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This study is concerned with the design of a Mueller
imaging polarimeter for the visualization of spatially-
varying Mueller matrix fields. A simplified calibra-
tion procedure is advocated, where all the optical ele-
ments are calibrated simultaneously rather than inde-
pendently as in the state-of-the-art. This is shown to
significantly reduce the bias inherent to sequential cal-
ibration methods. In addition, this procedure requires
no reference sample, it allows calibration both in trans-
mission or in reflection modes, and it relies on ready-
to-use cameras. Put together, these novelties should
help non-specialists in optics designing and calibrating
a Mueller imaging polarimeter for applications such as
material classification. © 2019 Optical Society of America. One
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reproduction and distribution, duplication of any material in this paper for a
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The polarization properties of a medium can be measured
through Mueller polarimetry [1], and have proven to be of fun-
damental importance in many applications such as biomedical
diagnosis [2] or material classification [3]. Although the de-
sign and calibration of a Mueller polarimeter has long been
investigated in the Optics community, most of existing works
focus on the accurate measure of a single Mueller matrix, using
e.g. a HgCdTe photodetector [4] or a photodiode [5]. On the
other hand, practitioners need two-dimensional visualizations
of the Mueller matrix field, in order to identify spatially-varying
properties. Yet, non-specialists in Optics would probably fa-
vor a solution based on commercial cameras, which requires
no reference sample [6] or post-processing to remove calibra-
tion errors [7–10], and which can handle both transmission and
reflection modes [11]. Calibration procedures that meet such re-
quirements do already exist [5, 12] but they consider a dedicated
calibration procedure for each optical element. One objective
of this study is to show that one should rather simultaneously
calibrate all the optical elements, for the sake of both simplicity
and accuracy. Overall, this results in an easy-to-implement cali-
bration procedure which simultaneously meets all the aforemen-

tioned requirements, and should hopefuly help non-specialists
in Optics in the design of a Mueller imaging polarimeter.
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M

Fig. 1. Polarimeter used in our experiments, comprising a
Kohler illumination (blue), a PSG (cyan) consisting of a po-
larizer PG and a retarder RG, a medium M to be analyzed
(white), a PSA (yellow) consisting of a retarder RA and a polar-
izer PA, and a CCD camera with interference filters (red).

We consider a dual-rotating Mueller polarimeter composed
of the following elements, from source to detector (see Figure 1):

• A Kohler illumination system emitting a parallel and uni-
form white lighting;

• A polarization state generator (PSG) comprising:
– a linear polarizer PG with angle θG;
– a retarder RG with controllable fast axis (azimuth) αG;

• A medium M to be analyzed;
• A polarization state analyzer (PSA) comprising:

– a retarder RA with controllable azimuth αA;
– a linear polarizer PA with angle θA;

• A CCD camera equipped with interference filters1.

In dual-rotating Mueller polarimetry [11–14], both polarizers
are kept fixed while several images are acquired under varying
azimuthal angles of the retarders. The optical properties of the
medium, represented by its Mueller matrix M, can be obtained
by solving a system of equations having the following form:[

I Q U V
]>

∝ PA RA︸ ︷︷ ︸
A

M RG PG
[
1 0 0 0

]>
︸ ︷︷ ︸

G

, (1)

where [1, 0, 0, 0]> is the Stokes vector of the (unpolarized) light
entering the PSG, the lhs is the Stokes vector of the (polarized)
light entering the detector, with I the intensity measured by the
camera, and the Mueller matrices in the rhs are given the same
name as the optical element they represent.

1In our experiments, we used Newport 10LP-VIS-B polarizers and Newport

10RP64-532 zero-order waveplates, with a Stingray F-033B graylevel camera,
Newport 10BPF10 band-pass filters and Newport AG-PR100P piezo rotation stages
to control the angles from 0◦ to 340◦ with a resolution of 0.001◦ .
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Estimating the Mueller matrix M in Eq. (1) from a set of
intensity measurements I requires knowledge of the incident
Stokes vector G and of the first row of the PSA matrix A. That
is to say, the matrices PA, RA, RG and PG need being calibrated.
However, as shown in

R(α; α0, δ0) ∝


1 0 0 0

0 cos δ0 sin2 2(α− α0) (1− cos δ0) cos 2(α− α0) sin δ0 sin 2(α− α0)

+ cos2 2(α− α0) × sin 2(α− α0)

0 (1− cos δ0) cos 2(α− α0) cos δ0 cos2 2(α− α0) − sin δ0 cos 2(α− α0)

× sin 2(α− α0) + sin2 2(α− α0)

0 − sin δ0 sin 2(α− α0) sin δ0 cos 2(α− α0) cos δ0


(2)

and

P(θ; θ0) ∝


1 cos 2(θ − θ0) sin 2(θ − θ0) 0

cos 2(θ − θ0) cos2 2(θ − θ0) cos 2(θ − θ0) sin 2(θ − θ0) 0

sin 2(θ − θ0) cos 2(θ − θ0) sin 2(θ − θ0) sin2 2(θ − θ0) 0

0 0 0 0

 ,

(3)
these matrices have closed-form expressions involving the an-
gles θG, θA, αG and αA, which are defined w.r.t. unkown ref-
erence angles (indexed with a zero). Moreover, the Mueller
matrices of the retarders involve the delays δG/A

0 , which also
need to be calibrated as functions of the wavelength.

Inaccurate calibration has long been identified as a source of
serious bias in Mueller polarimetry [8], but as mentioned earlier
there is a surprising lack of literature on accurate and simple
calibration techniques. The rest of this study describes two such
methods based on maximum likelihood estimation, which has
recently been shown to overcome the eigenvalue method [15].
They can be used to calibrate all the polarimeter parameters
either in transmission (the medium is then the air and M is the
identity matrix) or in reflection (the medium is a mirror and M
is a diagonal matrix with elements [1, 1,−1,−1]>).

A. Sequential polarimeter calibration
We first describe a sequential calibration procedure where the
optical elements are added to the setup and calibrated one af-
ter the other, as advocated e.g., in [5, 12]. To calibrate the PSA
polarizer, the PSG polarizer is present but both retarders are
removed (RA = RG = I4). Our goal is to calibrate the orienta-
tion θA

0 of the PSA polarizer w.r.t. that θG
0 of the PSG polarizer2.

For this purpose, we take a series of n measurements I1 . . . In
under varying angle θA

1 . . . θA
n . Let a be the proportionality co-

efficient in Eq. (1), and assume this relationship is satisfied up
to a homoskedastic, zero-mean Gaussian noise. Expanding the
first row of Eq. (1), replacing the PSA and PSG polarizer ma-
trices by their expressions, and assuming additive, zero-mean
and homoskedastic Gaussian noise, the maximum likelihood
estimate for the couple (θA

0 , a)3 is the solution of the following
nonlinear least-squares optimization problem, which we solve
using Levenberg-Marquardt’s algorithm [16]:

min
θA

0 ,a

n

∑
j=1

(
a

1 + cos 2(θA
j − θA

0 )

2
− Ij

)2

. (4)

The left column in Figure 2 shows an example of results obtained
with this approach, while calibrating the polarimeter shown in
Figure 1.

2In the rest of this study, the origin of axes is that of the PSG linear polarizer
(θG

0 = 0), and this polarizer is kept fixed during all the experiments (θG = θG
0 ).

Eq. (3) is thus a matrix with ones in the 2× 2 top-left block and zeros elsewhere.
3The proportionality constant a is seen here as a hidden parameter to estimate,

instead of being arbitrarily taken as the maximum intensity, which might induce
errors due to quantization.

To calibrate the PSG retarder, the PSA retarder is removed
(RA = I4), and the angles of both polarizers are set to zero
(θG = θG

0 and θA = θA
0 ). The unknowns are the angle αG

0 and
the delay δG

0 (which is a function of the wavelength). To es-
timate them, we take m series of shots under different wave-
length λi, i ∈ {1, . . . , m}4, and for each series i we record n
measurements k Ii, k ∈ {1, . . . , n} under varying angle kαG, k ∈
{1, . . . , n}. Let us assume again homoskedastic, zero-mean Gaus-
sian noise, and denote by bi the proportionality constant (which
is wavelength-dependent, due to the sensor response being
wavelength-dependent) and by δG,i

0 the delay for the wavelength
λi. By expanding the first row of Eq. (1) along with Eq. (2)
and Eq. (3), the maximum likelihood estimation for the set of

unknown parameters
(

αG
0 ,
{
(bi, δG,i

0 )
}

i∈{1,...,m}

)
is attained by

solving the following nonlinear least-squares problem using, e.g.,
Levenberg-Marquardt’s algorithm:

min
αG

0 ,{(bi ,δG,i
0 )}i

m

∑
i=1

n

∑
k=1

bi
2 +

(
cos δG,i

0 − 1
)

sin2 2(kαG − αG
0 )

2
− k Ii

2

.

(5)
Then, from the estimated values {δG,i

0 }i of the delays we can ob-
tain the delay value for any wavelength λ according to Cauchy’s
approximation5

δG
0 (λ) =

κG
1
λ

+
κG

2
λ3 , (6)

where (κG
1 , κG

2 ) can be obtained by solving in a least-squares
manner the system of linear equations formed by the m equa-
tions (6) with the estimated values {δG,i

0 }i and the chosen wave-
lengths {λi}i. Columns two to four in Figure 2 show examples
of results for the calibration of the PSG and PSA retarders of
Figure 1 (the calibration procedure for the PSA retarder is exactly
the same as that of the PSG, provided that the angle of the PSG
retarder is set to zero i.e., αG = αG

0 ).

B. Bundle-adjusted polarimeter calibration
Given the sequential nature of the previous approach, bias may
be accumulated through the procedure (e.g., a wrong calibration
of the PSA polarizer will bias the calibration of the PSG retarder,
and that of the PSA retarder even more). Moreover, slight dis-
placements of the optical elements between the numerous steps
may be another source of bias. Therefore, an integrated cali-
bration method for the joint estimation of all parameters (the
three angles θA

0 , αG
0 , and αA

0 , and the four parameters κG/A
1/2 of

the two delay functions δG/A
0 modeled as in Eq. (6)) would re-

quire less manual intervention, and be more accurate. We now
introduce such a method, which is inspired by the classic bundle
adjustment method widely used in computer vision [17].

Let us consider a series of measurements l
k Ii

j obtained under

varying wavelength
{

λi
}

i
, polarizer angle

{
θA

j

}
j
, PSG azimuth{

kαG}
k, and PSA azimuth

{
lαA
}

l
(we used 6 wavelengths and

8 different values for the angles taken every 22.5◦ between 0◦

and 157.5◦ for the azimuths αG/A
0 , and every 45◦ between 0◦

and 315◦ for the polarizer angles θG/A
0 ).

4This can be accomplished either by using a multispectral camera, or by placing
narrow-band interference filters before a monochromatic CCD sensor.

5We used Cauchy’s approximation since we focus on the visible spectrum, yet
a more accurate model such as Sellmeier’s could have been employed.
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Fig. 2. Sequential calibration results. First column illustrates the PSA polarizer calibration: (top) RAW measurements, using n =
34006orientation values taken every 0.1◦ between 0◦ and 340◦), and (bottom) simulated normalized intensities, using the estimate
θA

0 = 151.71◦. Columns two to four illustrate the calibration of the PSG (top) and PSA (bottom) retarders. Second column: RAW
intensities, for m = 6 wavelengths and n = 3400 azimuths values taken every 0.1◦ between 0◦ and 340◦. Third column: simulated
normalized intensities, using the estimated angles αG

0 = 61.58◦ and αA
0 = 94.86◦ and delays δG

0 and δA
0 . Fourth column: estimated

delay values (crosses) and fitted delay function (solid line). Note the choice n = 3400 overdetermines the estimation much more
than necessary, in order for sequential calibration to consitute a reasonable reference for comparison.

Let us assume that Eq. (1) is satisfied up to additive, zero-
mean and homoskedastic Gaussian noise, and denote by bi the
unknown scale parameter for the i-th wavelength. The maxi-
mum likelihood estimate for the set of unknown parameters is
thus attained by solving the nonlinear least-squares problem

min
αG

0 ,κG
1 ,κG

2
αA

0 ,κA
1 ,κA

2
θA

0 ,{bi}i

∑
i,j,k,l

(
bi l Ai

j(α
A
0 , κA

1 , κA
2 , θA

0 ) M kGi(αG
0 , κG

1 , κG
2 )− l

k Ii
j

)2

(7)
with l Ai

j the first row of the PSA matrix A in Eq. (1) given,
according to Eq. (2), Eq. (3) and Eq. (6), by

l Ai
j(α

A
0 , κA

1 , κA
2 , θA

0 ) =

1

cos 2
(

θA
j − θA

0

)cos2 2
(

l αA − αA
0

)
+ cos

 κA
1

λi +
κA

2(
λi
)3

 sin2 2
(

l αA − αA
0

) . . .

+ sin 2
(

θA
j − θA

0

)1− cos

 κA
1

λi +
κA

2(
λi
)3


 cos 2

(
l αA − αA

0

)
sin 2

(
l αA − αA

0

)

cos 2
(

θA
j − θA

0

)1− cos

 κA
1

λi +
κA

2(
λi
)3


 cos 2

(
l αA − αA

0

)
sin 2

(
l αA − αA

0

)
. . .

+ sin 2
(

θA
j − θA

0

)cos

 κA
1

λi +
κA

2(
λi
)3

 cos2 2
(

l αA − αA
0

)
+ sin2 2

(
l αA − αA

0

)
cos 2

(
θA

j − θA
0

)
sin

 κA
1

λi +
κA

2(
λi
)3

 sin 2
(

l αA − αA
0

)
− sin 2

(
θA

j − θA
0

)
sin

 κA
1

λi +
κA

2(
λi
)3

 cos 2
(

l αA − αA
0

)



>

(8)
and kGi the Stokes vector exiting the PSG given, according to
Eq. (2), Eq. (3) and Eq. (6), by

kGi(αG
0 , κG

1 , κG
2 ) =



1

cos

(
κG

1
λi +

κG
2(

λi
)3

)
sin2 2

(
kαG − αG

0

)
+ cos2 2

(
kαG − αG

0

)
(

1− cos

(
κG

1
λi +

κG
2(

λi
)3

))
cos 2

(
kαG − αG

0

)
sin 2

(
kαG − αG

0

)
− sin

(
κG

1
λi +

κG
2(

λi
)3

)
sin 2

(
kαG − αG

0

)

 .

(9)

The angles estimated with this integrated approach differ by
less than 2◦ from those obtained with the sequential approach,
thus we do not reproduce any new calibration result. It is the
computation of real-world Mueller matrix measurements which
will highlight the significance of this slight difference. Still, let us
already remark that in the sequential procedure, we used a total
of 3× 3400 = 10200 observations per wavelength. In contrast,
we used 20 times less (512 per wavelength) observations for the
bundle-adjusted method: if the latter is to provide similar results
with so much fewer observations then it can be considered as
substantially better in terms of simplicity7.

C. Polarimetric Imaging
To measure real-world Mueller matrices, the polarizers are
aligned (θA = θA

0 and θG = θG
0 ) and the two retarders are con-

trolled through their azimuth αG := αG− αG
0 and αA := αA− αA

0 .
The first row in Eq. (1) then turns into the following linear equa-
tion in the 16 unknown coefficients of matrix M:

I(αA, αG) =


1

1−
(

1− cos δA
0

)
sin2 2αA(

1− cos δA
0

)
cos 2αA sin 2αA

sin δA
0 sin 2αA



>

︸ ︷︷ ︸
:=A(αA)

M


1

1−
(

1− cos δG
0

)
sin2 2αG(

1− cos δG
0

)
cos 2αG sin 2αG

− sin δG
0 sin 2αG


︸ ︷︷ ︸

:=G(αG)

. (10)

We acquire m series of intensity measurements under varying
PSA retarder angle αA. In each series, we acquire n measure-
ments under varying PSG retarder angle αG. The resulting mn
observations8 then allow the system of mn equations such as
Eq. (10) to be solved in the least-squares sense.

7Our piezo rotating stages being limited to a speed of 1.5◦/sec., in our exper-
iments it takes around 1.5 hrs to acquire the 512 measurements used to calibrate
the polarimeter at one particular wavelength, and around 10 min to acquire the 64
ones used for polarimetric imaging. These numbers might be significantly reduced
by using faster rotating stages.

8We used m = n = 8 angles equally spaced between 0◦ and 157.5◦ . This
yields conditioning numbers of 3.79 and 3.99 for the 64× 4 matrices A and G> in
Eq. (10). These values are exactly the same as those associated with the theoretically
optimal [6] set of 64 angles obtained with synchronous variations of both azimuths
at a 1:5 speed ratio.
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Table 1. Estimated Mueller matrices and relative error for the air (transmission mode, first row) and a mirror (reflection mode,
second row), using the calibration parameters obtained with the sequential (left) and bundle-adjusted methods (right). The bottom
figures show the spatial distribution of errors for the mirror, in false colors (blue is zero, yellow is 0.04).

Mair
seq =


1.000 0.010 0.004 0.001

0.002 0.991 −0.015 0.009

−0.007 0.010 0.992 −0.004

0.001 −0.005 −0.001 0.997


‖Mair

seq−Mair‖F
‖Mair‖F

= 0.015 Mair
bun =


1.000 0.000 0.003 −0.003

−0.007 1.002 −0.010 0.011

−0.007 0.007 1.005 −0.002

0.003 −0.002 0.003 0.996


‖Mair

bun−Mair‖F
‖Mair‖F

= 0.011

Mmirr
seq =


1.000 0.008 −0.010 0.003

0.007 0.983 0.016 −0.006

−0.003 0.018 −0.994 0.015

−0.002 −0.005 −0.016 −1.002


‖Mmirr

seq −Mmirr‖F
‖Mmirr‖F

= 0.021 Mmirr
bun =


1.000 0.004 −0.004 0.004

−0.001 1.000 0.000 −0.005

0.007 0.000 −1.009 0.014

−0.003 −0.000 −0.017 −0.998


‖Mmirr

bun −Mmirr‖F
‖Mmirr‖F

= 0.013

We first calibrated the polarimeter in transmission mode and
then estimated the Mueller matrix9 of the air at 540 nm (the
expected result is the matrix Mair equal to identity). Then we
calibrated it again in reflection mode and estimated the Mueller
matrix of a mirror at 540 nm (the expected result is a diagonal
matrix Mmirr with non-zero elements [1, 1,−1,−1]>). The re-
sults shown in Table 1 show that the bundle-adjusted calibration
method significantly reduces errors. The spatial uniformity of
the error distribution further suggests that the remaining errors
are mostly due to the accuracy of the detector.

Figure 3 illustrates the ability of the discussed polarimeter,
calibrated in reflection mode, to reconstruct spatially-varying
Mueller matrix fields. In this experiment the scene contains
three objects whose material can hardly be discriminated from
the graylevel image (see the top-left image), but visualization
of the Mueller matrix coefficients (for instance, M22 and M43)
makes this task straightforward. This shows the potential of the
proposed simplified calibration procedure for Mueller polarime-
ters in material classification.
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