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Mixed Integer Programming for Sparse Coding:
Application to Image Denoising

Yuan Liu, Stéphane Canu, Paul Honeine, Su Ruan

Abstract—Dictionary learning for sparse representations is
generally conducted in two alternating steps: sparse coding and
dictionary updating. In this paper, a new approach to solve
the sparse coding step is proposed. Because this step involves
an `0-norm, most, if not all existing solutions only provide a
local or approximate solution. Instead, a real `0 optimization
is considered for the sparse coding problem providing a global
solution. The proposed method reformulates the optimization
problem as a Mixed-Integer Quadratic Program (MIQP), allow-
ing then to obtain the global optimal solution by using an off-
the-shelf optimization software. Because computing time is the
main disadvantage of this approach, two techniques are proposed
to improve its computational speed. One is to add suitable
constraints and the other to use an appropriate initialization.
The results obtained on an image denoising task demonstrate the
feasibility of the MIQP approach for processing real images while
achieving good performance compared to the most advanced
methods.

Index Terms—Mixed-integer quadratic programming, sparse
representation, sparse coding, dictionary learning, image denois-
ing, K-SVD

I. INTRODUCTION

Learning sparse representations to model data, signals and
images have been widely investigated since it was introduced
20 years ago by Olshausen and Field in [1]. In recent years,
learning sparse representations have been successfully applied
to signal and image processing, as well as computer vision
tasks, such as image denoising, image inpainting, object
recognition, face recognition and classification and many clas-
sification tasks (see for instance [2] and included references).

A sparse representation describes a given signal by a linear
decomposition of a few elements of a dictionary. Beyond
predefined dictionaries, such as wavelets and many variants
[3], [4], data-driven constructed dictionaries allow to have
well-adapted and more natural representations for the signals
at hand. Dictionary learning consists in jointly estimating the
dictionary elements (the so-called atoms) and their coefficients
(i.e., contributions) in the linear decomposition.

Given a signal y ∈ Rn, a sparse representation of y
takes the form Dx, where x ∈ Rp is a sparse vector of
coefficients and D = [d1, . . . ,di, . . . ,dp] ∈ Rn×p is the
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learned dictionary of p atoms. Imposing the sparsity is nat-
urally conducted with the `0-norm, by controlling the number
of non-null components of the vector x with ‖x‖0 [5]. In
practice, the dictionary and the sparse vector are estimated
with an alternating strategy, by optimizing with respect to one
variable, D or x, while the other variable is fixed. While the
construction of the dictionary becomes convex, this is not the
case of the estimation of x (also called sparse coding), which
is non-convex and NP-hard due to the `0-norm.

Several algorithms have been developed to learn dictionaries
for sparse representations, the most known being K-SVD [5].
The K-SVD algorithm is a two-stage generalization of the k-
means algorithm. The first stage operates sparse coding by a
coordinate descent algorithm, for example matching pursuit
(MP) or orthogonal matching pursuit (OMP). The second
stage is dictionary updating by a singular value decomposition
(SVD) algorithm. K-SVD can be viewed within the framework
of projection theory [6]. Due to its good performance on
image reconstruction, many variants of K-SVD have been
developed in order to address different tasks. In [7], K-SVD
is extended by a global image prior that leads to state-of-the-
art denoising performances. Discriminative K-SVD algorithms
are derived in [8] by investigating the classification accuracy.
Other variants to improve the discriminative power of sparse
representations include combining K-SVD with a kernel al-
gorithm to deal with non-linear problems [9] and considering
a graph-based regularization to account for the relationship
among the atoms of dictionary [10].

Although K-SVD has earned a great success, the learned
dictionary may be correlated and the good denoising perfor-
mance can lead only if the noise information is known. K-
SVD’s Achilles heel is undoubtedly its sparse coding scheme,
using either an approximate solution such as basis pursuit
(BP), or a greedy solution such as MP or OMP. In the past
years, research has been conducted to develop more relevant
optimization techniques. Beyond greedy algorithms, the most
promising working direction is proximal methods where the
global optimal solution can be reached after a few number of
iterations [11], [12]. In practice, proximal methods demon-
strate a higher convergence speed than greedy algorithms
with low computational complexity. Iterative thresholding
algorithms for sparse recovery are special instances of the
proximal algorithms [13]. Besides, some researchers update
the dictionary learning problem using an efficient sum of outer
products dictionary learning (SOUPDIL) [14], by representing
D[x1, . . . ,x`] as the sum of outer products

∑p
i=1 dic

T
i , with

[c1, . . . , cp] = [x1, . . .x`]
T .

In this paper, following [15] and [16], the sparse coding
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in its exact `0-norm formulation is recast as a mixed-integer
quadratic programming (MIQP), namely a mixed-integer pro-
gramming (MIP) with a quadratic objective function. MIP
aims at solving optimization problems involving both integer
and continuous variables. Even if the use of MIP for pattern
recognition is not new [17], only very recently it has been
investigated with success to obtain the sparse approximation of
a signal [16], to generate fiducial marker [18], to perform mul-
tiple face tracking [19] and vehicle detection [20]. Moreover,
MIP is of a high tolerance to noise, and even compared with
the recently proposed SOUPDIL algorithm [14]. However,
unlike specific formulations such as SOUPDIL, the proposed
MIP formulation exhibits genericity and flexibility, for in-
stance by facilitating the integration of additional constraints.
Because of its computation complexity, the preliminary studies
conducted in [16] were restricted to tiny toy data (120-sample
synthesized signals). To the best of our knowledge, MIP has
never been used to address problems in image processing,
neither applied on real datasets.

We demonstrate in this paper that dictionary learning with
K-SVD for image processing can be naturally achieved with
mixed-integer programming, instead of the coordinate descent
algorithm conventionally used in K-SVD. To this end, we
recast the sparse coding problem as a mixed-integer pro-
gramming with a quadratic objective function and linear
constraints. We investigate recent theoretical progress in linear
program and novel improvements of efficient implementation
(see for instance [21]). To provide an efficient resolution
of the resulting MIQP, we propose two techniques to in-
crease the convergence speed by reducing the searching time
and decreasing the boundary as well: include appropriate
constraints and initialize with the proximal method. These
improvements allow to reduce the computational complexity
about ten to fifty times, thus confirming the feasibility of
applying the algorithm to image processing. The relevance of
these developments is demonstrated on well-known benchmark
images frequently used in image processing, such as Barbara,
Cameraman, Elaine, Lena and Man. Conducted experiments
on image denoising show the tolerance to noise of the pro-
posed MIQP algorithm, outperforming algorithms based on
OMP and proximal methods.

This paper makes three main contributions:

• It demonstrates that the resolution of the sparse coding
with K-SVD for dictionary learning can be done effi-
ciently using the exact optimization method MIQP.

• It explores two techniques to speed-up the convergence
of MIQP, making it feasible to address image processing
tasks.

• It shows that MIQP realizes image denoising on real
benchmark images without any prior knowledge. Further-
more, it obtains the best denoising performance compar-
ing with OMP and proximal methods.

The rest of the paper is organized as follows. The sparse rep-
resentation problem and the classical algorithms are presented
in Section II. The proposed MIQP-based dictionary learning
algorithm and the theoretical analysis are described in Section
III. In Section IV, experimental results on image denoising

show that the proposed method can train the dictionary with
high tolerance to noise. The last section concludes this paper.

II. SPARSE REPRESENTATION OF SIGNALS

This section states several basic interprets of the sparse rep-
resentation problems. To address those optimization problems,
several popular algorithms for sparse coding and dictionary
updating are presented.

A. Problem Statement

Considering a matrix Y = [y1, . . . ,yi, . . . ,y`] ∈ Rn×` of `
signals of dimension n, a sparse representation of Y consists in
finding a matrix X = [x1, . . . ,x`] ∈ Rp×` of decomposition
coefficients, which is sparse over a learned dictionary D =
[d1, . . . ,dp] ∈ Rn×p. The columns of the latter, i.e., dj for
j = 1, . . . , p, are called atoms.

Sparse representations have been considered with success in
signal and image processing. When working on a given image
(or a set of images), it is fragmented into (often overlapping)
patches, where each patch is unfolded to define a signal yi.
Therefore, ` is the number of patches and n is the number of
pixels for each patch, such as n = 64 when dealing with 8×8
overlapping patches.

Obviously, the set of signals is typically larger than its di-
mension, namely `� n. And in general, D is an overcomplete
dictionary, that is to say n < p, while the situation n > p is
allowed for some discrimination tasks [22]. To prevent the
`2-norm of dictionary’s atoms from being arbitrarily large
which leads to arbitrarily small decomposition coefficient in
X , the dictionary D should be restricted in the constraint
C = {D ∈ Rn×p subject to dT

j dj ≤ 1, ∀j = 1, . . . , p}. A
pre-processing of the data, like centering, contrast normal-
ization and whitening is often considered to impose some
properties, such as transformation invariance, illumination
invariance or some confounding effect removal [2]. Beyond
these considerations, the sparse representation can be obtained
by solving the following optimization problem:

min
D∈C,xi∈Rp

1

`

∑̀
i=1

(
1
2‖yi −Dxi‖22 + λΩ(xi)

)
. (1)

The first term 1
2‖yi −Dxi‖22 is the reconstruction error with

‖ . ‖2 being the Euclidean norm. The second one includes
the regularization term Ω(xi) to enforce sparsity. The reg-
ularization parameter λ > 0 controls the trade-off between
data fitting and sparsity of X . For the sake of clarity of this
paper, the reconstruction error is measured with the square
loss; generalization to other loss functions such as the logistic
or hinge losses is straightforward [23]. Moreover, the work
given in this paper can be extended to other tasks, such as
classification where a discriminative term is introduced into the
objective function to increase the discriminative power of the
learned dictionary, e.g. a Fisher’s criterion [2]. Generally, the
regularization function Ω is associated to a norm that promotes
sparsity and its formulation depends on the task at hand [12],
[5]. A natural definition of Ω to promote sparsity is the `0
quasi-norm, i.e., Ω(x) = ‖x‖0, which refers to the number of
non-zeros of x.
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The problem of estimating simultaneously X and D is non-
convex and belongs to NP-hard problems. It is often solved
via an alternating strategy: 1) fixing D and finding sparse
coefficients X , the procedure is called sparse coding; 2) fixing
X and search the solution of D, this is the procedure of dic-
tionary updating. While the latter yields a convex optimization
problem, the sparse coding is more difficult due to the sparsity
constraint. Several popular algorithms for sparse coding and
dictionary updating are described in the following, as well as
the most known combinations of these algorithms.

B. Sparse coding

As introduced above, sparse coding consists of finding
the sparse decomposition coefficients with a fixed dictionary,
a procedure that can be easily parallelized by considering
separately each signal. There exist several formulations to
address this problem. These formulations are not equivalent
in general due to the nonconvexity of the problem at hand;
See [24] and references therein for more details. We consider
in the following two well-known formulations, the sparsity-
constrained and the error-constrained formulations.

The sparsity-constrained formulation is defined as follows.
Since the dictionary D is fixed, the sparse coefficients x
for each signal y can be obtained by solving the following
problem:

min
x∈Rp

1
2‖y −Dx‖22 subject to ‖x‖0 ≤ T. (2)

This formulation is practical for solving the problem with prior
knowledge of the sparsity level T of the signals (for more
details, see [2], [16] and included references). At the same
time, `1-norm or `2-norm is also sometimes used and it shows
better performance in some application [22].

The error-constrained formulation of the sparse coding
problem is often used for image denoising tasks:

min
x∈Rp

‖x‖0 subject to 1
2‖y −Dx‖22 ≤ ε, (3)

where ε can be a function of the noise level, for example,
the standard deviation for the Gaussian white noise. For this
reason, this formulation (3) is often considered in image de-
noising problems, since it allows to incorporate the (estimated)
noise level [7].

Recently, the SOUPDIL algorithm [14] was proposed by
varying the sparse representation problem to:

min
ai∈Rp

1
2‖Y −

∑p
i=1 dia

T
i ‖2F + λ

∑`
i=1 ‖ai‖0

subject to ‖ai‖∞ ≤ L
(4)

where A = [a1, . . . ,ai, . . . ,ap] ∈ Rl×p and A = XT . The
parameter L > 0 avoids the non-coercive objective which is
defined in [14] as a function of the Y , namely L = ‖Y ‖F .

Unlike the problem described in (2), the problem (4) offer
a total sparsity level of the signals but the variable sparsity
across signals are allowed. This algorithm using block coor-
dinate descent approach is proved to be efficient and get the
promising performance.

Providing an exact solution for the `0-norm optimization
problem is intractable in general. For this reason, approximate

optimization algorithms have been developed in the literature
[25], and can be roughly grouped in two major classes:
coordinate descent and gradient descent.

• Coordinate descent algorithms
The two well-known coordinate descent algorithms are
matching pursuit and orthogonal matching pursuit (OMP)
[2]. Based on the projection theory, these recursive algo-
rithms start with a null vector of coefficients. In each
iteration, MP updates a single component, namely the
one whose atom is the most correlated to the residual.
OMP is widely used due to its efficacy [5], [26].

• Gradient descent algorithms
Gradient descent algorithm [27] is another popular ap-
proximation method. It searches for the optimal solution
by a descent in the gradient direction at each step. The
Proximal gradient method is a more general algorithm,
which is viewed as the tool for solving non-smooth
or constrained optimization problems (e.g. sparse re-
construction problems). The proximal method has been
widely used in image processing due to its convergence
rate and ability of dealing with non-convex problems [28].
See Section III-C for more details.

Other optimization techniques have been introduced to solve
the problem. For example, the method introduced in [29]
extends the simplex method to the proposed the homotopy
algorithm to solve a LASSO problem. Based on the piece-
wise linear property, a special regularization path is defined
to lead to the optimal solution. Other approaches include
probabilistic graphic models and the Bayesian framework to
learn a dictionary with a series of sampling process. Recently
in [30], the Bayesian non-parameter framework and Indian
Buffet Process are used to learn the dictionary without setting
the size of dictionary or noise level. As shown by the authors,
its denoising performance is comparable with the SVD using
the OMP algorithm.

C. Dictionary updating

Dictionary updating consists in estimating the dictionary D
while the sparse coefficients X are fixed. The optimization
problem (1) boils down to

min
D∈C

1
2‖Y −DX‖

2
F , (5)

where ‖ · ‖F denotes the Frobenius norm of a matrix. The
use of a gradient descent algorithm becomes intractable when
dealing with large-scale datasets, such as in image and video
processing. To overcome this difficulty, two approaches have
been largely investigated for dictionary updating: the stochastic
gradient descent and the singular value decomposition meth-
ods.

• Stochastic gradient descent (SGD) algorithm
Instead of dealing with all the samples at each iteration,
SGD operates a gradient descent by estimating the gradi-
ent on the basis of a single randomly picked sample each
time [25]. More precisely, let yi be the selected sample at
a given iteration, and xi the corresponding sparse coding
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vector. SGD updates the dictionary using the following
rule

Dk+1 = Dk − η(Dkxi − yi)x
T
i , (6)

for a given step size parameter η > 0. In addition, the
resulting dictionary matrix is projected onto C to fulfill
the constraints. Some variants of this method include the
use of a subset of samples at each iteration, namely the
so-called mini-batch strategy [31].

• Singular value decomposition (SVD) algorithm
When dealing with the update of a subset of atoms, one
can solve the problem using SVD from linear algebra. Of
particular interest is updating a single atom at each time,
while keeping all the other atoms unchanged, as examined
next. Let dj be this atom, then the optimization problem
(5) can be rewritten as

min
dj

1
2‖
(
Y −

p∑
i=1
i 6=j

dix
i
)
− djx

j‖2F ,

where xj is the j-th row of the matrix X . This is a
simple rank-one optimization problem, since the solution
is obtained by approximating the matrix between paren-
theses with a rank-one representation. This can be done
efficiently, as given in [14, Proposition 3].

In this paper, we introduce a new algorithm for sparse
coding with MIQP, in conjunction with SVD for dictionary
updating. Next section presents the proposed MIQP algorithm.

III. OPTIMIZATION ALGORITHM

As aforementioned, sparse coding addresses intrinsically a
bi-objective optimization problem, where both sparsity and
reconstruction error need to be optimized. So far, sparse
coding has been tackled using approximate algorithms, such
as a number of greedy algorithms and descent-based iterative
hard thresholding. However, when put aside the computational
complexity and memory usage, approximate algorithms fail
to obtain the exact solution and are often very sensitive to
additive noise.

In the following, we cast the sparse coding with MIQP in
order to address the exact `0 optimization problem. Besides,
with the development of the linear programming (LP) tech-
niques and the improvements of the hardware’s computational
ability, the implementation speed is greatly improved [32].
Thus, applying MIQP to do sparse coding in the field of image
processing becomes feasible.

A. MIQP

In the following, the sparse coding problem is addressed
in its original formulation (2). This constrained optimization
problem can be simplified, with all the entries of the sparse
vector x indicated by a binary variable z ∈ {0, 1}p [16], which
can be explained by the logical relation:{

zi = 0, if xi = 0
zi = 1, if xi 6= 0

,

where zi and xi indicate the i-th entry of the vectors z and
x, i = 1, . . . , p. Since such logical relation cannot be easily
integrated into the objective function, we recast the sparsity
condition into a linear inequality by introducing a sufficient
big value M > 0 which should ensure that ‖x̂‖∞ < M for
any desirable solution x̂, where ‖ · ‖∞ is the maximum norm.
A too big M will result in increased feasible region which will
make the problem less computational efficient. An appropriate
value of M improves the performance. The method to provide
a lower M to obtain tight bounds will be discussed in the
following.

Now the indicative function of z is ensured by satisfying
the constraints:

−ziM < xi < ziM, . . .∀i ∈ {1, . . . , p}. (7)

Then, the sparsity constraint ‖x‖0 ≤ T in formulation (2) can
be depicted by z as:

p∑
i=1

zi ≤ T. (8)

As a consequence, the `0-based sparse coding problem (2) can
have a ‘big-M ’ reformulation, that is, for a given M large
enough:

min
x∈Rp,z∈{0,1}p

1
2‖y −Dx‖22

subject to −zM < x < zM
1T
p z ≤ T,

(9)

where 1p is the column vector of size p with all elements
equal to one. In this formulation, the optimization variables x
and z are respectively continuous and integer. The problem is
a mixed-integer program (MIP).

MIP refers to the optimization problems involving both
integer and continuous variables. And according to the ob-
jective function (linear or quadratic) and constraints (linear,
quadratic, equation or inequality), MIP can be further di-
vided into different optimization problems, the most known
are the Mixed-Integer Linear Program (MILP), the Mixed-
Integer Quadratic Program (MIQP) and the Mixed-Integer
Quadratically Constrained (linear) Program (MIQCP). Back
to our optimization problem defined in (9) with continuous
and integer optimization variables, the objective function is
quadratic and all the constraints are linear. Hence, sparse
coding can be interpreted as a MIQP. In the following, we will
write the optimization problem in a standard form in order to
use off-the-shelf solvers.

The standard formulation of MIQP is:

min
v

1
2v

TQv + cTv

subject to Ainv ≤ bin

Aeqv = beq

lb ≤ v ≤ ub

vj ∈ Z ∀j ∈ I,

(10)

where v is the vector of optimization variables, with the set
I indicating its integer components, Q is a symmetric matrix
defining the quadratic objective function and c is its linear
part, Ain, bin, Aeq , beq , jointly define the constraints, lb
and ub are the lower and upper bounds of the optimization
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variables v. The constraints determined by the two boundaries
are fundamental in the complexity sense; without bounded
constraints, the problem becomes undecidable [33]. In con-
trast, by raising the lower bounds and reducing the upper
bounds, the computation complexity can be easily decreased
[34].

We can reformulate our problem as a standard formulation
of MIQP by combining the vectors x and z, that is, let

v = (xT , zT )T ,

then
min
v

1
2v

TQv + cTv

subject to Ainv ≤ bin

vj ∈ {0, 1} ∀j ∈ I,
(11)

where Q is a matrix of size 2p × 2p made up of four sub-
matrices

Q =

(
DTD 0p,p

0p,p 0p,p

)
,

with 0p,q is the zero matrix of size p×q, c is a column vector
of size 2p with

c =

(
−DTy
0p,1

)
.

The (2p+ 1)× 2p matrix

Ain =

 −Ip −MIp
Ip MIp
0T
p 1T

p


with Ip the identity matrix of size p× p, and the (2p+ 1)× 1
column vector bin = (0T

2p, T )T , are both obtained according
to the inequality of formulation (9). Finally, the set I in (10)
indicates the integer components in the MIQP, namely

I = {p+ 1, p+ 2, . . . , 2p}.

In practice, the variable’s type is indicated as continuous or
binary in the input for the solver at hand.

To solve this MIQP problem, various optimization software
packages can be explored, for example CPLEX developed
by IBM integrates the latest MIP solvers to solve larger
MILP problems, and Gurobi Optimizer recently developed can
have an equivalent performance to CPLEX while the latest
release gets some improvements [32]. The developed tools
make it possible to apply MIQP into image processing, but
by considering its computational complexity, some effort can
be done to improve it as described next.

B. Additive constraints

The developments of the MIQP solvers have been following
the progress in LP theory. The advanced-start capabilities of
simplex algorithms in the branch-and-bound [35] (or now more
correctly, branch-and-cut [34]) search tree are well exploited
by MIQP solvers. No matter which optimization technique is
used, the search process remains the main time consumption
factor. The searching time heavily relies on the feasible region
determined by the constraints. Hence, the effort on getting a
good formulation of the constraints do help to accelerate the
resolution of the optimization problem.

Hoffman and Ralphs have proven in [36] that, if a feasible
solution is obtained by a relaxation, then it must also be
optimal solution to the original problem. Especially, in the
ideal case, if the convex envelope is found, a mixed inte-
ger programming will be transformed to the classical linear
programming. However, it is an NP-hard problem to find
constraints defining the convex envelop. The viable strategy
is to create a convex envelop of the continuous variables

C =
{
x ∈ Rp

∣∣ z ∈ {0, 1}p, p∑
j=1

zj ≤ T, |xj | ≤ zjT,
}
,

by adding the constraint about `1-norm and `∞-norm of x:{ ∑p
i=1 |xi| < TM
|xi| < M ∀i = 1, . . . , p.

However, the absolute value is difficult to be formulated as
linear programs. To overcome this difficulty, we replace each
unrestricted variable xi, for i = 1, . . . , p, with the difference
of two restricted variables,{

xi = x+i − x
−
i

x+i , x
−
i > 0,

namely in matrix form{
x = x+ − x−

x+,x− > 0.

Then the absolute value of xi in the above constraints can be
represented in the linear program as:

|xi| = x+i + x−i ∀i = 1, . . . , p.

Thus, the constraints for MIQP can be summarized as:
∑p

i=1 x+i + x−i < TM
−zM < x+ − x− < zM

0 ≤ x+i , x
−
i < Mz

1T
p z ≤ Tz .

(12)

With the new constraints, MIQP can be reformulated as the
standard formulation by introducing as updated optimization
variable v = (x+T

,x−
T
, zT )T . Accordingly, the model

components Q, c, Ain, bin, lb and ub are updated as follows:
The matrix Q becomes the 3p× 3p matrix

Q =

 DTD −DTD 0p,p

−DTD DTD 0p,p

0p,p 0p,p 0p,p

 ,

the vector c changes to the vector of size 3p

c =

 −DT y
DT y
0p,1

 ,

the linear constraint matrix Ain ∈ R(2p+2)×3p is now

Ain =


1p6T 1T

p 0T
p

0T
p 0T

p 1T
p

−Ip Ip −Mip
Ip −Ip −MIp

 ,
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the right side of the inequality constraint becomes

bin =

 TM
T

0T
2p

 ,

the two bounds (uin, lb) of the new variables v are now
defined respectively as uin = (M1T

2p,1
T )T and lb = 03p,

and
I = {2p+ 1, 2p+ 2, . . . , 3p}.

With the new formulation, the problem can be solved more
efficiently.

C. Initialization by the proximal method

The MIQP solver is based on the search tree theory [34].
The MIQP problem, represented by the root of the tree, is
partitioned into subproblems. And the feasible region is also
divided into subregions. The objective value of any feasible
solution to a subproblem provides an upper bound on the
global optimal value. The optimal solution is produced when
the global lower bound and global upper bound are equal.
Usually, a global bound is needed to make the algorithm
more efficient. Hence, a good initialization or tight bounds can
both help to improve the performance. In the following, the
proximal method will be applied to give a good initialization
and an optimized value for M that forms the global bound of
the problem.

The proximal method is based on the first order approxi-
mation method. It produces a reasonable approximate solution
by minimization a succession of upper bound of the objective
function. It is a powerful tool to tackle non-smooth, con-
strained, large-scale, and distributed optimization problems.
The proximal operator is expressed as

proxh(u) = arg min
x

(
h(x) +

1

2
‖x− u‖2

)
,

where h defines a proper and lower semi-continuous function,
and t > 0 is a step size parameter. See [28] for more details.

For our problem, let H(x) denote the quadratic objective
function in the optimization problem (10), and h(x) the
function that makes sure that the feasible region is in the space
S of T -sparsity, that is

h(x) =

{
0 if ‖x‖0 ≤ T
∞ otherwise. (13)

The proximal operator boils down to the projection onto the
sparse space S:

PS(u) := arg min
x∈S

(‖x− u‖2).

The solution of this problem can be easily obtained by keeping
T biggest absolute value components of u and setting the rest
to zeros:

PS(u) =

{
uj if j ∈ {(1), . . . , (T )}
0 otherwise

where j is the index of the sequences that |u(1)| > |u(2)| >
· · · > |u(p)|. By applying a proximal algorithm, the sparse

Algorithm 1 Dictionary learning algorithm via MIQP.
Require: Signals for training Y , target sparsity T , step size t for

updating approximate X by proximal method, coefficient α for
optimizing M , number of iteration for dictionary learning Nd

and for proximal method Np

1: Initialize the dictionary D and the decomposition coefficients
matrix X0;

2: for nd = 1, . . . , Nd do
3: Initialize X by proximal method:
4: for np = 1, . . . , Np do
5:

Xk+1 = PS
(
Xk − t(DTDXk −DTY )

)
6: end for
7: X = XNp

8: M = αmaxi=1,...,N ‖xNp

i ‖∞,
9: Optimize X by MIQP:

10: for n = 1, . . . , N do
11: x+

n = max(0,xn)
12: x−n = max(0,−xn)
13: zn = abs(sign(xn))

14: v = (x+
n

T
,x−n

T
, zTn )

T

15: Solving MIQP problem

min
v

1
2
vTQv + cTv

subject to Ainv ≤ bin,

lb ≤ v ≤ ub,

vj ∈ {0, 1}, . . .∀j ∈ I.

xn = v[1 : p]− v[p+ 1 : 2p]
16: end for
17: Update D with the SVD method
18: end for
19: return The dictionary D and the decomposition coefficients

matrix X .

representation problem can be solved through a serial update
process [12]:

xk+1 ∈ PS
(
xk − t∇H(xk)

)
, (14)

where ∇H(x) = DTDx − DTy. After a finite number of
iterations niter, the xniter will be much approximate to the
optimal solution of the MIQP problem. By considering the
definition of ‘big-M ’, the constraints in the problem (12)
related to M can be well determined by an approximation
of the optimal solution. A simple method to determine an
appropriate value for M can be:

M = α‖xniter‖∞. (15)

The much tighter bound defined by M and an approximate
initialization allow to gain a factor of ten in the required
computing time for solving such problems (this figure is
obtained from extensive preliminary experiments conducted
on toy data).

The optimized dictionary learning algorithm based on MIQP
is outlined as given in Algorithm 1.

IV. EXPERIMENTS AND RESULTS

Sparse representation on image denoising has been ad-
dressed by methods such as K-SVD and BM3D [37], and it has
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been recently surpassed by the methods of convolutional neu-
ral networks [38]. However, the experiment on image denois-
ing still provides a good assessment on sparse representation
algorithms [39]. In this section, we design two experimental
settings. The first one is conducted on synthetic data in order to
show the advantage of sparse coding with MIQP, considering
both accuracy and speed. The second one evaluates the dic-
tionary learning algorithm on image denoising, and compares
it to OMP and the proximal method for sparse coding, as
well as the more recently proposed SOUPDIL method [14];
as considered in the latter, the dictionary update method is
fixed to the SVD, which allows to provide fair comparable
results between all sparse coding methods.

A. Experiments on synthetic data

To illustrate the relevance of the proposed MIQP, experi-
ments are conducted on synthetic data, thus with ground-truth
data to assess the sparse coding phase only. We consider the
problem posed in (2) of estimating sparse coefficients X from
signals Y with a given dictionary D.

In these experiments, a sparse matrix X ∈ R128×10000 is
created with a column-wise maximum sparsity level of 6,
by using the K-SVD method applied on a randomly gener-
ated matrix Y0 ∈ R64×10000. Then, to assure the fairness
of the experiments, a new column-wise normalized matrix
D ∈ R64×128 is randomly generated. With the known matrices
X and D, the training data Y is finally produced by the
following equation

Y = DX + κE, (16)

where E is a randomly generated zero-mean white Gaussian
noise matrix and κ a parameter controlling the noise level,
set to κ = 0.01 in the experiments. For statistical purpose,
data of size 10000 is divided into 100 units. For each unit
Yi ∈ R64×100, a sparse code matrix Xi is estimated. This
allows to provide the median, the 5th and 95th percentiles.

The two MIQP sparse coding algorithms, with and without
initialization, are compared to OMP and the proximal method
presented in Section III-C. The performances of the sparse
coding methods are evaluated with three criteria: the difference
between Xi and the estimated X̂i, i.e., ‖Xi − X̂i‖F , the
reconstruction error, i.e., ‖Yi−DX̂i‖2F , and the percentage of
zero and non-zero elements being found in the right positions.

Gurobi Optimizer v7.0.2 has been chosen to solve the MIQP
optimization problem. We run the software in the Matlab R©

environment on a server with 4 Intel R© Xeon R© processors with
a CPU clocked at 2.4 GHz. The parameters settings of the
Gurobi solver are set using the default values with a time limit
of 20 seconds. For the initialization by the proximal method,
the number of iterations is set to 200.

TABLE I presents the computational time and results about
the reconstruction error, the accuracy of the sparse coding
estimation and the percentage of number of the zero and
non-zero elements being recovered in the right position. It
shows that the errors obtained by MIQP is far less than that
the ones of OMP and proximal method. Furthermore, the
introduction of initialization has a little effect on the accuracy,

while the computational cost is reduced by a factor of 5.
In addition, more non-zero elements are found in the right
positions. These advantages make MIQP of great interest to
be used as a sparse coding algorithm and, in conjunction with
a dictionary updating rule, as a dictionary learning algorithm.
In spite of the overall strength of MIQP, its Achilles’ Heel is
the excessive computational complexity, making it difficult to
use for large-scale problems. However, as aforementioned, the
proposed acceleration opens the possibility to apply the MIQP-
based dictionary learning algorithm on large-scale problems,
such as in image denoising. Note that, in practice to get an
improvement over the proximal method, there is no need to
run the optimization until the global minimum. Whatever the
computing budget is allocated, the MIP formulation allows to
use it to improve the results.

B. Design of experiments on real images

We choose the segments of natural images in the USC-
SIPI Image Database1 for experiments. The dataset contains
five frequently used images in signal and image processing,
as presented in Fig. 1. The images are of size 121 × 121.
The images in all experiments are corrupted with an additive
zero-mean white Gaussian noise.

The experiments are conducted using two different settings
in order to denoise some given corrupted image. The first
one, called large-scale dictionary learning, considers a corpus
of high-quality images to learn a single dictionary, then uses
the obtained dictionary to denoise the corrupted image. The
second setting, called adapted dictionary, learns the dictionary
from the corrupted image to be denoised. These two settings
allow to prove the semantic representation power of the
dictionary, that is to say, the atoms in dictionary contain
real semantic information. An exact optimization approach is
assumed to be resistant to additive noise and can recover the
original signals. Consequently, with all the semantic represen-
tative atoms in the dictionary, the corresponding signal can be
recover directly.

The experiment is conducted with the same Gurobi solver
as aforementioned and in the same environment and settings.
The parameters settings of Gurobi are: TimeLimit 50 and
IterationLimit 500. For initialization by the proximal method,
the number of iterations is also set to 200. The coefficient to
decrease M is set to α = 2.5.

To assess the quality of denoising an image Ỹ , we consider
the peak signal-to-noise ratio (PSNR), namely

PSNR = −10 log
‖Ŷ − Ỹ ‖2

2552
,

where Ŷ denotes the reconstructed image. The reconstruction
model proposed by Elad and Aharon in [7] with

Ŷ =
(
λI +

∑
ij

RT
ijRij

)−1(
λŶ +

∑
ij

RT
ijDxij

)
, (17)

where the matrix Rij is the matrix extracting the (i, j)-th
block from the image, and λ is set to 30/σ as recommended

1http://sipi.usc.edu/database/database.php?volume=misc
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TABLE I: Computational time and accuracy results (100-batch median, 5th and 95th percentiles) on synthetic data

Computational time Reconstruction error Sparse coding error Position accuracy of

‖Yi −DX̂i‖2F ‖X̂i −Xi‖F non-zero elements (%)

Method

Results
P5 median P95 P5 median P95 P5 median P95 P5 median P95

OMP 0.019 0.020 0.032 14.00 15.90 17.45 39.17 44.84 51.13 98.16 98.52 98.81

Proximal 0.023 0.024 0.032 13.20 15.14 16.19 34.68 42.33 46.40 98.42 98.62 98.98

MIQP without
initialization

2002.5 2002.6 2002.7 2.36 2.84 2.86 5.41 6.45 6.46 99.73 99.74 99.78

MIQP with
initialization

286.98 415.34 543.90 1.58 2.74 3.51 3.60 6.06 7.99 99.94 99.97 99.98

(a) Barbara (b) Cameraman (c) Elaine (d) Lena (e) Man

Fig. 1: Examples in the USC-SIPI Image Database
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Fig. 2: Convergence of the proposed algorithm and the
comparison with K-SVD using OMP, proximal method and
SOUPDIL

in [7], where the authors demonstrate the superiority of this
reconstruction model on the conventional one Ŷ = DX . This
superiority is also observed in the experiments in this paper.

C. Large-scale (global) dictionary learning

The first setting considers the set of high-quality images in
order to construct a unique global dictionary that will serve
to denoise every image. More than ` ≈ 1.6× 104 overlapping
patches of size n = 8 × 8 from the images are extracted to
get a single training dataset denoted Y . The number of the
atoms is set to p = 256 and the sparsity level is T = 20

(these parameters are determined by preliminary experiments
and corroborated by other studies, such as [7]).

The proposed dictionary learning algorithm (MIQP for
sparse coding, SVD for dictionary updating) is executed for
30 iterations to learn a dictionary. This number of iterations
is more than enough for convergence, as illustrated in Fig. 2.
This figure also shows how the proposed method converges
faster than the other dictionary learning methods (K-SVD with
OMP, proximal method and SOUPDIL algorithm).

For the purpose of studying the properties of the learned
dictionary, the sparsity-constrained formulation (2) and the
error-constrained formulation (3) are respectively investigated
to learn the sparse code for reconstruction. The sparsity-
constrained formulation (2) defines a sparse coding problem
with a predefined sparsity parameter T . Considering the error-
constrained optimization problem (3), it is easy to make OMP
satisfy the constraint by measuring the reconstruction error
each time after adding a non-zero entry [7]; The proximal
method will search for the Pareto optimal when the sparsity
level varies [40]; MIQP keeps all the signals in the constraint
based on the decided sparsity of initialization obtained by the
proximal method. As recommended in [7], ε = c n σ2 with
c = 1.15 and a maximum sparsity parameter Tm (usually the
same as T ) set to assure the sparse level. In order to understand
the influence of the noise level on the results of the proposed
method, we consider additive Gaussian noise of different
standard deviations (σ = 10, 20, 50 in the experiments).

The reconstruction accuracy is given in TABLE II in terms
of the PSNR. These results to evaluate sparse coding show that
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TABLE II: Accuracy of the denoising in terms of the PSNR
in the large-scale (global) dictionary learning, for each of the
five images at several noise levels, comparing the sparsity-
constrained formulation (2) and the error-constrained formu-
lation (3) (the higher, the better)

Image Sparse coding formulation σ =10 σ =20 σ = 50

Barbara
error-constrained 24.71 23.75 20.79

sparsity-constrained 26.77 25.24 20.14

Cameraman
error-constrained 24.93 23.90 20.16

sparsity-constrained 27.70 25.75 20.19

Elaine
error-constrained 26.78 25.64 21.57

sparsity-constrained 29.87 27.81 21.14

Lena
error-constrained 26.05 24.98 21.22

sparsity-constrained 28.83 26.93 20.92

Man
error-constrained 24.67 23.68 20.80

sparsity-constrained 27.60 25.97 20.10

the sparsity-constrained formulation (2) always outperforms
the error-constrained formulation (3) when σ = 10 (with an
average improvement 2.73dB) and σ = 20 (with an average
improvement 1.95dB). At high noise level with σ = 50, their
performances are comparable.

To measure the quality of the dictionaries, we consider
the coherence (correlation measured with the inner product)
between the atoms of each dictionary, thus measuring how
much two atoms in the dictionary are similar. This fundamental
information allows to define more powerful measures, such as
the coherence and Babel function [41], [42]. The coherence
measure of a given dictionary, defined by the maximum abso-
lute inner product between two distinct atoms, provides strong
insights on the capacity of the dictionary to recover sparse
signals. For instance, it is shown in [41] that a µ-coherence
dictionary can recover a K-sparse signal if µ < 1

2K−1 . It
is well known that the OMP algorithm (e.g. K-SVD) often
provides dictionaries with high coherence, and most atoms are
highly correlated. To overcome this issue, several strategies
have been proposed to provide more incoherent dictionaries
(see [43] and references therein). Fig. 3 provides the histogram
of the coherence between the atoms of the learned dictionaries,
for each of the four methods under investigation. It is observed
that the coherence of the obtained dictionary can be ordered
as follows

SOUPDIL ≺ MIQP ≺ Proximal method ≺ K-SVD.

Besides the analysis of the dictionary quality, we study next
the overall performance on the image denoising problem.

D. Adapted dictionary learning

In the second setting, the dictionary is trained on the
corrupted image under scrutiny, and then used to denoise it;
the dictionary is then “adapted” to the image at hand. As in the
first experiment, the signal matrix is created in the same way
using overlapping patches. For each corrupted image Ỹ , an

Fig. 3: Histogram of the coherence of learned dictionary

adapted dictionary is trained on it and then used for denoising
the same image.

All three methods, OMP, proximal method and SOUPDIL,
are compared with MIQP based dictionary learning method.
Moreover, we consider also a variant of K-SVD with OMP,
where the signals are pre-centered (subtracting the image
mean) prior to learning the dictionary [2]; connections between
centered and uncentered data are studied in [44]. In the
experiments, SOUPDIL is implemented using the original
Matlab code provided by its authors and available here2.
For the other three methods, the experiments details and the
parameter settings are given in the following. When dealing
with noisy data in the training phase, the knowledge about the
noise level σ is used for restricting the reconstruction error, as
shown in the constraint in the optimization problem (3) and
the parameter setting ε = c n σ2 with c = 1.15. These values,
optimized for OMP in [7], are used here for both proximal
method and MIQP, thus putting our method in a less favorable
situation.

In this part, the error-constrained optimization problem
(3) is used for sparse coding. The method of realization is
described in the large-scale dictionary learning. In order to
ensure the sparsity of the signals, the upper bound T is set to
20 for the proximal and MIQP methods, as in the first setting.
By fixing the dictionary updating method to SVD in all the
methods, this allows to have a fairly comparable setting to
analyze and compare the performance of the sparse coding
methods. The number of atoms is set to p = 256 for OMP, as
suggested in [7] where extensive experiments were conducted.
The number of atoms for the proximal method is set to
p = 65, which is obtained from a set of 14 candidate values
{50, 55, 60, 65, . . . , 110, 150, 200, 256, 300} that encloses the
most used values in the literature. The same value is used
for MIQP, which is a less favorable situation for our method.
The total number of iterations is still 30 for the two-step
sparse coding and dictionary updating. The SOUPDIL method
uses the same parameter setting as recommended in [14] after
extensive experimental analysis.

2https://gitlab.eecs.umich.edu/fessler/soupdil dinokat
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TABLE III: Denoising results in the adapted dictionary learn-
ing setting, for each of the five images, as well as the average
results (the higher, the better)

Image Method PSNR

Barbara

OMP 22.04

OMP (pre-centering) 21.97

proximal 22.54

SOUPDIL 22.30

MIQP 22.59

Cameramen

OMP 22.54

OMP (pre-centering) 22.63

proximal 22.49

SOUPDIL 22.79

MIQP 22.58

Elaine

OMP 23.00

OMP (pre-centering) 22.91

proximal 23.29

SOUPDIL 23.43

MIQP 23.39

Lena

OMP 22.48

OMP (pre-centering) 22.51

proximal 23.08

SOUPDIL 23.20

MIQP 23.09

Man

OMP 21.23

OMP (pre-centering) 21.32

proximal 21.70

SOUPDIL 21.67

MIQP 21.86

With the the learned dictionaries, the same reconstruction
model (17) is used for obtaining the denoised image. TA-
BLE III gives the denoising accuracy in terms of PSNR by
using the three aforementioned dictionary learning methods.
We notice that the influence of data pre-centering is not always
positive. It is observable that MIQP can outperform the K-SVD
and proximal methods almost in all cases. On average over all
five images, the proposed method carries out an improvement
of 0.45 with respect to OMP, and 0.08 with respect to the
proximal method. These improvements are important since,
on one hand, PSNR is a logarithmic-scale measure and, on
the other hand, the parameters were optimized for OMP (e.g.
ε, c = 1.15, p = 256) and for the proximal method (p = 65).
Even compared with the state-of-the-art dictionary learning
algorithm SOUPDIL, MIQP has comparable performance.

E. On the computational complexity

In despite of the great performance of MIQP method on
all images and compared to all the other methods, it has
high computational complexity in implementation. Because we
have different sizes of the training data in each setting (global
dictionary learning and adapted dictionary training for each

image), the training time is not comparable. In the following,
we focus on the average time of a single image. While the
OMP algorithm and the proximal method require only a couple
of minutes for completing the dictionary learning, MIQP needs
about one hour. See also TABLE I for results obtained on
synthetic data. However, recent advances in MIQP solvers
allow to reduce this gap.

Indeed, while the computational complexity remains the
Achilles heel of such methods, great improvements are being
carried out these days on MIQP solvers. For instance, the new
Gurobi Optimizer v8.0, made public a couple of days prior
to the submission of this paper, is more than 220% fasteron
MIQP problems than the one used in this paper. Moreover, new
advances in solvers are exploiting more and more the mod-
ern architectures and multi-core processors. Finally, currently
available off-the-shelf solvers, such as Gurobi and CPLEX,
do not have GPU implementations, which could also provide
important computational improvements.

V. CONCLUSION AND FUTURE WORK

In this paper, the K-SVD algorithm was revisited by
proposing the exact optimization method MIQP for sparse
coding, rather than OMP. Thanks to recent advances in linear
programming techniques, as well as more powerful hard-
ware, the speed of computation of MIQP has been greatly
improved. Furthermore, by introducing additive constraints
and an appropriate initialization, it was proved that it is
feasible to use MIQP for sparse coding to redefine the K-
SVD algorithm, and apply it in image processing. Though, the
MIQP method had much more time complexity in implemen-
tation comparing with the approximate methods, the feasibility
of the method was proved for large-scale data like well-
known images. Moreover, the image denoising experiments
showed the advantage of the proposed MIQP method based
K-SVD algorithm. Furthermore, the high noise-tolerance of
our method was demonstrated on both the large-scale and the
adapted dictionary learning settings. Indeed, state-of-the-art
methods rely on the approximation of the `0-norm, while such
approximation deteriorates when dealing with noisy data. The
resolution of the exact `0 optimization problem, as proposed
in this paper, overcomes this issue.

This paper demonstrated that the exact `0 optimization prob-
lem in dictionary learning can be solved for image processing,
working on real images. While having good performance
amelioration, its Achilles heel is the computational complexity.
However, great improvements are being carried out these days
on MIQP solvers, with more than 220% speed enhancement
in a single year (e.g. Gurobi Optimizer v8.0 versus v7.0).

As for future work, we will address the problem of com-
putational complexity by using recently proposed convex
reformulation in [45], as well as other recent developments in
linear programming theory. Furthermore, we will extend this
work beyond K-SVD to deal with classification, segmentation
and object recognition.
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