction coefficient 0.75 m2 m-2 Bonhomme et al.
1982

Potential leaf growth

LA0 Initial leaf area of photosynthetic leaves 0.015 m2 plant-1 Estimated

LAmax Leaf area expansion parameters 0.2 m2 plant-1

K 872.96 ˚Cd-1

N 6.31 dimensionless

C acquisition and plant

offer

PARabsini Initial absorbed PAR 0 MJ m-2 Estimated

TDWini Initial total dry weight 0.576 g DW plant-1

DWFL.ini Initial dry weight of fallen leaves 0 g DW plant-1

RUE Radiation use efficiency 1.6–4.6 g DW MJ-1

aLDWFL Parameters of the function describing the time progression of LDWFL 0.0092 g DW plant-1 ˚Cd-

1

bLDWFL 0.0043 dimensionless

C allocation to leaves

β Coefficient of DW allocation to the leaves 0.10–0.72 dimensionless Estimated

C demand of green leaves

LDWGL.ini Initial dry weight of green leaves 0.448 g DW plant-1 Estimated

SLA Specific leaf area 0.008–

0.034

m2 g DW-1

Growth S demand

αGL Parameters to estimate critical S content in GL as a function of LDWGL 5.11 mg S plant-1 Estimated

βGL -0.52 dimensionless

αrest Parameters to estimate critical S content in the rest of the plant as a function of

DWrest

1.83 mg S plant-1

βrest -0.004 dimensionless

Potential mobile S

allocation

εpot Coefficient of potential repartition of mobile S to the leaves 0.8 dimensionless Estimated

S uptake

QSTOT.ini Initial total S uptake 6.78 mg S plant-1 Estimated

QSGL.ini Initial S in green leaves 5.76 mg S plant-1

QSrestini Initial S in fallen leaves 1.017 mg S plant-1

Parameters in bold are used for the GSAs (RUE, β and SLA). Values range between minimum and maximum.

https://doi.org/10.1371/journal.pone.0204376.t001
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set of parameter values was used except for the three targeted parameters (RUE, SLA and β),

which were randomly selected within their respective distribution (Tables 1 and 2). A single

climatic dataset for simulations and the GSAs was used, based on daily average temperature

and radiation from 2005 to 2015 in Saint-Martin-de-Hinx (43˚34057@N, 1˚16010@W) (data

from the CLIMATIK platform, https://intranet.inra.fr/climatik_v2, S1 Fig, supporting infor-

mation). The dates of initialisation for the simulations were determined with two criteria i.e.

temperature (10 consecutive days above 10˚C) and day length (threshold of 11.35 hours), so as

to closely match the conditions at the end of vernalisation to start running the model [29].

Fig 1. Hills’ kinetics of S uptake according to the 15 S-supply conditions. Fitted Hill’s model of S amounts as a

function of thermal time (˚Cd) for (A) the single S supplies at GS30, (B) at GS60 and (C) the fractioned S supplies at

GS30 and GS60. Tb: base temperature.

https://doi.org/10.1371/journal.pone.0204376.g001

Table 2. Hill’s model parameters for the 15 S-supply conditions.

Total S rate

supply

(Units: kg.ha-1)

Definition QSmax1 n1 Ka1 QSmax2 n2 Ka2

Supply at the end of winter

20 Corresponding to a supply of S at the end of winter (GS30: beginning of simulation). 14.5 9.1 654 / / /

37.5 26.6 9.0 656 / / /

50 35.2 8.9 658 / / /

75 52.4 8.6 661 / / /

300 207.5 6.7 686 / / /

Supply 20 days delayed

20 Corresponding to a supply of S 20 days after the end of winter (GS60). 14.5 24.6 854 / / /

37.5 26.6 24.4 856 / / /

50 35.2 24.2 858 / / /

75 52.4 24.0 861 / / /

300 207.5 20.8 886 / / /

Fractioned S application

20 Corresponding to a fractioned supply of S at the end of winter and 20 days after the end of winter (GS30

+GS60).

7.3 18.3 327 7.3 18.3 654

37.5 13.3 18.0 328 13.3 18.0 656

50 17.6 17.7 329 17.6 17.7 658

75 26.2 17.3 330 26.2 17.3 660

300 103.7 13.3 342 103.7 13.3 685

Equations for S-uptake adjustments are given in the material and methods section.

https://doi.org/10.1371/journal.pone.0204376.t002
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Step 4. Computation of the sensitivity indices: partial rank correlation coefficient. The

partial rank correlation coefficient (PRCC) measures the strength of the linear associations

between the output and each input parameter, after removing the linear effect of the other

parameters. These rank-based measures are part of the so-called sampling-based global sensi-

tivity analysis method. The PRCC varies between -1 and +1 and it quantifies the links between

input factors and output variables as well as the direction of the relationship. We used a “Latin

Hypercube Sample” (LHS) for generating the sample of parameter combinations [34], which

allows the precision of the sensitivity indices to be increased. Overall 3,000 simulations (200

repetitions x 15 conditions) for each output were performed, thus allowing 200 combinations

of parameters to be tested under the 15 S-supply conditions.

Step 5. Computation of the sensitivity indices: functional decomposition of variance

with Sobol indices. The Sobol method is a variance-based method that uses a variance ratio

to estimate the importance of parameters [35,36]. Two main sensitivity indices are defined for

each parameter. The first order or main order of sensitivity index measures the average effect

of one parameter on one model output, without taking into account the interaction effects

with the other parameters. The second order expresses the sensitivity of the model to the inter-

actions between the parameters. The sum of both indices provides the total effect index. Prior

to their estimation, we used the Monte Carlo-based sampling method, which implied n (d+2)

model evaluations (N) in which n = 2000 is the size of an initial Monte Carlo sample (number

of repetitions) and d = 3 is the number of targeted parameters [13]. Therefore, the index esti-

mations required 104 model evaluations (N) per S supply condition and for each output. Over-

all, for each output variable, 104 x 15 simulations were performed under the 15 S-supply

conditions.

Software

The model was run with R (version 3.4.1) [37] with additional R packages including pse (Latin

Hypercubes), sensitivity (sensitivity analysis), ggplot2, ggthemes and reshape2 (visualisation).

Results

Three representative outputs were selected to illustrate the variations in the model inputs and

these comprised the biomass (TDW), the leaf area index (LAIGL) and the S-remobilisation pro-

cess (QSmobile.GL).

Plant performances and range of variations at the onset of pod formation

Fig 2 represents the extent of variation in the 3 outputs (i.e. TDW, LAIGL and QSmobile.GL) at

the onset of pod formation for the 15 S supply conditions according to random draws of 200

combinations of the 3 parameters tested (i.e. RUE, SLA and β).

Whatever the timing of the S supply (GS30, GS60 and GS30+60, which is the fractioned

condition), the three outputs (TDW, LAIGL and QSmobile.GL) increased with a higher S supply

but for TDW the increase was lower (Fig 2). The median TDW ranged from 32.9–39.7 g.plant-1

with extreme values observed for 20U and 300U, respectively, when provided at GS30 (bolting).

The S supply rate effect was stronger on LAIGL when provided once at GS30 and twice at GS30

+60 (with values being more than twice as high with 300U compared to 20U) and on QSmobile.

GL, irrespective of the timing of the S supply (with the expected increase being up to 104 times

higher with 300U than with 20U).

For a given S supply rate there was a slight increase in the TDW, LAIGL and QSmobile.GL (Fig

2A, 2B and 2C) when supplying S twice at GS30+60 compared to once at GS30. However,

delaying S fertilisation until GS60 noticeably reduced the TDW and LAIGL (Fig 2A and 2B),
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regardless of the S amount, and contrasted with the increase in QSmobile.GL (Fig 2C). The effect

of the S amount when provided at GS60 (flowering) had less of an impact on TDW (25.8 to

27.3 g.plant-1) and LAIGL (1.5 to 2.5 m2.m-2

) than supplying S at GS30 (32.9 to 39.7 for TDW

and 2.3 to 6.6 for LAIGL) or at GS30+60 (35.6 to 41.4 for TDW and 2.3 to 6.8 for LAIGL).

The simultaneous variation in the 3 parameters generated a high range of variation in the

three outputs (Fig 2A, 2B and 2C). For TDW and LAIGL the extent of variation resulting from

combinations of the three parameters was more pronounced with the GS30 (bolting) and

GS30+60 timings than in the GS60 timing (flowering) under all S supply rates, except in the

case of LAIGL where lower variation was observed with lower S amounts. For instance, the

extent of variation between the minimum (min) and the maximum (max) TDW values were

ca. 41.7 and 27.8 respectively for 20U at GS30 or GS60 (Fig 2A). For LAIGL, the extent of varia-

tion between max and min values was about 4.2 and 5.9 respectively for 20U and 300U at

GS30 and about 2.5 and 3.6 respectively for 20U and 300U at GS60 (Fig 2B). In contrast, the

extent of variation for QSmobile.GL was much lower than for the other two parameters, but it

Fig 2. Plant performances and range of variations at the onset of pod formation for the 15 S-supply conditions

according to random draws of 200 combinations of the 3 parameters tested. Variation of the TDW (g.plant-1) (A),

LAI.GL (m2.m-2) (B) and QSmobile.GL (mg S.plant-1) (C) for the 15 S-amounts x timing conditions, obtained from

simulations with 200 combinations of the 3 parameters tested (RUE, β and SLA). Data are represented by a box plot

and through their quartiles; the bottom and top of the box are the first or lower (Q1) and third or upper quartiles (Q3),

the band inside the box is the second quartile (the median, Q2) and maximum and minimum values are at the end of

the vertical bars. Extreme data are represented by point.

https://doi.org/10.1371/journal.pone.0204376.g002
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was intensified under GS60 timing conditions with a similar trend for each of the five S

amounts, whereas under the GS30 and GS30+60 timing conditions, the extent of variation for

QSmobile.GL only increased with 75U and 300U (Fig 2C).

Impact of variation in plant parameters on plant performance and S status

To investigate the specific impact of the 3 parameters (RUE, SLA and β), global sensitivity

analyses were performed. They allowed sensitivity indices (PRCC and Sobol indices) to be cal-

culated for the three targeted outputs under the 15 conditions. Furthermore, the Sobol indices

indicated and quantified the interactions between the three parameters. By doing so, we sought

to rank the plant parameters according to the impact of their variations on plant performance

and to see whether the S amounts x timing designs could interfere in this ranking. The results

are supported by outputs that illustrate the main processes included in the model.

The variation in RUE was the main driver of TDW and displayed high stability across

the conditions. Plant biomass at the onset of pod formation was strongly positively impacted

by the variation in RUE when PRCC values were close to 1 according to the S amounts and

timing conditions (Fig 3A). Furthermore, the increase in β and SLA was positively correlated

with the increase in TDW when PRCC values ranged from 0.71 to 0.86 and from 0.72 to 0.86

for β and SLA respectively under all conditions. The small range of variations in the PRCC val-

ues of RUE, β and SLA indicated that S-amounts and fertilisation timing conditions did not

influence the respective impact of these three parameters on TDW. Similar conclusions could

be drawn with the Sobol indices calculated for the three parameters (Fig 3B). Among the

parameters, RUE had the most impact with a mean main index of 0.85 across all conditions

together, which was in contrast to the much lower main index values for β and SLA. The inter-

action index values were low for the three parameters indicating no interaction was detected

between them (Fig 3B).

LAIGL was mainly impacted by the C-allocation to the leaves. Both sensitivity indices

indicated that mainly SLA and β highly influenced LAIGL with different patterns depending on

the levels of S fertilisation and timing conditions (Fig 4A and 4B). Regarding the PRCC indices,

the mean index value of RUE reached 0.52 across all conditions together and decreased in the

fractioned condition (GS30+60) with S inputs below 300U. The positive β index was the highest

and was unaffected by the S amount or timing conditions. Finally, SLA index values were vari-

able under changing S amounts in the GS30 and GS30+60 conditions, with a decrease in the

index under higher S inputs. The Sobol indices confirmed that the influence of RUE variation

on LAIGL was the lowest, irrespective of the S amount and the timing conditions (Fig 4B). In

contrast, the variation in β and SLA led to contrasting responses to the S amount and timing

conditions. Under GS30 and GS30+60 conditions, the higher the S amount, the higher the

impact of the variation in β on LAIGL. For instance, the Sobol total index under the GS30 condi-

tions increased from 0.3 to 0.7 as the amount of S increased. In contrast, under GS30 and GS30

+60 conditions, the higher the S amount, the lower the impact of SLA on LAIGL whose Sobol

total index decreased from 0.6 to 0.3 under the GS30 conditions. Under GS60 conditions, no

effect of increased S amounts was observed on the sensitivity of LAIGL to the variation in β and

SLA. Interaction indices were low for the three parameters meaning that there were no tight

interactions between them, regardless of the S amounts and timing conditions (Fig 4B).

QSmobile.GL was strongly impacted by RUE and the impact of β and SLA were depending

on S supply. The impact of the three parameters on QSmobile.GL was very variable according

to the S amounts and the timing conditions (Fig 5A and 5B). Both the PRCC and Sobol indices

indicated the strong influence of the variation in RUE on QSmobile.GL. The PRCC values

highlighted similar patterns of sensitivity of QSmobile.GL to variations in RUE, β and SLA
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depending on the S amounts and timing conditions (Fig 5A). PRCC values were negative and

tended to get closer to 0 with low S amounts under the GS30 and the GS30+60 conditions or

with high amounts of S under GS60 conditions. Therefore, the higher the S amounts when

Fig 3. Impact of variation in plant parameters on TDW described by PRCC and Sobol indices. Impact of RUE, β
and SLA calculated by PRCC (A) and by Sobol indices (B) on TDW for the 15 S-amounts x timing conditions. For

Sobol indices, total indice ±SE, main indice ±SE and interaction (= total-main) are presented for each parameter and

each condition (n = 15).

https://doi.org/10.1371/journal.pone.0204376.g003

Sensitivity analyses and sulfur management

PLOS ONE | https://doi.org/10.1371/journal.pone.0204376 September 20, 2018 10 / 20

https://doi.org/10.1371/journal.pone.0204376.g003
https://doi.org/10.1371/journal.pone.0204376


supplied at GS30 or GS30+60, the higher the negative impact of the variation in RUE, β and

SLA on QSmobile.GL. In contrast, under GS60 conditions the impacts of the variations in RUE,

β and SLA was not so dependent on the S amounts because the PRCC values were more stable,

Fig 4. Impact of variation in plant parameters on LAIGL described by PRCC and Sobol indices. Impact of RUE, β
and SLA calculated by PRCC (A) and by Sobol indices (B) on LAIGL for the 15 S-amounts x timing conditions. For

Sobol indices, total indice ±SE, main indice ±SE and interaction (= total-main) are presented for each parameter and

each condition (n = 15).

https://doi.org/10.1371/journal.pone.0204376.g004
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with mean values of ca. -0.79, -0.54 and -0.31 for RUE, β and SLA, respectively, with all condi-

tions combined. Regarding the Sobol indices, RUE was the most influential parameter in

terms of total and main effects (Fig 5B) for most of the S-amounts and timing conditions,

Fig 5. Impact of variation in plant parameters on QSmobile described by PRCC and Sobol indices. Impact of RUE, β
and SLA calculated by PRCC (A) and by Sobol indices (B) on QSmobile.GL for the 15 S-amounts x timing conditions.

For Sobol indices, total indice ±SE, main indice ±SE and interaction (= total-main) are presented for each parameter

and each condition (n = 15).

https://doi.org/10.1371/journal.pone.0204376.g005
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except for the following fertilisation designs: 300U at GS60 (in this case β was the most influen-

tial), and 37.5U and 50U at GS30+60 (in these cases RUE and β were equally influential). The

total index for β decreased concomitantly with the increase in the S amount at GS30 and GS30

+60 (Fig 5A and 5B) as also observed for SLA (Fig 5B), which contradicts the PRCC indices.

However, the impact of the variation in the three parameters was less influenced by the S

amount when provided at GS60 with its lower Sobol indices, except in the case of 300U. The

interaction indices varied for the three parameters across all S amounts and timing conditions.

The interaction values decreased as the S amounts increased under GS30 and GS30+60 condi-

tions when the S amounts were higher than 20U, but the same trend was not seen at GS60

where lower and stable interaction indices across the S amounts were observed.

Identification of optimised parameter combinations under different S-

fertilisation strategies

The PRCC analyses were conducted from a random draw of 200 combinations of the 3 param-

eters associated with an output value. Therefore, we could identify the most relevant plant

parameter combinations (i.e. optimised parameter combinations) that enabled the best plant

performances under the different fertilisation strategies tested. The best plant performances

were associated with high biomass (TDW) and green leaf area (LAIGL) to maximise plant

development and light interception and high levels of mobile S (QSmobile.GL) to allow adequate

S storage in pods. The condition where 75U of S was applied at GS30 was used as the S supply

reference condition (RC). The best plant performances obtained under RC were associated to

optimised parameter combinations (RCopt) which were thus compared to other optimised

parameter combinations under the other S supply conditions (Table 3).

Table 3. Highest values of the three outputs (TDW, LAIGL and QSmobile.GL) for each of 15 S-supply conditions obtained with optimized parameters combinations.

TDW LAIGL QSmobile.GL

Total S rate supply (kg.ha-1) Δ TDW RUE SLA β Δ LAIGL RUE SLA β Δ QSmobile.GL RUE SLA β

RCopt (75 U of SO3 at GS30) 56.4 4.58 0.016 0.54 6.49 2.59 0.018 0.65 25.68 1.61 0.022 0.11

Supply at GS30 (bolting)

20 - 4% 0% + 83% - 19% - 24% - 35% + 79% - 26% - 89% = - 61% + 17%

37.5 - 2% - 3% + 91% - 15% - 6% - 33% + 79% - 3% - 71% + 13% - 53% + 49%

50 = - 1% + 53% + 26% - 2% - 20% + 8% - 1% - 48% = - 45% + 83%

300 + 13% - 1% + 83% + 5% + 8% + 55% - 43% + 3% + 413% + 2% - 49% + 60%

Supply at GS60 (flowering)

20 - 28% - 4% + 110% + 25% - 53% - 31% + 87% - 14% - 75% + 8% - 19% + 127%

37.5 - 27% 0% + 65% - 33% - 50% - 21% + 27% + 8% - 42% + 5% - 51% + 107%

50 - 28% - 2% + 2% - 10% - 46% - 31% + 79% + 4% - 19% + 7% + 19% + 95%

75 - 24% 0% + 97% + 11% - 44% - 33% + 71% - 16% + 31% + 3% - 58% + 181%

300 - 20% - 1% + 97% + 3% - 35% - 27% + 81% - 21% + 436% + 4% - 61% + 130%

Fractioned S supply GS30+60

20 + 6% - 2% + 97% + 4% - 37% - 1% + 90% + 4% - 98% + 97% - 63% + 178%

37.5 + 10% 0% + 41% + 20% - 7% - 35% + 42% + 5% - 77% + 5% - 63% + 46%

50 + 12% - 2% + 69% - 44% + 2% - 33% - 2% - 5% - 41% + 6% - 60% + 9%

75 + 12% - 1% - 17% + 7% + 9% - 13% + 2% + 1% + 7% + 2% - 43% + 17%

300 + 18% 0% + 10% +24% + 13% + 51% - 53% + 4% + 468% + 6% - 60% + 32%

Figures in bold give the values of the outputs and parameters under the reference condition (RC) with optimized combinations (RCopt) which corresponds to 75 U of

SO3 at GS30. The other figures are given as the proportion of increase or decrease compared to the values under RCopt. The equal symbol (=) means there was no

difference in values with RCopt.

https://doi.org/10.1371/journal.pone.0204376.t003
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Early and fractioned S supplies allowed the highest biomass production but different

optimised plant parameter combinations. When applied once at GS30, lower amounts of S

than the reference condition (<75 U) led to small TDW variations even when the parameter com-

binations were optimised (-4% to -2% of RCopt). A higher S supply rate than in the RCopt (>75 U)

resulted in a 13% increase in TDW with optimisation of the parameter combinations (Table 3).

Whatever the S supply rate (sub and supra), the RUE values remained almost unchanged to those

under RCopt with a maximum threshold value of 4.58 MJ.m-2 under RCopt. In contrast, the SLA

and β values were drivers of TDW variation because their variations were significant, ranging

from +53% to +91% for SLA, irrespective of the amount of S and from -19% to +26% for βwith

increases only observed when S amount were above the RCopt. Under 50 U, the TDW remained

unchanged if the SLA increased by 53% to RCopt and β increased by 25% compared to RCopt (75

U at GS30). When applied at GS60, there was a decrease in TDW from -20% to -28% compared

to RCopt under all levels of S supply. When S was fractioned (GS30+60), the TDW increased from

6% to 18% under the extreme S supplies (20 and 300 U respectively) compared to RCopt (75U at

GS30). The fractioned condition led to the highest TDW increase even under sub amounts (50U)

if SLA increased by 69% and β values were almost two times lower than under RCopt (Table 3).

The fractioned S supply allowed substantial increases in LAIGL with moderate changes

in the plant parameters. When S was supplied at GS30, LAIGL decreased by 24% to 2% com-

pared to RCopt for S amounts below RC (<75 U) and increased by 8% with 300 U. The SLA

values were higher whereas the RUE and β values were lower than under the RCopt, except

under 300 U where SLA decreased by 43%, unlike RUE and β, which increased by 55% and

3%, respectively. Whatever the S amount, β was the least impacting driver with the smallest

variations (-26% to 3%) while the ranges of values for RUE and SLA were much wider, with

-35% to 55% for RUE and -43% to 79% for SLA (Table 3). For S supplies at GS60, despite opti-

mised parameter combinations, LAIGL decreased regardless of the S amount, but as shown in

Fig 2B the higher the S amount, the lower the decrease. The RUE values also decreased at GS60

and the SLA values increased compared to their values under RCopt (from -33% to -21% for

RUE and from 27% to 87% for SLA, Table 3).

Under the fractioned supply (GS30+60), LAIGL increased with 50U, 75U and 300U by 2%,

9% and 13%, respectively, with optimised parameters combinations. For S amounts lower than

RC (<75U), the optimised parameter combinations led to a reduction in LAIGL (or an insig-

nificant increase, as observed under 50U).

High QSmobile.GL was driven by the S amount, whatever the timing of supply, with little

impact on optimised parameter combinations. Whatever the timing of supply (at GS30,

GS60 or GS30+60), QSmobile.GL decreased for S amounts lower than the RC (<75 U) and

increased when the S supply was higher than RC. As expected, the increase was significant for

the 300 U supplies at GS30+60 (up to 468% higher than under RCopt). The RUE and β values

increased regardless of the S supply and timing compared to RC, while the SLA values

decreased, except at GS60 with 50U. However, RUE values displayed the lowest increases com-

pared to SLA and β for a given S condition. Interestingly, for amounts lower than RC (< 75U),

the increase in QSmobile.GL was higher when S was supplied once at GS60 (+31%) than twice

under GS30+60 (+7%).

Discussion

Plant parameter rankings according to their impacts on plant performance

under different S-fertilisation strategies

The three parameters (RUE, SLA and β) selected for the SAs are associated with C-metabolism

and functioning. They were shown to be impacted by S supply [2], thus leading to conclude to
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interactions between the C and S-related processes within the model. Our analysis highlighted

that impacts on the variations (range and direction) of the outputs (TDW, LAIGL and QSmobile.

GL) were parameter-specific. These impacts have been summarised in Table 4, which combines

conclusions from both the PRCC and Sobol indices.

The RUE was an important driver of the variation in TDW and QSmobile.GL. It was the most

impacting parameter for TDW with a positive trend that was stable across all S supply condi-

tions (amounts and timing), meaning that increasing its value leads to higher biomass at the

onset of pod formation. There is a direct correlation between RUE and TDW from Monteith’s

model [38], which is used in the SuMoToRI model [2]. In contrast, the two other parameters,

β and SLA, had very little impact on TDW, which made sense because they directly relate to

the leaves. According to the total Sobol indices, the allocation of carbohydrates to the leaves

(β) was slightly more influential than the SLA (with values ranges of 0.072–0.12 for β and 0.041

to 0.094 for SLA). Because no interactions were observed, the effective impact of a given

parameter’s variation was not influenced by the other parameters, which confirms that they

each described distinct processes (i.e. biomass production vs. biomass allocation).

The SAs also revealed that the most impacting parameters on LAIGL were β, and to a lesser

extent, SLA and RUE. As expected, increased C-allocation to the leaves (β) and SLA favoured

greater leaf area expansion while higher RUE had little impact. While the effect of β was stable

with increasing S-amounts when S was provided at bolting alone or at bolting and flowering,

the effects of SLA and RUE were influenced by the S amounts in these timing conditions. This

was consistent with prior observations during the model calibration and evaluation steps that

(i) led to different RUE values according to the S-supply conditions [2] and (ii) pointed out

that the SLA decreased under S-limiting conditions, meaning that the leaf thickness was

greater (Brunel-Muguet, unpublished). This leaf plasticity was showed to increase the photo-

synthetic activity, thus setting a compensatory mechanism against drastic S limitation, which

is known to impair photosynthesis and C metabolism [39].

Regarding the amount of mobile S within the leaves (QSmobile.GL), the respective impact of

the parameters varied according to S supply conditions. The Sobol indices indicated that RUE

was the main driver followed by β and SLA. Increasing RUE, β and SLA led to lower QSmobile.

GL, which was amplified by increases in S fertilisation when supplied either once at bolting or

Table 4. Ranking of the 3 parameters according to their respective impact on TDW, LAIGL and QSmobile.GL according to S-supply condition.

Output

variable

Parameter ranking

according to its impact

S-fertilization strategy Correlation Dynamics

TDW RUE > β� SLA whatever S amount and

timing of application

RUE, SLA and β
positively correlated

• Stable impact of increased RUE whatever S amount and

timing

• More stable impact of increased SLA and β for supplies at

GS60

LAIGL

SLA > β> RUE

with 20U at GS30 and at

GS30+60

RUE, SLA and β
positively correlated

• Stable impact of increased β whatever S amount and timing

• Lower impact of increased SLA with higher S rate at GS30

and GS30+60

• Slightly higher impact of increased RUE with S rate at GS30

and lower impact of increased RUE with S rate up to 75U at

GS30+60

β> SLA > RUE other conditions

QSmobile.GL β> RUE > SLA with 37.5U at GS30

with 300U at GS60

RUE, SLA and β negatively

correlated

except RUE and β with 20U at
GS30 and with 50U at GS30+60

• Higher impact of increased RUE, SLA and β with S rates

especially at GS30 and GS30+60

RUE > SLA > β with 20U and 300U at

GS30

RUE > β> SLA other conditions

This synthesis including results of the Sobol (main indices) and PRCC analyses.

https://doi.org/10.1371/journal.pone.0204376.t004
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twice under the fractioned condition. In contrast, the impact of the three parameters was

much lower under all levels of S supply at flowering. As observed, increasing the RUE favoured

biomass production and consequently leaf expansion. This in turn increased the leaf S-struc-

tural requirements and thus depleted the mobile S amounts stored within the leaves. Another

reason that could account for these effects is the dilution of S within the plant. As the size of

the source organs increases, the concentration of S is diluted, leading to depletion of S mobile

reserves. This effect of increased RUE was observed for optimal timing i.e. at bolting and in

the fractioned condition. It was also lower as the S supplies decreased.

A preliminary approach to design ideotypes adapted to specific S-fertilising

strategies

In our study, we made the assumption that ideal parameter combinations combined with ade-

quate S-fertilisation strategies should offer the most efficient plant status for achieving the

reproductive phase and then high yield. Our analyses revealed that the optimised combina-

tions for the best performance at the onset of pod formation (i.e. high biomass and green leaf

area to maximise plant development and light interception and high mobile S to allow ade-

quate S storage for growing pods) were specific to each output, thus meaning that there will be

trade-offs to attain them in combination (Table 3). For instance, the optimal RUE value for the

highest TDW (for the RCopt) is 4.58, whereas it is 2.59 to attain the highest LAIGL. Moreover,

in some cases, it is crucial to consider several parameters together because of their strong inter-

actions, as illustrated for QSmobile.GL (Fig 5B).

Table 4 synthesises the parameter rankings for a given output (i.e. plant biomass, leaf

expansion, S storage) according to the S supply strategies. It indicated that the most beneficial

parameter for targeting would differ depending on whether we intended to improve plant bio-

mass, leaf expansion or S storage within the leaves with respect to the S-fertilisation designs.

Indeed, RUE was the driver of plant biomass and its impact was stable regardless of amount

and timing of S-fertilisation (stage and fractioning). Leaf expansion was mainly boosted by

increased C allocation to the leaves (β) and to a lesser extent by increased specific leaf area and

RUE, in all S-fertilisation designs apart from low S amounts (20U) when supplied at bolting

(GS30) or in the fractioned condition (GS360+690). Impacts of increased RUE and SLA dif-

fered depending on the S-fertilisation designs. While the impact of SLA was higher with

increasing rates of S-fertilisers at flowering (GS60), the impact of RUE was more pronounced

in the fractioned condition with extreme amounts (20 and 300U).

These SAs revealed that the association between high biomass or leaf area, and S storage for

growing was not trivial because the plant parameter drivers were distinct and the intensity of

their impact was also dependent on the S fertilisation designs. Genotypes with high radiation

efficiency, large light interception surfaces (per biomass unit) or high leaf biomass allocation

would benefit from early and fractioned S-fertilisation strategies.

Towards new S management strategies

These results confirm the need to think about new designs or cultural practices for S fertilisa-

tion. First, they highlighted the negative impact of delayed fertilisation (i.e. at flowering).

When applied at this stage (GS60), a higher S supply could not compensate for the earlier

reductions in vegetative growth. In addition, our results indicated the relevance of fractioning

S supply compared to the conventional single supply at bolting, and thus broadened fertilisa-

tion schemes. In our conditions, S-fractioning led to similar plant performances at the onset of

pod formation. This strategy also prevented excessive sulfate being stored in the leaves and

then its potential loss when leaves detached. From an ecological and economic perspective,
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fractioning would allow better nutrient adjustment rather than the conventional single supply

and thus help in preventing over fertilisation. Nevertheless, our results showed that even

under the most optimised plant parameter combination, the increase in TDW of around 13%

under the fractioned condition was obtained with the highest S supply, which ultimately mod-

erates the sustainable effect of fractioning. In addition, it is known that S nutrition is closely

related to N nutrition in many species like oilseed rape [21,22,40], wheat [41,42] and maize

[43]. Fismes et al. [44] reported that in oilseed rape, the balance between the S and N rate

determines their use efficiencies, which are synergistic at optimum rates and antagonistic at

excessive levels of a single element. S fertilisation is known to improve N use efficiency and to

maintain high seeds quality [45], thus highlighting the importance of balanced N:S ratio. In

our study, the fifteen S fertilisation conditions were provided with non-limiting N supply. For

the lowest S supply conditions, the N:S ratio was not as well balanced as for the conditions

with the conventional S supply, which could impact crop performances. N inputs are drivers

of this ratio meaning they can modulate crop responses to S supply. In this context, imple-

menting S: N ratio thresholds in the model could help monitor S fertilisation to better monitor

effective S assimilation, which is partly determined by N availability.

Conclusion

A better understanding of the relationship between specific model parameters and crops at the

onset of pod formation is essential to adjust cultural practices under contrasting S fertilisation

management. For this purpose, we used GSAs to rank driver model parameters including

RUE, β and SLA according to their impact on main output variables related to growth, leaf

expansion and S remobilisation. In our study, we compared these plant parameters combina-

tions to distinguish S-fertilisation designs. This enabled the best S-fertilisation designs to be

determined under specific plant parameters combinations. This approach underscores the

advantages of using adapted varieties for a specific fertilisation context. Our study also

highlighted the importance of S fertilisation management in terms of the amount supplied or

the timing of the application (stage and fractioning). We showed that supplying more than the

recommended inputs did not lead to proportional improvements in plant biomass or leaf

expansion and that delaying supply until flowering had a strong negative impact. If fractioning

designs seem to be competitive with the conventional single supply (75U SO3 at the end of

winter), significant increased performance would require higher S rates. These findings rein-

force the need to develop tools to measure plant S status and soil S availability in situ, which

would help in adjusting fractioned S supplies throughout the crop cycle.

Supporting information

S1 Fig. Climatic data used for model simulation and sensitivity analyses. Daily mean tem-

perature in ˚C (A) and daily mean Photosynthetically Active Radiation (PAR) in MJ.m-2 (B) in

Saint-Martin-de-Hinx averaged over 2005 to 2015 (source: CLIMATIK https://intranet.inra.

fr/climatik_v2) for the simulated periods.

(TIF)
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